Salvianolic acid B and danshensu induce osteogenic differentiation of rat bone marrow stromal stem cells by upregulating the nitric oxide pathway
- Authors:
- Published online on: August 9, 2017 https://doi.org/10.3892/etm.2017.4914
- Pages: 2779-2788
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
The aim of the present study was to investigate the effect of salvianolic acid B (Sal B) and danshensu (DSU) on the osteogenic differentiation of bone marrow mesenchymal stem cells (MSCs) and the mechanisms of the effects. The osteogenic differentiation of MSCs in culture was assessed by measuring alkaline phosphatase (ALP) activity, osteocalcin (OCN) production, nitric oxide (NO) production and the mRNA expression levels of osteoprotegerin (OPG) and its ligand by MSCs. MSCs were successfully induced to differentiate into osteoblasts and adipocytes. Sal B and DSU increased the ALP activity and the production of OCN in the absence of an ossification inducer. The increase in ALP activity was more pronounced when induction was combined with the osteogenic inducer, Sal B, which enhanced the expression of OPG; however, Sal B reduced the expression of receptor activator of nuclear factor‑κB ligand (RANKL) by MSCs. Sal B reversed the inhibitory effect of N‑nitro L‑arginine methylester on the MSCs and increased ALP activity, OCN content and the OPG/RANKL ratio. Based on these results, it was concluded that Sal B increases the osteogenic differentiation of MSCs, most likely by regulating the nitric oxide pathway.