1
|
World Health Organization (WHO): WHO
Coronavirus Disease (COVID-19) Dashboard. WHO, Geneva, 2020.
https://covid19.who.int/.
Accessed August 1, 2020.
|
2
|
World Health Organization (WHO): Report of
the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19).
WHO, Geneva, 2020. https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf.
Accessed February 28, 2020.
|
3
|
Petrakis D, Margină D, Tsarouhas K, Tekos
F, Stan M, Nikitovic D, Kouretas D, Spandidos DA and Tsatsakis A:
Obesity a risk factor for increased COVID-19 prevalence, severity
and lethality (Review). Mol Med Rep. 22:9–19. 2020.PubMed/NCBI View Article : Google Scholar
|
4
|
Docea AO, Tsatsakis A, Albulescu D,
Cristea O, Zlatian O, Vinceti M, Moschos SA, Tsoukalas D, Goumenou
M, Drakoulis N, et al: A new threat from an old enemy: Re-emergence
of coronavirus (Review). Int J Mol Med. 45:1631–1643.
2020.PubMed/NCBI View Article : Google Scholar
|
5
|
Farsalinos K, Niaura R, Le Houezec J,
Barbouni A, Tsatsakis A, Kouretas D, Vantarakis A and Poulas K:
Editorial: Nicotine and SARS-CoV-2: COVID-19 may be a disease of
the nicotinic cholinergic system. Toxicol Rep. 7:658–663.
2020.PubMed/NCBI View Article : Google Scholar
|
6
|
Kostoff RN, Briggs MB, Porter AL,
Hernández AF, Abdollahi M, Aschner M and Tsatsakis A: The
under-reported role of toxic substance exposures in the COVID-19
pandemic. Food Chem Toxicol: Aug 14, 2020 (Epub ahead of
print).
|
7
|
Tsatsakis A, Petrakis D, Nikolouzakis TK,
Docea AO, Calina D, Vinceti M, Goumenou M, Kostoff RN, Mamoulakis
C, Aschner M, et al: COVID-19, an opportunity to reevaluate the
correlation between long-term effects of anthropogenic pollutants
on viral epidemic/pandemic events and prevalence. Food Chem
Toxicol. 141(111418)2020.PubMed/NCBI View Article : Google Scholar
|
8
|
Xie X, Zhong Z, Zhao W, Zheng C, Wang F
and Liu J: Chest CT for typical coronavirus disease 2019 (COVID-19)
pneumonia: Relationship to negative RT-PCR testing. Radiology.
296:E41–E45. 2020.PubMed/NCBI View Article : Google Scholar
|
9
|
Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W,
Tao Q, Sun Z and Xia L: Correlation of chest CT and RT-PCR testing
for coronavirus disease 2019 (COVID-19) in China: A Report of 1014
cases. Radiology. 296:E32–E40. 2020.PubMed/NCBI View Article : Google Scholar
|
10
|
Fang Y, Zhang H, Xie J, Lin M, Ying L,
Pang P and Ji W: Sensitivity of chest CT for COVID-19: comparison
to RT-PCR. Radiology. 296:E115–E117. 2020.PubMed/NCBI View Article : Google Scholar
|
11
|
Chen N, Zhou M, Dong X, Qu J, Gong F, Han
Y, Qiu Y, Wang J, Liu Y, Wei Y, et al: Epidemiological and clinical
characteristics of 99 cases of 2019 novel coronavirus pneumonia in
Wuhan, China: A descriptive study. Lancet. 395:507–513.
2020.PubMed/NCBI View Article : Google Scholar
|
12
|
Holshue ML, DeBolt C, Lindquist S, Lofy
KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural
A, et al: Washington State 2019-nCoV Case Investigation Team: First
case of 2019 novel coronavirus in the United States. N Engl J Med.
382:929–936. 2020.
|
13
|
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J,
Wang B, Xiang H, Cheng Z, Xiong Y, et al: Clinical characteristics
of 138 hospitalized patients with 2019 novel coronavirus-infected
pneumonia in Wuhan, China. JAMA. 323:1061–1069. 2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong
Y, Ren R, Leung KSM, Lau EHY, Wong JY, et al: Early transmission
dynamics in Wuhan, China, of novel coronavirus-infected pneumonia.
N Engl J Med. 382:1199–1207. 2020.PubMed/NCBI View Article : Google Scholar
|
15
|
Chung M, Bernheim A, Mei X, Zhang N, Huang
M, Zeng X, Cui J, Xu W, Yang Y, Fayad ZA, et al: CT imaging
features of 2019 novel coronavirus (2019-NCoV). Radiology.
295:202–207. 2020.PubMed/NCBI View Article : Google Scholar
|
16
|
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu
Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients
infected with 2019 novel coronavirus in Wuhan, China. Lancet.
395:497–506. 2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Tsiknakis N, Trivizakis E, Vassalou EE,
Papadakis GZ, Spandidos DA, Tsatsakis A, Sánchez-García J,
López-González R, Papanikolaou N, Karantanas AH, et al:
Interpretable artificial intelligence framework for COVID-19
screening on chest X-rays. Exp Ther Med. 20:727–735.
2020.PubMed/NCBI View Article : Google Scholar
|
18
|
Apostolopoulos ID and Mpesiana TA:
Covid-19: automatic detection from X-ray images utilizing transfer
learning with convolutional neural networks. Phys Eng Sci Med.
43:635–640. 2020.PubMed/NCBI View Article : Google Scholar
|
19
|
Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B,
Bai J, Lu Y, Fang Z, Song Q, et al: Using artificial intelligence
to detect COVID-19 and community-acquired pneumonia based on
pulmonary CT: Evaluation of the diagnostic accuracy. Radiology.
296:E65–E71. 2020.PubMed/NCBI View Article : Google Scholar
|
20
|
Wang S, Zha Y, Li W, Wu Q, Li X, Niu M,
Wang M, Qiu X, Li H, Yu H, et al: A fully automatic deep learning
system for COVID-19 diagnostic and prognostic analysis. Eur Respir
J. 56(2000775)2020.PubMed/NCBI View Article : Google Scholar
|
21
|
Zhang K, Liu X, Shen J, Li Z, Sang Y, Wu
X, Zha Y, Liang W, Wang C, Wang K, et al: Clinically applicable AI
system for accurate diagnosis, quantitative measurements, and
prognosis of COVID-19 pneumonia using computed tomography. Cell.
181:1423–1433.e11. 2020.PubMed/NCBI View Article : Google Scholar
|
22
|
Ardakani AA, Kanafi AR, Acharya UR, Khadem
N and Mohammadi A: Application of deep learning technique to manage
COVID-19 in routine clinical practice using CT images: Results of
10 convolutional neural networks. Comput Biol Med.
121(103795)2020.PubMed/NCBI View Article : Google Scholar
|
23
|
Song Y, Zheng S, Li L, Zhang X, Zhang X,
Huang Z, Chen J, Zhao H, Jie Y, Wang R, et al: Deep learning
enables accurate diagnosis of novel coronavirus (COVID-19) with CT
images. medRxiv: doi: https://doi.org/10.1101/2020.02.23.20026930.
|
24
|
Zheng C, Deng X, Fu Q, Zhou Q, Feng J, Ma
H, Liu W and Wang X: Deep learning-based detection for COVID-19
from chest CT using weak label medRxiv: doi: https://doi.org/10.1101/2020.03.12.20027185.
|
25
|
Gozes O, Frid-Adar M, Greenspan H,
Browning PD, Zhang H, Ji W, Bernheim A and Siegel E: Rapid AI
development cycle for the coronavirus (COVID-19) pandemic: Initial
results for automated detection and patient monitoring using deep
learning CT image analysis. arXiv:2003.05037.
|
26
|
Shan F, Gao Y, Wang J, Shi W, Shi N, Han
M, Xue Z, Shen D and Shi Y: Lung infection quantification of
COVID-19 in CT images with deep learning. arXiv:2003.04655.
|
27
|
Kassani SH, Kassasni PH, Wesolowski MJ,
Schneider KA and Deters R: Automatic detection of coronavirus
disease (COVID-19) in x-ray and CT images: A machine learning-based
approach. arXiv:2004.10641.
|
28
|
Hu S, Gao Y, Niu Z, Jiang Y, Li L, Xiao X,
Wang M, Fang EF, Menpes-Smith W, Xia J, et al: Weakly supervised
deep learning for COVID-19 infection detection and classification
from CT images. IEEE Access. 8:118869–118883. 2020.
|
29
|
Chen X, Yao L and Zhang Y: Residual
attention U-Net for automated multi-class segmentation of COVID-19
chest CT images. arXiv:2004.05645.
|
30
|
Soares E, Angelov P, Biaso S, Froes MH and
Abe DK: SARS-CoV-2 CT-scan dataset: A large dataset of real
patients CT scans for SARS-CoV-2 identification. medRxiv: doi:
https://doi.org/10.1101/2020.04.24.20078584.
|
31
|
Yang X, He X, Zhao J, Zhang Y, Zhang S and
Xie P: COVID-CT-Dataset: A CT scan dataset about COVID-19.
arXiv:2003.13865.
|
32
|
Ma J, Ge C, Wang Y, An X, Gao J, Yu Z,
Zhang M, Liu X, Deng X, Cao S, et al: COVID-19 CT lung and
infection segmentation dataset. Zenodo: http://doi.org/10.5281/zenodo.3757476.
|
33
|
Ronneberger O, Fischer P and Brox T:
U-net: Convolutional networks for biomedical image segmentation.
In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). Vol 9351. Springer Verlag, pp234-241, 2015.
|
34
|
Armato III S, McLennan G, Bidaut L,
McNitt-Gray M, Meyer C, Reeves A, Zhao B, Aberle D, Henschke C,
Clarke L, et al: The Lung Image Database Consortium (LIDC) and
Image Database Resource Initiative (IDRI): a completed reference
database of lung nodules on CT scans. Med Phys. 38:915–931.
2011.PubMed/NCBI View Article : Google Scholar
|
35
|
gitHub: wanwanbeen/ct_lung_segmentation:
Robust segmentation of lung and airway in CT scans. https://github.com/wanwanbeen?tab=repositories.
Updated November 29, 2017.
|
36
|
Simonyan K and Zisserman A: Very deep
convolutional networks for large-scale image recognition.
arXiv:1409.1556.
|
37
|
Szegedy C, Vanhoucke V, Ioffe S, Shlens J
and Wojna Z: Rethinking the inception architecture for computer
vision. In: Proceedings of the 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV, pp2818-2826,
2016.
|
38
|
Zoph B, Vasudevan V, Shlens J and Le QV:
Learning transferable architectures for scalable image recognition.
arXiv:1707.07012v4.
|
39
|
Huang G, Liu Z, van der Maaten L and
Weinberger KQ: Densely connected convolutional networks.
arXiv:1608.06993.
|
40
|
Sandler M, Howard A, Zhu M, Zhmoginov A
and Chen LC: MobileNetV2: Inverted Residuals and Linear
Bottlenecks. The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp4510-4520, 2018.
|
41
|
He X, Yang X, Zhang S, Zhao J, Zhang Y,
Xing E and Xie P: Sample-Efficient Deep Learning for COVID-19
Diagnosis Based on CT Scans medRxiv: doi: https://doi.org/10.1101/2020.04.13.20063941.
|
42
|
Harmon SA, Sanford TH, Xu S, Turkbey EB,
Roth H, Xu Z, Yang D, Myronenko A, Anderson V, Amalou A, et al:
Artificial intelligence for the detection of COVID-19 pneumonia on
chest CT using multinational datasets. Nat Commun.
11(4080)2020.PubMed/NCBI View Article : Google Scholar
|