Enamel matrix proteins exhibit growth factor activity: A review of evidence at the cellular and molecular levels
- Authors:
- Marzena Wyganowska‑Świątkowska
- Paulina Urbaniak
- Michał Marek Nohawica
- Małgorzata Kotwicka
- Jerzy Jankun
-
Affiliations: Department of Conservative Dentistry and Periodontology, Poznan University of Medical Sciences, Poznań 60‑820, Poland, Department of Cell Biology, Poznan University of Medical Sciences, Poznań 60‑806, Poland, Dundee Dental School, University of Dundee, Dundee DD1 4HN, UK, Department of Urology, Urology Research Centre, College of Medicine, University of Toledo, Toledo, OH 43614, USA - Published online on: April 7, 2015 https://doi.org/10.3892/etm.2015.2414
- Pages: 2025-2033
This article is mentioned in:
Abstract
Bosshardt DD: Biological mediators and periodontal regeneration: a review of enamel matrix proteins at the cellular and molecular levels. J Clin Periodontol. 35:(Suppl). 87–105. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gibson CW: The amelogenin ̔enamel proteins̓ and cells in the periodontium. Crit Rev Eukaryot Gene Expr. 18:345–360. 2008. View Article : Google Scholar : PubMed/NCBI | |
Grandin HM, Gemperli AC and Dard M: Enamel matrix derivative: a review of cellular effects in vitro and a model of molecular arrangement and functioning. Tissue Eng Part B Rev. 18:181–202. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lyngstadaas SP, Wohlfahrt JC, Brookes SJ, Paine ML, Snead ML and Reseland JE: Enamel matrix proteins; old molecules for new applications. Orthod Craniofac Res. 12:243–253. 2009. View Article : Google Scholar : PubMed/NCBI | |
Miron RJ, Guillemette V, Zhang Y, Chandad F and Sculean A: Enamel matrix derivative in combination with bone grafts: A review of the literature. Quintessence Int. 45:475–487. 2014.PubMed/NCBI | |
Rathe F, Junker R, Chesnutt BM and Jansen JA: The effect of enamel matrix derivative (Emdogain) on bone formation: a systematic review. Tissue Eng Part B Rev. 15:215–224. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zeichner-David M: Is there more to enamel matrix proteins than biomineralization? Matrix Biol. 20:307–316. 2001. View Article : Google Scholar : PubMed/NCBI | |
Giannobile WV: Periodontal tissue engineering by growth factors. Bone. 19:(Suppl). 23S–37S. 1996. View Article : Google Scholar : PubMed/NCBI | |
Blom S, Holmstrup P and Dabelsteen E: The effect of insulin-like growth factor-I and human growth hormone on periodontal ligament fibroblast morphology, growth pattern, DNA synthesis and receptor binding. J Periodontol. 63:960–968. 1992. View Article : Google Scholar : PubMed/NCBI | |
Brady TA, Piesco NP, Buckley MJ, Langkamp HH, Bowen LL and Agarwal S: Autoregulation of periodontal ligament cell phenotype and functions by transforming growth factor-beta1. J Dent Res. 77:1779–1790. 1998. View Article : Google Scholar : PubMed/NCBI | |
Dennison DK, Vallone DR, Pinero GJ, Rittman B and Caffesse RG: Differential effect of TGF-beta 1 and PDGF on proliferation of periodontal ligament cells and gingival fibroblasts. J Periodontol. 65:641–648. 1994. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi M, Takiguchi T, Suzuki R, et al: Recombinant human bone morphogenetic protein-2 stimulates osteoblastic differentiation in cells isolated from human periodontal ligament. J Dent Res. 78:1624–1633. 1999. View Article : Google Scholar : PubMed/NCBI | |
Lynch SE, Williams RC, Polson AM, et al: A combination of platelet-derived and insulin-like growth factors enhances periodontal regeneration. J Clin Periodontol. 16:545–548. 1989. View Article : Google Scholar : PubMed/NCBI | |
Matsuda N, Lin WL, Kumar NM, Cho MI and Genco RJ: Mitogenic, chemotactic and synthetic responses of rat periodontal ligament fibroblastic cells to polypeptide growth factors in vitro. J Periodontol. 63:515–525. 1992. View Article : Google Scholar : PubMed/NCBI | |
Nishimura F and Terranova VP: Comparative study of the chemotactic responses of periodontal ligament cells and gingival fibroblasts to polypeptide growth factors. J Dent Res. 75:986–992. 1996. View Article : Google Scholar : PubMed/NCBI | |
Oates TW, Rouse CA and Cochran DL: Mitogenic effects of growth factors on human periodontal ligament cells in vitro. J Periodontol. 64:142–148. 1993. View Article : Google Scholar : PubMed/NCBI | |
Takayama S, Murakami S, Miki Y, et al: Effects of basic fibroblast growth factor on human periodontal ligament cells. J Periodontal Res. 32:667–675. 1997. View Article : Google Scholar : PubMed/NCBI | |
Terranova VP, Odziemiec C, Tweden KS and Spadone DP: Repopulation of dentin surfaces by periodontal ligament cells and endothelial cells. Effect of basic fibroblast growth factor. J Periodontol. 60:293–301. 1989. View Article : Google Scholar : PubMed/NCBI | |
Terranova VP and Wikesjö UM: Extracellular matrices and polypeptide growth factors as mediators of functions of cells of the periodontium. A review. J Periodontol. 58:371–380. 1987. View Article : Google Scholar : PubMed/NCBI | |
Bartlett JD and Simmer JP: Proteinases in developing dental enamel. Crit Rev Oral Biol Med. 10:425–441. 1999. View Article : Google Scholar : PubMed/NCBI | |
Margolis HC, Beniash E and Fowler CE: Role of macromolecular assembly of enamel matrix proteins in enamel formation. J Dent Res. 85:775–793. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sculean A, Schwarz F, Becker J and Brecx M: The application of an enamel matrix protein derivative (Emdogain) in regenerative periodontal therapy: a review. Med Princ Pract. 16:167–180. 2007. View Article : Google Scholar : PubMed/NCBI | |
Heijl L, Heden G, Svärdström G and Ostgren A: Enamel matrix derivative (EMDOGAIN) in the treatment of intrabony periodontal defects. J Clin Periodontol. 24:705–714. 1997. View Article : Google Scholar : PubMed/NCBI | |
Kawase T, Okuda K, Momose M, Kato Y, Yoshie H and Burns DM: Enamel matrix derivative (EMDOGAIN) rapidly stimulates phosphorylation of the MAP kinase family and nuclear accumulation of smad2 in both oral epithelial and fibroblastic human cells. J Periodontal Res. 36:367–376. 2001. View Article : Google Scholar : PubMed/NCBI | |
Petinaki E, Nikolopoulos S and Castanas E: Low stimulation of peripheral lymphocytes, following in vitro application of Emdogain. J Clin Periodontol. 25:715–720. 1998. View Article : Google Scholar : PubMed/NCBI | |
Suzuki S, Nagano T, Yamakoshi Y, et al: Enamel matrix derivative gel stimulates signal transduction of BMP and TGF-β. J Dent Res. 84:510–514. 2005. View Article : Google Scholar : PubMed/NCBI | |
Laaksonen M, Sorsa T and Salo T: Emdogain in carcinogenesis: a systematic review of in vitro studies. J Oral Sci. 52:1–11. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nikolopoulos S, Peteinaki E and Castanas E: Immunologic effects of emdogain in humans: one-year results. Int J Periodontics Restorative Dent. 22:269–277. 2002.PubMed/NCBI | |
Massagué J, Blain SW and Lo RS: TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 103:295–309. 2000. View Article : Google Scholar : PubMed/NCBI | |
Patterson GI and Padgett RW: TGF beta-related pathways. Roles in Caenorhabditis elegans development. Trends Genet. 16:27–33. 2000. View Article : Google Scholar : PubMed/NCBI | |
Roberts AB, Sporn MB, Assoian RK, et al: Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA. 83:4167–4171. 1986. View Article : Google Scholar : PubMed/NCBI | |
Sun PD and Davies DR: ccccccccccccc. Annu Rev Biophys Biomol Struct. 24:269–291. 1995. View Article : Google Scholar : PubMed/NCBI | |
Innis CA, Shi J and Blundell TL: Evolutionary trace analysis of TGF-beta and related growth factors: implications for site-directed mutagenesis. Protein Eng. 13:839–847. 2000. View Article : Google Scholar : PubMed/NCBI | |
Daopin S, Piez KA, Ogawa Y and Davies DR: Crystal structure of transforming growth factor-beta 2: an unusual fold for the superfamily. Science. 257:369–373. 1992. View Article : Google Scholar : PubMed/NCBI | |
Gruber R, Roos G, Caballé-Serrano J, Miron R, Bosshardt DD and Sculean A: TGF-βRI kinase activity mediates Emdogain-stimulated in vitro osteoclastogenesis. Clin Oral Investig. 18:1639–1646. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gruber R, Bosshardt DD, Miron RJ, Gemperli AC, Buser D and Sculean A: Enamel matrix derivative inhibits adipocyte differentiation of 3T3-L1 cells via activation of TGF-βRI kinase activity. PloS One. 8:e710462013. View Article : Google Scholar : PubMed/NCBI | |
Sakoda K, Nakajima Y and Noguchi K: Enamel matrix derivative induces production of vascular endothelial cell growth factor in human gingival fibroblasts. Eur J Oral Sci. 120:513–519. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Symons AL and Bartold PM: Expression of transforming growth factor-beta 1 (TGF-beta1) in the developing periodontium of rats. J Dent Res. 77:1708–1716. 1998. View Article : Google Scholar : PubMed/NCBI | |
Akhurst RJ and Derynck R: TGF-beta signaling in cancer-a double-edged sword. Trends Cell Biol. 11:(Suppl). S44–S51. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ten Dijke P, Goumans MJ, Itoh F and Itoh S: Regulation of cell proliferation by Smad proteins. J Cell Physiol. 191:1–16. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lampropoulos P, Zizi-Sermpetzoglou A, Rizos S, Kostakis A, Nikiteas N and Papavassiliou AG: TGF-beta signalling in colon carcinogenesis. Cancer Lett. 314:1–7. 2012. View Article : Google Scholar : PubMed/NCBI | |
Blanchette F, Rivard N, Rudd P, Grondin F, Attisano L and Dubois CM: Cross-talk between the p42/p44 MAP kinase and Smad pathways in transforming growth factor beta 1-induced furin gene transactivation. J Biol Chem. 276:33986–33994. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jang CW, Chen CH, Chen CC, Chen JY, Su YH and Chen RH: TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase. Nat Cell Biol. 4:51–58. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rahimi RA and Leof EB: TGF-β signaling: A tale of two receptors. J Cell Biochem. 102:593–608. 2007. View Article : Google Scholar : PubMed/NCBI | |
Datto MB, Frederick JP, Pan L, Borton AJ, Zhuang Y and Wang XF: Targeted disruption of Smad3 reveals an essential role in transforming growth factor beta-mediated signal transduction. Mol Cell Biol. 19:2495–2504. 1999.PubMed/NCBI | |
Kawase T, Okuda K, Yoshie H and Burns DM: Anti-TGF-beta antibody blocks enamel matrix derivative-induced upregulation of p21WAF1/cip1 and prevents its inhibition of human oral epithelial cell proliferation. J Periodontal Res. 37:255–262. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wada Y, Yamamoto H, Nanbu S, Mizuno M and Tamura M: The suppressive effect of enamel matrix derivative on osteocalcin gene expression of osteoblasts is neutralized by an antibody against TGF-beta. J Periodontol. 79:341–347. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vayalil PK, Iles KE, Choi J, Yi AK, Postlethwait EM and Liu RM: Glutathione suppresses TGF-beta-induced PAI-1 expression by inhibiting p38 and JNK MAPK and the binding of AP-1, SP-1 and Smad to the PAI-1 promoter. Am J Physiol Lung Cell Mol Physiol. 293:L1281–L1292. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lyngstadaas SP, Lundberg E, Ekdahl H, Andersson C and Gestrelius S: Autocrine growth factors in human periodontal ligament cells cultured on enamel matrix derivative. J Clin Periodontol. 28:181–188. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gestrelius S, Andersson C, Lidström D, Hammarström L and Somerman M: In vitro studies on periodontal ligament cells and enamel matrix derivative. J Clin Periodontol. 24:685–692. 1997. View Article : Google Scholar : PubMed/NCBI | |
Kawase T, Okuda K, Yoshie H and Burns DM: Cytostatic action of enamel matrix derivative (EMDOGAIN) on human oral squamous cell carcinoma-derived SCC25 epithelial cells. J Periodontal Res. 35:291–300. 2000. View Article : Google Scholar : PubMed/NCBI | |
Schlueter SR, Carnes DL Jr and Cochran DL: In vitro effects of enamel matrix derivative on microvascular cells. J Periodontol. 78:141–151. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yuan K, Chen CL and Lin MT: Enamel matrix derivative exhibits angiogenic effect in vitro and in a murine model. J Clin Periodontol. 30:732–738. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bertl K, An N, Bruckmann C, et al: Effects of enamel matrix derivative on proliferation/viability, migration and expression of angiogenic factor and adhesion molecules in endothelial cells in vitro. J Periodontol. 80:1622–1630. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wozney JM, Rosen V, Celeste AJ, et al: Novel regulators of bone formation: molecular clones and activities. Science. 242:1528–1534. 1988. View Article : Google Scholar : PubMed/NCBI | |
Bragdon B, Moseychuk O, Saldanha S, King D, Julian J and Nohe A: Bone morphogenetic proteins: a critical review. Cell Signal. 23:609–620. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Zhao M, Harris SE and Mi Z: Signal transduction and biological functions of bone morphogenetic proteins. Front Biosci. 9:349–358. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hogan BL: Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10:1580–1594. 1996. View Article : Google Scholar : PubMed/NCBI | |
Wordinger RJ and Clark AF: Bone morphogenetic proteins and their receptors in the eye. Exp Biol Med (Maywood). 232:979–992. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ogata T, Wozney JM, Benezra R and Noda M: Bone morphogenetic protein 2 transiently enhances expression of a gene, Id (inhibitor of differentiation), encoding a helix-loop-helix molecule in osteoblast-like cells. Proc Natl Acad Sci USA. 90:9219–9222. 1993. View Article : Google Scholar : PubMed/NCBI | |
Myllylä RM, Haapasaari KM, Palatsi R, et al: Multiple miliary osteoma cutis is a distinct disease entity: four case reports and review of the literature. Br J Dermatol. 164:544–552. 2011.PubMed/NCBI | |
Plikus MV, Mayer JA, de la Cruz D, et al: Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature. 451:340–344. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kramer J, Hegert C, Guan K, Wobus AM, Müller PK and Rohwedel J: Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech Dev. 92:193–205. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rui YF, Du L, Wang Y, et al: Bone morphogenetic protein 2 promotes transforming growth factor β3-induced chondrogenesis of human osteoarthritic synovium-derived stem cells. Chin Med J (Engl). 123:3040–3048. 2010.PubMed/NCBI | |
Hu J, Cui D, Yang X, et al: Bone morphogenetic protein-2: a potential regulator in scleral remodeling. Mol Vis. 14:2373–2380. 2008.PubMed/NCBI | |
Blanco Calvo M, Bolós Fernández V, Medina Villaamil V, Aparicio Gallego G, Díaz Prado S and Grande Pulido E: Biology of BMP signalling and cancer. Clin Transl Oncol. 11:126–137. 2009. View Article : Google Scholar : PubMed/NCBI | |
Miyazono K, Maeda S and Imamura T: BMP receptor signaling: transcriptional targets, regulation of signals and signaling cross-talk. Cytokine Growth Factor Rev. 16:251–263. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ryoo HM, Lee MH and Kim YJ: Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene. 366:51–57. 2006. View Article : Google Scholar : PubMed/NCBI | |
Holtzhausen A, Golzio C, How T, et al: Novel bone morphogenetic protein signaling through Smad2 and Smad3 to regulate cancer progression and development. FASEB J. 28:1248–1267. 2014. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto Y, Otsuka F, Hino J, et al: Bone morphogenetic protein-3b (BMP-3b) inhibits osteoblast differentiation via Smad2/3 pathway by counteracting Smad1/5/8 signaling. Mol Cell Endocrinol. 350:78–86. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nohe A, Keating E, Knaus P and Petersen NO: Signal transduction of bone morphogenetic protein receptors. Cell Signal. 16:291–299. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hullinger TG, Pan Q, Viswanathan HL and Somerman MJ: TGFbeta and BMP-2 activation of the OPN promoter: roles of smad- and hox-binding elements. Exp Cell Res. 262:69–74. 2001. View Article : Google Scholar : PubMed/NCBI | |
Stopa M, Anhuf D, Terstegen L, Gatsios P, Gressner AM and Dooley S: Participation of Smad2, Smad3 and Smad4 in transforming growth factor beta (TGF-beta)-induced activation of Smad7. THE TGF-beta response element of the promoter requires functional Smad binding element and E-box sequences for transcriptional regulation. J Biol Chem. 275:29308–29317. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wan M, Shi X, Feng X and Cao X: Transcriptional mechanisms of bone morphogenetic protein-induced osteoprotegrin gene expression. J Biol Chem. 276:10119–10125. 2001. View Article : Google Scholar : PubMed/NCBI | |
Guicheux J, Lemonnier J, Ghayor C, Suzuki A, Palmer G and Caverzasio J: Activation of p38 mitogen-activated protein kinase and c-Jun-NH2-terminal kinase by BMP-2 and their implication in the stimulation of osteoblastic cell differentiation. J Bone Miner Res. 18:2060–2068. 2003. View Article : Google Scholar : PubMed/NCBI | |
Osyczka AM and Leboy PS: Bone morphogenetic protein regulation of early osteoblast genes in human marrow stromal cells is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase signaling. Endocrinology. 146:3428–3437. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ivanovski S, Li H, Haase HR and Bartold PM: Expression of bone associated macromolecules by gingival and periodontal ligament fibroblasts. J Periodontal Res. 36:131–141. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kémoun P, Laurencin-Dalicieux S, Rue J, et al: Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res. 329:283–294. 2007. View Article : Google Scholar : PubMed/NCBI | |
Saito K, Konishi I, Nishiguchi M, Hoshino T and Fujiwara T: Amelogenin binds to both heparan sulfate and bone morphogenetic protein 2 and pharmacologically suppresses the effect of noggin. Bone. 43:371–376. 2008. View Article : Google Scholar : PubMed/NCBI | |
Takayama T, Suzuki N, Narukawa M, Tokunaga T, Otsuka K and Ito K: Enamel matrix derivative stimulates core binding factor alpha1/Runt-related transcription factor-2 expression via activation of Smad1 in C2C12 cells. J Periodontol. 76:244–249. 2005. View Article : Google Scholar : PubMed/NCBI | |
Goldberg M, Six N, Decup F, et al: Bioactive molecules and the future of pulp therapy. Am J Dent. 16:66–76. 2003.PubMed/NCBI | |
Larrain J, Bachiller D, Lu B, Agius E, Piccolo S and De Robertis EM: BMP-binding modules in chordin: a model for signalling regulation in the extracellular space. Development. 127:821–830. 2000.PubMed/NCBI | |
Zimmerman LB, De Jesús-Escobar JM and Harland RM: The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell. 86:599–606. 1996. View Article : Google Scholar : PubMed/NCBI | |
Johnson DL, Carnes D, Steffensen B and Cochran DL: Cellular effects of enamel matrix derivative are associated with different molecular weight fractions following separation by size-exclusion chromatography. J Periodontol. 80:648–656. 2009. View Article : Google Scholar : PubMed/NCBI | |
Warotayanont R, Zhu D, Snead ML and Zhou Y: Leucine-rich amelogenin peptide induces osteogenesis in mouse embryonic stem cells. Biochem Biophys Res Commun. 367:1–6. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li C, Shintani S, Terakado N, et al: Microvessel density and expression of vascular endothelial growth factor, basic fibroblast growth factor and platelet-derived endothelial growth factor in oral squamous cell carcinomas. Int J Oral Maxillofac Surg. 34:559–565. 2005. View Article : Google Scholar : PubMed/NCBI | |
Johnstone S and Logan RM: The role of vascular endothelial growth factor (VEGF) in oral dysplasia and oral squamous cell carcinoma. Oral Oncol. 42:337–342. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kerbel R and Folkman J: Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2:727–739. 2002. View Article : Google Scholar : PubMed/NCBI | |
Deckers MM, Karperien M, van der Bent C, Yamashita T, Papapoulos SE and Löwik CW: Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology. 141:1667–1674. 2000. View Article : Google Scholar : PubMed/NCBI | |
Johnson RB, Serio FG and Dai X: Vascular endothelial growth factors and progression of periodontal diseases. J Periodontol. 70:848–852. 1999. View Article : Google Scholar : PubMed/NCBI | |
Mirastschijski U, Konrad D, Lundberg E, Lyngstadaas SP, Jorgensen LN and Agren MS: Effects of a topical enamel matrix derivative on skin wound healing. Wound Repair Regen. 12:100–108. 2004. View Article : Google Scholar : PubMed/NCBI | |
Neeley WW II, Carnes DL and Cochran DL: Osteogenesis in an in vitro coculture of human periodontal ligament fibroblasts and human microvascular endothelial cells. J Periodontol. 81:139–149. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kauvar AS, Thoma DS, Carnes DL and Cochran DL: In vivo angiogenic activity of enamel matrix derivative. J Periodontol. 81:1196–1201. 2010. View Article : Google Scholar : PubMed/NCBI | |
Thoma DS, Villar CC, Carnes DL, Dard M, Chun YH and Cochran DL: Angiogenic activity of an enamel matrix derivative (EMD) and EMD-derived proteins: an experimental study in mice. J Clin Periodontol. 38:253–260. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bartold PM and Raben A: Growth factor modulation of fibroblasts in simulated wound healing. J Periodontal Res. 31:205–216. 1996. View Article : Google Scholar : PubMed/NCBI | |
Chang PC, Dovban AS, Lim LP, Chong LY, Kuo MY and Wang CH: Dual delivery of PDGF and simvastatin to accelerate periodontal regeneration in vivo. Biomaterials. 34:9990–9997. 2013. View Article : Google Scholar : PubMed/NCBI | |
Coimbra LS, Steffens JP, Rossa C Jr, Graves DT and Spolidorio LC: Clopidogrel enhances periodontal repair in rats through decreased inflammation. J Clin Periodontol. 41:295–302. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ojima Y, Mizuno M, Kuboki Y and Komori T: In vitro effect of platelet-derived growth factor-BB on collagen synthesis and proliferation of human periodontal ligament cells. Oral Dis. 9:144–151. 2003. View Article : Google Scholar : PubMed/NCBI | |
Saygin NE, Tokiyasu Y, Giannobile WV and Somerman MJ: Growth factors regulate expression of mineral associated genes in cementoblasts. J Periodontol. 71:1591–1600. 2000. View Article : Google Scholar : PubMed/NCBI | |
Strayhorn CL, Garrett JS, Dunn RL, Benedict JJ and Somerman MJ: Growth factors regulate expression of osteoblast-associated genes. J Periodontol. 70:1345–1354. 1999. View Article : Google Scholar : PubMed/NCBI | |
Lynch SE, de Castilla GR, Williams RC, et al: The effects of short-term application of a combination of platelet-derived and insulin-like growth factors on periodontal wound healing. J Periodontol. 62:458–467. 1991. View Article : Google Scholar : PubMed/NCBI | |
van der Geer P, Hunter T and Lindberg RA: Receptor protein tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol. 10:251–337. 1994. View Article : Google Scholar : PubMed/NCBI | |
Matsuda N, Horikawa M, Watanabe M, Kitagawa S, Kudo Y and Takata T: Possible involvement of extracellular signal-regulated kinases 1/2 in mitogenic response of periodontal ligament cells to enamel matrix derivative. Eur J Oral Sci. 110:439–444. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gullberg D, Gehlsen KR, Turner DC, et al: Analysis of alpha 1 beta 1, alpha 2 beta 1 and alpha 3 beta 1 integrins in cell-collagen interactions: identification of conformation dependent alpha 1 beta 1 binding sites in collagen type I. EMBO J. 11:3865–3873. 1992.PubMed/NCBI | |
Hammacher A, Mellström K, Heldin CH and Westermark B: Isoform-specific induction of actin reorganization by platelet-derived growth factor suggests that the functionally active receptor is a dimer. EMBO J. 8:2489–2495. 1989.PubMed/NCBI | |
Chong CH, Carnes DL, Moritz AJ, et al: Human periodontal fibroblast response to enamel matrix derivative, amelogenin and platelet-derived growth factor-BB. J Periodontol. 77:1242–1252. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bouma-ter Steege JC, Mayo KH and Griffioen AW: Angiostatic proteins and peptides. Crit Rev Eukaryot Gene Expr. 11:319–334. 2001.PubMed/NCBI | |
Traver D and Zon LI: Walking the walk: migration and other common themes in blood and vascular development. Cell. 108:731–734. 2002. View Article : Google Scholar : PubMed/NCBI | |
Batouli S, Miura M, Brahim J, et al: Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res. 82:976–981. 2003. View Article : Google Scholar : PubMed/NCBI | |
Javed F, Al-Askar M, Al-Rasheed A and Al-Hezaimi K: Significance of the platelet-derived growth factor in periodontal tissue regeneration. Arch Oral Biol. 56:1476–1484. 2011. View Article : Google Scholar : PubMed/NCBI | |
Asahara T, Bauters C, Zheng LP, et al: Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation. 92:(Suppl). II365–II371. 1995. View Article : Google Scholar : PubMed/NCBI | |
Goto F, Goto K, Weindel K and Folkman J: Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels. Lab Invest. 69:508–517. 1993.PubMed/NCBI | |
Pepper MS, Ferrara N, Orci L and Montesano R: Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun. 189:824–831. 1992. View Article : Google Scholar : PubMed/NCBI | |
Mason JC, Lidington EA, Ahmad SR and Haskard DO: bFGF and VEGF synergistically enhance endothelial cytoprotection via decay-accelerating factor induction. Am J Physiol Cell Physiol. 282:C578–C587. 2002. View Article : Google Scholar : PubMed/NCBI | |
Han L and Gotlieb AI: Fibroblast growth factor-2 promotes in vitro mitral valve interstitial cell repair through transforming growth factor-β/Smad signaling. Am J Pathol. 178:119–127. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schwartz Z, Carnes DL Jr, Pulliam R, et al: Porcine fetal enamel matrix derivative stimulates proliferation but not differentiation of pre-osteoblastic 2T9 cells, inhibits proliferation and stimulates differentiation of osteoblast-like MG63 cells and increases proliferation and differentiation of normal human osteoblast NHOst cells. J Periodontol. 71:1287–1296. 2000. View Article : Google Scholar : PubMed/NCBI | |
Canalis E, Centrella M and McCarthy T: Effects of basic fibroblast growth factor on bone formation in vitro. J Clin Invest. 81:1572–1577. 1988. View Article : Google Scholar : PubMed/NCBI | |
Hurley MM, Abreu C, Harrison JR, Lichtler AC, Raisz LG and Kream BE: Basic fibroblast growth factor inhibits type I collagen gene expression in osteoblastic MC3T3-E1 cells. J Biol Chem. 268:5588–5593. 1993.PubMed/NCBI | |
Mizutani S, Tsuboi T, Tazoe M, Koshihara Y, Goto S and Togari A: Involvement of FGF-2 in the action of Emdogain on normal human osteoblastic activity. Oral Dis. 9:210–217. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cheng T, Cao W, Wen R, Steinberg RH and LaVail MM: Prostaglandin E2 induces vascular endothelial growth factor and basic fibroblast growth factor mRNA expression in cultured rat Müller cells. Invest Ophthalmol Vis Sci. 39:581–591. 1998.PubMed/NCBI | |
Sabbieti MG, Marchetti L, Abreu C, et al: Prostaglandins regulate the expression of fibroblast growth factor-2 in bone. Endocrinology. 140:434–444. 1999. View Article : Google Scholar : PubMed/NCBI | |
Pickering JG, Ford CM, Tang B and Chow LH: Coordinated effects of fibroblast growth factor-2 on expression of fibrillar collagens, matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases by human vascular smooth muscle cells. Evidence for repressed collagen production and activated degradative capacity. Arterioscler Thromb Vasc Biol. 17:475–482. 1997. View Article : Google Scholar : PubMed/NCBI | |
Yanagita M, Kojima Y, Kubota M, et al: Cooperative effects of FGF-2 and VEGF-A in periodontal ligament cells. J Dent Res. 93:89–95. 2014. View Article : Google Scholar : PubMed/NCBI | |
Carpenter G and Cohen S: Epidermal growth factor. J Biol Chem. 265:7709–7712. 1990.PubMed/NCBI | |
Cohen S: Nobel lecture. Epidermal growth factor. Biosci Rep. 6:1017–1028. 1986. View Article : Google Scholar : PubMed/NCBI | |
Furfaro F, Ang ES, Lareu RR, Murray K and Goonewardene M: A histological and micro-CT investigation in to the effect of NGF and EGF on the periodontal, alveolar bone, root and pulpal healing of replanted molars in a rat model-a pilot study. Prog Orthod. 15:22014. View Article : Google Scholar : PubMed/NCBI | |
Guajardo G, Okamoto Y, Gogen H, et al: Immunohistochemical localization of epidermal growth factor in cat paradental tissues during tooth movement. Am J Orthod Dentofacial Orthop. 118:210–219. 2000. View Article : Google Scholar : PubMed/NCBI | |
Keeve PL, Dittmar T, Gassmann G, Grimm WD, Niggemann B and Friedmann A: Characterization and analysis of migration patterns of dentospheres derived from periodontal tissue and the palate. J Periodontal Res. 48:276–285. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pyrc K, Milewska A, Kantyka T, et al: Inactivation of epidermal growth factor by Porphyromonas gingivalis as a potential mechanism for periodontal tissue damage. Infect Immun. 81:55–64. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dereka XE, Markopoulou CE and Vrotsos IA: Role of growth factors on periodontal repair. Growth Factors. 24:260–267. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lee J, Stavropoulos A, Susin C and Wikesjö UM: Periodontal regeneration: focus on growth and differentiation factors. Dent Clin North Am. 54:93–111. 2010. View Article : Google Scholar : PubMed/NCBI | |
Okuda K, Kawase T, Momose M, et al: Platelet-rich plasma contains high levels of platelet-derived growth factor and transforming growth factor-beta and modulates the proliferation of periodontally related cells in vitro. J Periodontol. 74:849–857. 2003. View Article : Google Scholar : PubMed/NCBI | |
Biscardi JS, Maa MC, Tice DA, Cox ME, Leu TH and Parsons SJ: c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J Biol Chem. 274:8335–8343. 1999. View Article : Google Scholar : PubMed/NCBI | |
Zeldich E, Koren R, Dard M, Nemcovsky C and Weinreb M: EGFR in Enamel Matrix Derivative-induced gingival fibroblast mitogenesis. J Dent Res. 87:850–855. 2008. View Article : Google Scholar : PubMed/NCBI | |
Edwin F, Wiepz GJ, Singh R, et al: A historical perspective of the EGF receptor and related systems. Methods Mol Biol. 327:1–24. 2006.PubMed/NCBI | |
Prenzel N, Zwick E, Daub H, et al: EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature. 402:884–888. 1999.PubMed/NCBI | |
Xu KP, Yin J and Yu FS: SRC-family tyrosine kinases in wound- and ligand-induced epidermal growth factor receptor activation in human corneal epithelial cells. Invest Ophthalmol Vis Sci. 47:2832–2839. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kutz SM, Higgins CE, Samarakoon R, et al: TGF-beta 1-induced PAI-1 expression is E box/USF-dependent and requires EGFR signaling. Exp Cell Res. 312:1093–1105. 2006. View Article : Google Scholar : PubMed/NCBI | |
Allen RR and Higgins PJ: Plasminogen activator inhibitor type-1 expression and the pathophysiology of TGF-β1-induced epithelial-to-mesenchymal transition. Recent Res Dev Physiol. 95:918–931. 2004. | |
Davies M, Robinson M, Smith E, Huntley S, Prime S and Paterson I: Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-beta1 involves MAPK, Smad and AP-1 signalling pathways. J Cell Biochem. 95:918–931. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lovschall H, Fejerskov O and Flyvbjerg A: Pulp-capping with recombinant human insulin-like growth factor I (rhIGF-I) in rat molars. Adv Dent Res. 15:108–112. 2001. View Article : Google Scholar : PubMed/NCBI | |
Okubo K, Kobayashi M, Takiguchi T, et al: Participation of endogenous IGF-I and TGF-beta 1 with enamel matrix derivative-stimulated cell growth in human periodontal ligament cells. J Periodontal Res. 38:1–9. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lee AZ, Jiang J, He J, Safavi KE, Spangberg LS and Zhu Q: Stimulation of cytokines in osteoblasts cultured on enamel matrix derivative. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 106:133–138. 2008. View Article : Google Scholar : PubMed/NCBI | |
MacNeil RL, D'Errico J, Strayhorn C, Pickrum H and Somerman MJ: Agents with periodontal regenerative potential regulate cell-mediated collagen lattice contraction in vitro. J Dent Res. 75:903–911. 1996. View Article : Google Scholar : PubMed/NCBI | |
Ikezawa K, Hart CE, Williams DC and Narayanan AS: Characterization of cementum derived growth factor as an insulin-like growth factor-I like molecule. Connect Tissue Res. 36:309–319. 1997. View Article : Google Scholar : PubMed/NCBI | |
Yonemura K, Raines EW, Ahn NG and Narayanan AS: Mitogenic signaling mechanisms of human cementum-derived growth factors. J Biol Chem. 268:26120–26126. 1993.PubMed/NCBI | |
Xu L, Harada H and Taniguchi A: The effects of LAMP1 and LAMP3 on M180 amelogenin uptake, localization and amelogenin mRNA induction by amelogenin protein. J Biochem. 144:531–537. 2008. View Article : Google Scholar : PubMed/NCBI | |
Veis A, Tompkins K, Alvares K, et al: Specific amelogenin gene splice products have signaling effects on cells in culture and in implants in vivo. J Biol Chem. 275:41263–41272. 2000. View Article : Google Scholar : PubMed/NCBI | |
Boabaid F, Gibson CW, Kuehl MA, et al: Leucine-rich amelogenin peptide: a candidate signaling molecule during cementogenesis. J Periodontol. 75:1126–1136. 2004. View Article : Google Scholar : PubMed/NCBI | |
He J, Jiang J, Safavi KE, Spangberg LS and Zhu Q: Direct contact between enamel matrix derivative (EMD) and osteoblasts is not required for EMD-induced cell proliferation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 98:370–375. 2004. View Article : Google Scholar : PubMed/NCBI |