1
|
World Health Organization: Department of
Reproductive Health and Research and Department of Chronic Diseases
and Health Promotion: Comprehensive cervical cancer control: A
guide to essential practice. World Health Organization. 2006.
|
2
|
World Health Organization: GLOBOCAN 2012:
Estimated cancer incidence, mortality and prevalence worldwide in
2012. Lyon, France: International Agency for Research on Cancer.
2014.
|
3
|
Anorlu RI: Cervical cancer: The
sub-Saharan African perspective. Reprod Health Matters. 16:41–49.
2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Rositch AF, Silver MI and Gravitt PE:
Cervical cancer screening in older women: New evidence and
knowledge gaps. PLoS Med. 11:e10015862014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Noller K: Intraepithelial neoplasia of the
lower genital tract (cervix, vulva): Etiology, screening,
diagnostic techniques, management. Comprehensive Gynecology (5th).
Mosby Elsevier. (Philadelphia, PA). 2007. View Article : Google Scholar
|
6
|
Tewari KS, Sill MW, Long HJ III, Penson
RT, Huang H, Ramondetta LM, Landrum LM, Oaknin A, Reid TJ, Leitao
MM, et al: Improved survival with bevacizumab in advanced cervical
cancer. N Engl J Med. 370:734–743. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Dizon DS, Mackay HJ, Thomas GM, Werner TL,
Kohn EC, Hess D, Rose PG and Covens AL: State of the science in
cervical cancer: Where we are today and where we need to go.
Cancer. 120:2282–2288. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Maguire R, Kotronoulas G, Simpson M and
Paterson C: A systematic review of the supportive care needs of
women living with and beyond cervical cancer. Gynecol Oncol.
136:478–490. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Schiffman M, Castle PE, Jeronimo J,
Rodriguez AC and Wacholder S: Human papillomavirus and cervical
cancer. Lancet. 370:890–907. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chaturvedi AK: Beyond cervical cancer:
Burden of other HPV-related cancers among men and women. J Adolesc
Health. 46(Suppl): S20–S26. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Burd EM: Human papillomavirus and cervical
cancer. Clin Microbiol Rev. 16:1–17. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Dasari S, Wudayagiri R and Valluru L:
Cervical cancer: Biomarkers for diagnosis and treatment. Clin Chim
Acta. 445:7–11. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Tasaki T, Mulder LC, Iwamatsu A, Lee MJ,
Davydov IV, Varshavsky A, Muesing M and Kwon YT: A family of
mammalian E3 ubiquitin ligases that contain the UBR box motif and
recognize N-degrons. Mol Cell Biol. 25:7120–7136. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Callaghan MJ, Russell AJ, Woollatt E,
Sutherland GR, Sutherland RL and Watts CK: Identification of a
human HECT family protein with homology to the Drosophila
tumor suppressor gene hyperplastic discs. Oncogene. 17:3479–3491.
1998. View Article : Google Scholar : PubMed/NCBI
|
15
|
Henderson MJ, Russell AJ, Hird S, Muñoz M,
Clancy JL, Lehrbach GM, Calanni ST, Jans DA, Sutherland RL and
Watts CK: EDD, the human hyperplastic discs protein, has a role in
progesterone receptor coactivation and potential involvement in DNA
damage response. J Biol Chem. 277:26468–26478. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Beaudenon SL, Huacani MR, Wang G,
McDonnell DP and Huibregtse JM: Rsp5 ubiquitin-protein ligase
mediates DNA damage-induced degradation of the large subunit of RNA
polymerase II in Saccharomyces cerevisiae. Mol Cell Biol.
19:6972–6979. 1999. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kornitzer D and Ciechanover A: Modes of
regulation of ubiquitin-mediated protein degradation. J Cell
Physiol. 182:1–11. 2000. View Article : Google Scholar : PubMed/NCBI
|
18
|
Connor MK and Seth A: A central role for
the ring finger protein RNF11 in ubiquitin-mediated proteolysis via
interactions with E2s and E3s. Oncogene. 23:2089–2095. 2004.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Ang XL and Harper Wade J: SCF-mediated
protein degradation and cell cycle control. Oncogene. 24:2860–2870.
2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Vidhyasekaran P: Ubiquitin-proteasome
system-mediated protein degradation in defense signaling. PAMP
Signals in Plant Innate Immunity. Springer. (The Netherlands).
409–430. 2014. View Article : Google Scholar
|
21
|
Benavides M, Chow-Tsang LF, Zhang J and
Zhong H: The novel interaction between microspherule protein Msp58
and ubiquitin E3 ligase EDD regulates cell cycle progression.
Biochim Biophys Acta. 1833:21–32. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ling S and Lin WC: EDD inhibits
ATM-mediated phosphorylation of p53. J Biol Chem. 286:14972–14982.
2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Munoz MA, Saunders DN, Henderson MJ,
Clancy JL, Russell AJ, Lehrbach G, Musgrove EA, Watts CK and
Sutherland RL: The E3 ubiquitin ligase EDD regulates S-phase and
G2/M DNA damage checkpoints. Cell Cycle. 6:3070–3077. 2007.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Smits VA: EDD induces cell cycle arrest by
increasing p53 levels. Cell Cycle. 11:715–720. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
McDonald WJ, Thomas LN, Koirala S and Too
CK: Progestin-inducible EDD E3 ubiquitin ligase binds to α4
phosphoprotein to regulate ubiquitination and degradation of
protein phosphatase PP2Ac. Mol Cell Endocrinol. 382:254–261. 2014.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Chen HW, Yang CC, Hsieh CL, Liu H, Lee SC
and Tan BC: A functional genomic approach reveals the
transcriptional role of EDD in the expression and function of
angiogenesis regulator ACVRL1. Biochim Biophys Acta.
1829:1309–1319. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Su H, Meng S, Lu Y, Trombly MI, Chen J,
Lin C, Turk A and Wang X: Mammalian hyperplastic discs homolog EDD
regulates miRNA-mediated gene silencing. Mol Cell. 43:97–109. 2011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Bethard JR, Zheng H, Roberts L and Eblen
ST: Identification of phosphorylation sites on the E3 ubiquitin
ligase UBR5/EDD. J Proteomics. 75:603–609. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Henderson MJ, Munoz MA, Saunders DN,
Clancy JL, Russell AJ, Williams B, Pappin D, Khanna KK, Jackson SP,
Sutherland RL and Watts CK: EDD mediates DNA damage-induced
activation of CHK2. J Biol Chem. 281:39990–40000. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gwinn D and Sweet-Cordero EA: The
phosphatase PP2A links glutamine to the tumor suppressor p53. Mol
Cell. 50:157–158. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Clancy JL, Henderson MJ, Russell AJ,
Anderson DW, Bova RJ, Campbell IG, Choong DY, Macdonald GA, Mann
GJ, Nolan T, et al: EDD, the human orthologue of the hyperplastic
discs tumour suppressor gene, is amplified and overexpressed in
cancer. Oncogene. 22:5070–5081. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Fuja TJ, Lin F, Osann KE and Bryant PJ:
Somatic mutations and altered expression of the candidate tumor
suppressors CSNK1ε, DLG1, and EDD/hHYD in mammary ductal carcinoma.
Cancer Res. 64:942–951. 2004. View Article : Google Scholar : PubMed/NCBI
|
33
|
O'Brien PM, Davies MJ, Scurry JP, Smith
AN, Barton CA, Henderson MJ, Saunders DN, Gloss BS, Patterson KI,
Clancy JL, et al: The E3 ubiquitin ligase EDD is an adverse
prognostic factor for serous epithelial ovarian cancer and
modulates cisplatin resistance in vitro. Br J Cancer. 98:1085–1093.
2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kruzelock RP and Short W: Colorectal
cancer therapeutics and the challenges of applied pharmacogenomics.
Curr Probl Cancer. 31:315–366. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yoon SY, Lee Y, Kim JH, Chung AS, Joo JH,
Kim CN, Kim NS, Choe IS and Kim JW: Over-expression of human UREB1
in colorectal cancer: HECT domain of human UREB1 inhibits the
activity of tumor suppressor p53 protein. Biochem Biophys Res
Commun. 326:7–17. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bradley A, Zheng H, Ziebarth A, Sakati W,
Branham-O'Connor M, Blumer JB, Liu Y, Kistner-Griffin E,
Rodriguez-Aguayo C, Lopez-Berestein G, et al: EDD enhances cell
survival and cisplatin resistance and is a therapeutic target for
epithelial ovarian cancer. Carcinogenesis. 35:1100–1109. 2014.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Bueno MJ, de Pérez Castro I and Malumbres
M: Control of cell proliferation pathways by microRNAs. Cell Cycle.
7:3143–3148. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Conrad R, Barrier M and Ford LP: Role of
miRNA and miRNA processing factors in development and disease.
Birth Defects Res C Embryo Today. 78:107–117. 2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Schoolmeesters A, Eklund T, Leake D,
Vermeulen A, Smith Q, Aldred Force S and Fedorov Y: Functional
profiling reveals critical role for miRNA in differentiation of
human mesenchymal stem cells. PLoS One. 4:e56052009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Shantikumar S, Caporali A and Emanueli C:
Role of miRNA in diabetes and its cardiovascular complications.
Cardiovasc Res. 93:583–93. 2012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang Y, Zhang X, Li H, Yu J and Ren X: The
role of miRNA-29 family in cancer. Eur J Cell Biol. 92:123–128.
2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Williams AE, Perry MM, Moschos SA,
Larner-Svensson HM and Lindsay MA: Role of miRNA-146a in the
regulation of the innate immune response and cancer. Biochem Soc
Trans. 36:1211–1215. 2008. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhang N, Su Y and Xu L: Targeting PKCε by
miR-143 regulates cell apoptosis in lung cancer. FEBS Lett.
587:3661–3667. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhang B, Pan X, Cobb GP and Anderson TA:
microRNAs as oncogenes and tumor suppressors. Dev Biol. 302:1–12.
2007. View Article : Google Scholar : PubMed/NCBI
|
46
|
Pham H, Rodriguez CE, Donald GW, Hertzer
KM, Jung XS, Chang HH, Moro A, Reber HA, Hines OJ and Eibl G:
miR-143 decreases COX-2 mRNA stability and expression in pancreatic
cancer cells. Biochem Biophys Res Commun. 439:6–11. 2013.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhang X, Dong Y, Ti H, Zhao J, Wang Y, Li
T and Zhang B: Down-regulation of miR-145 and miR-143 might be
associated with DNA methyltransferase 3B overexpression and worse
prognosis in endometrioid carcinomas. Hum Pathol. 44:2571–2580.
2013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Wang LQ, Zhang Y, Yan H, Liu KJ and Zhang
S: MicroRNA-373 functions as an oncogene and targets YOD1 gene in
cervical cancer. Biochem Biophys Res Commun. 459:515–520. 2015.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Puerta-Gil P, García-Baquero R, Jia AY,
Ocaña S, Alvarez-Múgica M, Alvarez-Ossorio JL, Cordon-Cardo C, Cava
F and Sánchez-Carbayo M: miR-143, miR-222, and miR-452 are useful
as tumor stratification and noninvasive diagnostic biomarkers for
bladder cancer. Am J Pathol. 180:1808–1815. 2012. View Article : Google Scholar : PubMed/NCBI
|
50
|
Zhu H, Dougherty U, Joseph LJ, Robinson V,
Wu J, Song Z, Mustafi R, Fichera A and Bissonnette M: 1068 EGFR and
c-MYC suppress Mir-143 and Mir-145 in colonic tumorigenesis: Roles
of G1 cell cycle regulators as miRNA targets. Gastroenterol.
136:A164–A165. 2009. View Article : Google Scholar
|
51
|
Cho WC: MicroRNAs in cancer - from
research to therapy. Biochim Biophys Acta. 1805:209–217.
2010.PubMed/NCBI
|
52
|
Wang X, Tang S, Le SY, Lu R, Rader JS,
Meyers C and Zheng ZM: Aberrant expression of oncogenic and
tumor-suppressive microRNAs in cervical cancer is required for
cancer cell growth. PLoS One. 3:e25572008. View Article : Google Scholar : PubMed/NCBI
|
53
|
Tang T, Wong HK, Gu W, Yu MY, To KF, Wang
CC, Wong YF, Cheung TH, Chung TK and Choy KW: MicroRNA-182 plays an
onco-miRNA role in cervical cancer. Gynecol Oncol. 129:199–208.
2013. View Article : Google Scholar : PubMed/NCBI
|
54
|
Qian X, Yu J, Yin Y, He J, Wang L, Li Q,
Zhang LQ, Li CY, Shi ZM, Xu Q, et al: MicroRNA-143 inhibits tumor
growth and angiogenesis and sensitizes chemosensitivity to
oxaliplatin in colorectal cancers. Cell Cycle. 12:1385–1394. 2013.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Shepherd JH: Cervical and vulva cancer:
changes in FIGO definitions of staging. Br J Obstet Gynaecol.
103:405–406. 1996. View Article : Google Scholar : PubMed/NCBI
|
56
|
Liu L, Yu X, Guo X, Tian Z, Su M, Long Y,
Huang C, Zhou F, Liu M, Wu X and Wang X: miR-143 is downregulated
in cervical cancer and promotes apoptosis and inhibits tumor
formation by targeting Bcl-2. Mol Med Rep. 5:753–760.
2012.PubMed/NCBI
|
57
|
Hu CE, Liu YC, Zhang HD and Huang GJ: The
RNA-binding protein PCBP2 facilitates gastric carcinoma growth by
targeting miR-34a. Biochem Biophys Res Commun. 448:437–442. 2014.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2-ΔΔCt method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
59
|
Guo G, Kang Q, Chen Q, Chen Z, Wang J, Tan
L and Chen JL: High expression of long non-coding RNA H19 is
required for efficient tumorigenesis induced by Bcr-Abl oncogene.
FEBS. 588:1780–1786. 2014. View Article : Google Scholar
|
60
|
Kennedy AL, Morton JP, Manoharan I, Nelson
DM, Jamieson NB, Pawlikowski JS, McBryan T, Doyle B, McKay C, Oien
KA, et al: Activation of the PIK3CA/AKT pathway suppresses
senescence induced by an activated RAS oncogene to promote
tumorigenesis. Mol Cell. 42:36–49. 2011. View Article : Google Scholar : PubMed/NCBI
|
61
|
Sala A, Bettuzzi S, Pucci S, Chayka O,
Dews M and Thomas-Tikhonenko A: Regulation of CLU gene expression
by oncogenes and epigenetic factors: Implications for
tumorigenesis. Adv Cancer Res. 105:115–132. 2009. View Article : Google Scholar : PubMed/NCBI
|
62
|
Keyes WM, Pecoraro M, Aranda V,
Vernersson-Lindahl E, Li W, Vogel H, Guo X, Garcia EL, Michurina
TV, Enikolopov G, et al: ΔNp63α is an oncogene that targets
chromatin remodeler Lsh to drive skin stem cell proliferation and
tumorigenesis. Cell Stem Cell. 8:164–176. 2011. View Article : Google Scholar : PubMed/NCBI
|
63
|
Couto SS, Cao M, Duarte PC,
Banach-Petrosky W, Wang S, Romanienko P, Wu H, Cardiff RD,
Abate-Shen C and Cunha GR: Simultaneous haploinsufficiency of Pten
and Trp53 tumor suppressor genes accelerates tumorigenesis in a
mouse model of prostate cancer. Differentiation. 77:103–111. 2009.
View Article : Google Scholar : PubMed/NCBI
|
64
|
Imanishi Y and Tahara H: Putative
parathyroid tumor suppressor on 1p: Independent molecular
mechanisms of tumorigenesis from 11q allelic loss. Am J Kidney Dis.
38(Suppl 1): S165–S167. 2001. View Article : Google Scholar : PubMed/NCBI
|
65
|
Mercier PL, Bachvarova M, Plante M,
Gregoire J, Renaud MC, Ghani K, Têtu B, Bairati I and Bachvarov D:
Characterization of DOK1, a candidate tumor suppressor gene, in
epithelial ovarian cancer. Mol Oncol. 5:438–453. 2011. View Article : Google Scholar : PubMed/NCBI
|