1
|
Ramieri V, Tarani L, Costantino F, Basile
E, Liberati N, Rinna C, Cascone P and Colloridi F: Microdeletion 3q
syndrome. J Craniofac Surg. 22:2124–2128. 2011.PubMed/NCBI View Article : Google Scholar
|
2
|
Molin AM, Andrieux J, Koolen DA, Malan V,
Carella M, Colleaux L, Cormier-Daire V, David A, de Leeuw N,
Delobel B, et al: A novel microdeletion syndrome at 3q13.31
characterised by developmental delay, postnatal overgrowth,
hypoplastic male genitals, and characteristic facial features. J
Med Genet. 49:104–109. 2012.PubMed/NCBI View Article : Google Scholar
|
3
|
Tanaka-Arakawa MM, Matsui M, Tanaka C,
Uematsu A, Uda S, Miura K, Sakai T and Noguchi K: Developmental
changes in the corpus callosum from infancy to early adulthood: A
structural magnetic resonance imaging study. PLoS One.
10(e0118760)2015.PubMed/NCBI View Article : Google Scholar
|
4
|
Hofman J, Hutny M, Sztuba K and Paprocka
J: Corpus callosum agenesis: An insight into the etiology and
spectrum of symptoms. Brain Sci. 10(625)2020.PubMed/NCBI View Article : Google Scholar
|
5
|
Hanna RM, Marsh SE, Swistun D, Al-Gazali
L, Zaki MS, Abdel-Salam GM, Al-Tawari A, Bastaki L, Kayserili H,
Rajab A, et al: Distinguishing 3 classes of corpus callosal
abnormalities in consanguineous families. Neurology. 76:373–382.
2011.PubMed/NCBI View Article : Google Scholar
|
6
|
Edwards TJ, Sherr EH, Barkovich AJ and
Richards LJ: Clinical, genetic and imaging findings identify new
causes for corpus callosum development syndromes. Brain.
137:1579–1613. 2014.PubMed/NCBI View Article : Google Scholar
|
7
|
Raybaud C: The corpus callosum, the other
great forebrain commissures, and the septum pellucidum: Anatomy,
development, and malformation. Neuroradiology. 52:447–477.
2010.PubMed/NCBI View Article : Google Scholar
|
8
|
Libotte F, Fabiani M, Margiotti K, Viola
A, Mesoraca A and Giorlandino C: Prenatal diagnosis of combined
maternal 4q interstitial deletion and paternal 15q
microduplication. Genes (Basel). 12(1626)2021.PubMed/NCBI View Article : Google Scholar
|
9
|
Pilu G and Hobbins JC: Sonography of fetal
cerebrospinal anomalies. Prenat Diagn. 22:321–330. 2002.PubMed/NCBI View
Article : Google Scholar
|
10
|
Wang J, Zhang Z, Li Q, Zhu H, Lai Y, Luo
W, Liu S, Wang H and Hu T: Prenatal diagnosis of chromosomal
aberrations by chromosomal microarray analysis in foetuses with
ventriculomegaly. Sci Rep. 10(20765)2020.PubMed/NCBI View Article : Google Scholar
|
11
|
Griffiths PD, Reeves MJ, Morris JE, Mason
G, Russell SA, Paley MN and Whitby EH: A prospective study of
fetuses with isolated ventriculomegaly investigated by antenatal
sonography and in utero MR imaging. AJNR Am J Neuroradiol.
31:106–111. 2010.PubMed/NCBI View Article : Google Scholar
|
12
|
Alluhaybi AA, Altuhaini K and Ahmad M:
Fetal ventriculomegaly: A review of literature. Cureus.
14(e22352)2022.PubMed/NCBI View Article : Google Scholar
|
13
|
Ravnan JB, Tepperberg JH, Papenhausen P,
Lamb AN, Hedrick J, Eash D, Ledbetter DH and Martin CL: Subtelomere
FISH analysis of 11 688 cases: An evaluation of the frequency and
pattern of subtelomere rearrangements in individuals with
developmental disabilities. J Med Genet. 43:478–489.
2006.PubMed/NCBI View Article : Google Scholar
|
14
|
Firth HV, Richards SM, Bevan AP, Clayton
S, Corpas M, Rajan D, Van Vooren S, Moreau Y, Pettett RM and Carter
NP: DECIPHER: Database of chromosomal imbalance and phenotype in
humans using ensembl resources. Am J Hum Genet. 84:524–533.
2009.PubMed/NCBI View Article : Google Scholar
|
15
|
Mirzaa G, Parry DA, Fry AE, Giamanco KA,
Schwartzentruber J, Vanstone M, Logan CV, Roberts N, Johnson CA,
Singh S, et al: De novo CCND2 mutations leading to stabilization of
cyclin D2 cause
megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome.
Nat Genet. 46:510–515. 2014.PubMed/NCBI View
Article : Google Scholar
|
16
|
Ozcelik T, Rosenthal A and Francke U:
Chromosomal mapping of brain-derived neurotrophic factor and
neurotrophin-3 genes in man and mouse. Genomics. 10:569–575.
1991.PubMed/NCBI View Article : Google Scholar
|
17
|
Awad S, Al-Dosari MS, Al-Yacoub N, Colak
D, Salih MA, Alkuraya FS and Poizat C: Mutation in PHC1 implicates
chromatin remodeling in primary microcephaly pathogenesis. Hum Mol
Genet. 22:2200–2213. 2013.PubMed/NCBI View Article : Google Scholar
|
18
|
Nagao M, Ogata T, Sawada Y and Gotoh Y:
Zbtb20 promotes astrocytogenesis during neocortical development.
Nat Commun. 7(11102)2016.PubMed/NCBI View Article : Google Scholar
|
19
|
Nielsen JV, Thomassen M, Mollgard K,
Noraberg J and Jensen NA: Zbtb20 defines a hippocampal neuronal
identity through direct repression of genes that control projection
neuron development in the isocortex. Cereb Cortex. 24:1216–1229.
2014.PubMed/NCBI View Article : Google Scholar
|
20
|
Xie Z, Ma X, Ji W, Zhou G, Lu Y, Xiang Z,
Wang YX, Zhang L, Hu Y, Ding YQ and Zhang WJ: Zbtb20 is essential
for the specification of CA1 field identity in the developing
hippocampus. Proc Natl Acad Sci USA. 107:6510–6515. 2010.PubMed/NCBI View Article : Google Scholar
|
21
|
Sokoloff P, Giros B, Martres MP, Bouthenet
ML and Schwartz JC: Molecular cloning and characterization of a
novel dopamine receptor (D3) as a target for neuroleptics. Nature.
347:146–151. 1990.PubMed/NCBI View
Article : Google Scholar
|
22
|
Leyser M, Dias BL, Coelho AL, Vasconcelos
M and Nascimento OJ: 12p deletion spectrum syndrome: A new case
report reinforces the evidence regarding the potential relationship
to autism spectrum disorder and related developmental impairments.
Mol Cytogenet. 9(75)2016.PubMed/NCBI View Article : Google Scholar
|
23
|
Fanizza I, Bertuzzo S, Beri S, Scalera E,
Massagli A, Sali ME, Giorda R and Bonaglia MC: Genotype-phenotype
relationship in a child with 2.3 Mb de novo interstitial
12p13.33-p13.32 deletion. Eur J Med Genet. 57:334–338.
2014.PubMed/NCBI View Article : Google Scholar
|
24
|
Rincic M, Rados M, Kopic J, Krsnik Z and
Liehr T: 7p21.3 together with a 12p13.32 deletion in a patient with
microcephaly-does 12p13.32 locus possibly comprises a candidate
gene region for microcephaly? Front Mol Neurosci.
14(613091)2021.PubMed/NCBI View Article : Google Scholar
|
25
|
Thevenon J, Callier P, Andrieux J, Delobel
B, David A, Sukno S, Minot D, Mosca Anne L, Marle N, Sanlaville D,
et al: 12p13.33 microdeletion including ELKS/ERC1, a new locus
associated with childhood apraxia of speech. Eur J Hum Genet.
21:82–88. 2013.PubMed/NCBI View Article : Google Scholar
|
26
|
El Hayek L, Tuncay IO, Nijem N, Russell J,
Ludwig S, Kaur K, Li X, Anderton P, Tang M, Gerard A, et al: KDM5A
mutations identified in autism spectrum disorder using forward
genetics. Elife. 9(e56883)2020.PubMed/NCBI View Article : Google Scholar
|
27
|
Silva IM, Rosenfeld J, Antoniuk SA, Raskin
S and Sotomaior VS: A 1.5Mb terminal deletion of 12p associated
with autism spectrum disorder. Gene. 542:83–86. 2014.PubMed/NCBI View Article : Google Scholar
|
28
|
Han JY and Park J: Variable phenotypes of
epilepsy, intellectual disability, and schizophrenia caused by
12p13.33-p13.32 terminal microdeletion in a korean family: A case
report and literature review. Genes (Basel).
12(1001)2021.PubMed/NCBI View Article : Google Scholar
|
29
|
Rodan AR and Jenny A: WNK kinases in
development and disease. Curr Top Dev Biol. 123:1–47.
2017.PubMed/NCBI View Article : Google Scholar
|
30
|
Luderman LN, Michaels MT, Levic DS and
Knapik EW: Zebrafish Erc1b mediates motor innervation and
organization of craniofacial muscles in control of jaw movement.
Dev Dyn: Jun 16, 2022 (Epub Ahead of Print).
|