Protective effects of flavonoids against intracerebral and subarachnoid hemorrhage (Review)
- Authors:
- Hanpeng Dong
- Xiaojin Gao
- Haixia Li
- Jing Gao
- Leiming Zhang
-
Affiliations: Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, Shandong 264005, P.R. China - Published online on: July 4, 2024 https://doi.org/10.3892/etm.2024.12639
- Article Number: 350
-
Copyright: © Dong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Magid-Bernstein J, Girard R, Polster S, Srinath A, Romanos S, Awad IA and Sansing LH: Cerebral hemorrhage: Pathophysiology, treatment, and future directions. Circ Res. 130:1204–1229. 2022.PubMed/NCBI View Article : Google Scholar | |
Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL and Parag V: Worldwide stroke incidence and early case fatality reported in 56 population-based studies: A systematic review. Lancet Neurol. 8:355–369. 2009.PubMed/NCBI View Article : Google Scholar | |
van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A and Klijn CJ: Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: A systematic review and meta-analysis. Lancet Neurol. 9:167–176. 2010.PubMed/NCBI View Article : Google Scholar | |
Chen Y, Chen S, Chang J, Wei J, Feng M and Wang R: Perihematomal edema after intracerebral hemorrhage: An update on pathogenesis, risk factors, and therapeutic advances. Front Immunol. 12(740632)2021.PubMed/NCBI View Article : Google Scholar | |
Xiao L, Zheng H, Li J, Wang Q and Sun H: Neuroinflammation mediated by NLRP3 inflammasome after intracerebral hemorrhage and potential therapeutic targets. Mol Neurobiol. 57:5130–5149. 2020.PubMed/NCBI View Article : Google Scholar | |
Keep RF, Hua Y and Xi G: Intracerebral haemorrhage: Mechanisms of injury and therapeutic targets. Lancet Neurol. 11:720–731. 2012.PubMed/NCBI View Article : Google Scholar | |
Wan Y, Holste KG, Hua Y, Keep RF and Xi G: Brain edema formation and therapy after intracerebral hemorrhage. Neurobiol Dis. 176(105948)2023.PubMed/NCBI View Article : Google Scholar | |
Muehlschlegel S: Subarachnoid hemorrhage. Continuum (Minneap Minn). 24:1623–1657. 2018.PubMed/NCBI View Article : Google Scholar | |
Claassen J and Park S: Spontaneous subarachnoid haemorrhage. Lancet. 400:846–862. 2022.PubMed/NCBI View Article : Google Scholar | |
Sveinsson ÓÁ, Ólafsson IH, Kjartansson Ó and Valdimarsson EM: Spontaneous subarachnoid haemorrhage-review. Laeknabladid. 97:355–362. 2011.PubMed/NCBI View Article : Google Scholar : (In Icelandic). | |
Lucke-Wold B, Logsdon A, Manoranjan B, Turner RC, McConnell E, Vates GE, Huber JD, Rosen CL and Simard JM: Aneurysmal subarachnoid hemorrhage and neuroinflammation: A comprehensive review. Int J Mol Sci. 17(497)2016.PubMed/NCBI View Article : Google Scholar | |
van Gijn J, Kerr RS and Rinkel GJ: Subarachnoid haemorrhage. Lancet. 369:306–318. 2007.PubMed/NCBI View Article : Google Scholar | |
Dilli E: Thunderclap Headache. Curr Neurol Neurosci Rep. 14(437)2014.PubMed/NCBI View Article : Google Scholar | |
Hao G, Conzen-Dilger C, Schmidt TP, Harder E, Schöps M, Clauser JC, Schubert GA and Lindauer U: Effect of isolated intracranial hypertension on cerebral perfusion within the phase of primary disturbances after subarachnoid hemorrhage in rats. Front Cell Neurosci. 17(1115385)2023.PubMed/NCBI View Article : Google Scholar | |
Lynch DG, Shah KA, Powell K, Wadolowski S, Tambo W, Strohl JJ, Unadkat P, Eidelberg D, Huerta PT and Li C: Neurobehavioral impairments predict specific cerebral damage in rat model of subarachnoid hemorrhage. Transl Stroke Res: Jul 26, 2023 (Epub ahead of print). | |
Ciurea AV, Palade C, Voinescu D and Nica DA: Subarachnoid hemorrhage and cerebral vasospasm-literature review. J Med Life. 6:120–125. 2013.PubMed/NCBI | |
Lauzier DC, Jayaraman K, Yuan JY, Diwan D, Vellimana AK, Osbun JW, Chatterjee AR, Athiraman U, Dhar R and Zipfel GJ: Early brain injury after subarachnoid hemorrhage: Incidence and mechanisms. Stroke. 54:1426–1440. 2023.PubMed/NCBI View Article : Google Scholar | |
Yuan B, Zhao XD, Shen JD, Chen SJ, Huang HY, Zhou XM, Han YL, Zhou LJ, Lu XJ and Wu Q: Activation of SIRT1 alleviates ferroptosis in the early brain injury after subarachnoid hemorrhage. Oxid Med Cell Longev. 2022(9069825)2022.PubMed/NCBI View Article : Google Scholar | |
Zhang Z, Fang Y, Lenahan C and Chen S: The role of immune inflammation in aneurysmal subarachnoid hemorrhage. Exp Neurol. 336(113535)2021.PubMed/NCBI View Article : Google Scholar | |
Clower BR, Yamamoto Y, Cain L, Haines DE and Smith RR: Endothelial injury following experimental subarachnoid hemorrhage in rats: Effects on brain blood flow. Anat Rec. 240:104–114. 1994.PubMed/NCBI View Article : Google Scholar | |
Chen Y, Peng F, Xing Z, Chen J, Peng C and Li D: Beneficial effects of natural flavonoids on neuroinflammation. Front Immunol. 13(1006434)2022.PubMed/NCBI View Article : Google Scholar | |
Santos-Buelga C and Feliciano AS: Flavonoids: From structure to health issues. Molecules. 22(477)2017.PubMed/NCBI View Article : Google Scholar | |
Liu T, Su K, Cai W, Ao H and Li M: Therapeutic potential of puerarin against cerebral diseases: From bench to bedside. Eur J Pharmacol. 953(175695)2023.PubMed/NCBI View Article : Google Scholar | |
Zeng J, Zheng S, Chen Y, Qu Y, Xie J, Hong E, Lv H, Ding R, Feng L and Xie Z: Puerarin attenuates intracerebral hemorrhage-induced early brain injury possibly by PI3K/Akt signal activation-mediated suppression of NF-κB pathway. J Cell Mol Med. 25:7809–7824. 2021.PubMed/NCBI View Article : Google Scholar | |
Franza L, Carusi V, Nucera E and Pandolfi F: Luteolin, inflammation and cancer: Special emphasis on gut microbiota. Biofactors. 47:181–189. 2021.PubMed/NCBI View Article : Google Scholar | |
Tan X, Yang Y, Xu J, Zhang P, Deng R, Mao Y, He J, Chen Y, Zhang Y, Ding J, et al: Luteolin exerts neuroprotection via modulation of the p62/Keap1/Nrf2 pathway in intracerebral hemorrhage. Front Pharmacol. 10(1551)2020.PubMed/NCBI View Article : Google Scholar | |
Sivandzade F, Prasad S, Bhalerao A and Cucullo L: NRF2 and NF-κB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches. Redox Biol. 21(101059)2019.PubMed/NCBI View Article : Google Scholar | |
Yang Y, Tan X, Xu J, Wang T, Liang T, Xu X, Ma C, Xu Z, Wang W, Li H, et al: Luteolin alleviates neuroinflammation via downregulating the TLR4/TRAF6/NF-κB pathway after intracerebral hemorrhage. Biomed Pharmacother. 126(110044)2020.PubMed/NCBI View Article : Google Scholar | |
Yu M, Qi B, Xiaoxiang W, Xu J and Liu X: Baicalein increases cisplatin sensitivity of A549 lung adenocarcinoma cells via PI3K/Akt/NF-κB pathway. Biomed Pharmacother. 90:677–685. 2017.PubMed/NCBI View Article : Google Scholar | |
Wei N, Wei Y, Li B and Pang L: Baicalein promotes neuronal and behavioral recovery after intracerebral hemorrhage via suppressing apoptosis, oxidative stress and neuroinflammation. Neurochem Res. 42:1345–1353. 2017.PubMed/NCBI View Article : Google Scholar | |
Masomi-Bornwasser J, Kurz E, Frenz C, Schmitt J, Wesp DMA, König J, Lotz J, Ringel F, Kerz T, Krenzlin H and Keric N: The influence of oxidative stress on neurological outcomes in spontaneous intracerebral hemorrhage. Biomolecules. 11(1615)2021.PubMed/NCBI View Article : Google Scholar | |
Chen X, Zhou Y, Wang S and Wang W: Mechanism of baicalein in brain injury after intracerebral hemorrhage by inhibiting the ROS/NLRP3 inflammasome pathway. Inflammation. 45:590–602. 2022.PubMed/NCBI View Article : Google Scholar | |
Gu L, Sun M, Li R, Zhang X, Tao Y, Yuan Y, Luo X and Xie Z: Didymin suppresses microglia pyroptosis and neuroinflammation through the Asc/caspase-1/GSDMD pathway following experimental intracerebral hemorrhage. Front Immunol. 13(810582)2022.PubMed/NCBI View Article : Google Scholar | |
Di Petrillo A, Orrù G, Fais A and Fantini MC: Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother Res. 36:266–278. 2022.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Yi B, Ma J, Zhang L, Zhang H, Yang Y and Dai Y: Quercetin promotes neuronal and behavioral recovery by suppressing inflammatory response and apoptosis in a rat model of intracerebral hemorrhage. Neurochem Res. 40:195–203. 2015.PubMed/NCBI View Article : Google Scholar | |
Fu Y, Xu B, Huang S, Luo X, Deng XL, Luo S, Liu C, Wang Q, Chen JY and Zhou L: Baicalin prevents LPS-induced activation of TLR4/NF-κB p65 pathway and inflammation in mice via inhibiting the expression of CD14. Acta Pharmacol Sin. 42:88–96. 2021.PubMed/NCBI View Article : Google Scholar | |
Guo LT, Wang SQ, Su J, Xu LX, Ji ZY, Zhang RY, Zhao QW, Ma ZQ, Deng XY and Ma SP: Baicalin ameliorates neuroinflammation-induced depressive-like behavior through inhibition of toll-like receptor 4 expression via the PI3K/AKT/FoxO1 pathway. J Neuroinflammation. 16(95)2019.PubMed/NCBI View Article : Google Scholar | |
Zhou QB, Jia Q, Zhang Y, Li LY, Chi ZF and Liu P: Effects of baicalin on protease-activated receptor-1 expression and brain injury in a rat model of intracerebral hemorrhage. Chin J Physiol. 55:219–226. 2012.PubMed/NCBI View Article : Google Scholar | |
Zeng J, Chen Y, Ding R, Feng L, Fu Z, Yang S, Deng X, Xie Z and Zheng S: Isoliquiritigenin alleviates early brain injury after experimental intracerebral hemorrhage via suppressing ROS- and/or NF-κB-mediated NLRP3 inflammasome activation by promoting Nrf2 antioxidant pathway. J Neuroinflammation. 14(119)2017.PubMed/NCBI View Article : Google Scholar | |
Chen Z, Wang C, Liu Y, Liang X, Yang C, Zhang X and Li X: Protective effects of medicinal plant breviscapine on postcerebral hemorrhage in rats. J Integr Neurosci. 19:101–109. 2020.PubMed/NCBI View Article : Google Scholar | |
Lan X, Han X, Li Q, Li Q, Gao Y, Cheng T, Wan J, Zhu W and Wang J: Pinocembrin protects hemorrhagic brain primarily by inhibiting toll-like receptor 4 and reducing M1 phenotype microglia. Brain Behav Immun. 61:326–339. 2017.PubMed/NCBI View Article : Google Scholar | |
Fei X, Chen C, Kai S, Fu X, Man W, Ding B, Wang C and Xu R: Eupatilin attenuates the inflammatory response induced by intracerebral hemorrhage through the TLR4/MyD88 pathway. Int Immunopharmacol. 76(105837)2019.PubMed/NCBI View Article : Google Scholar | |
Chen C, Yao L, Cui J and Liu B: Fisetin protects against intracerebral hemorrhage-induced neuroinflammation in aged mice. Cerebrovasc Dis. 45:154–161. 2018.PubMed/NCBI View Article : Google Scholar | |
Singh N, Bansal Y, Bhandari R, Marwaha L, Singh R, Chopra K and Kuhad A: Naringin reverses neurobehavioral and biochemical alterations in intracerebroventricular collagenase-induced intracerebral hemorrhage in rats. Pharmacology. 100:172–187. 2017.PubMed/NCBI View Article : Google Scholar | |
Chen C, Cui J, Ji X and Yao L: Neuroprotective functions of calycosin against intracerebral hemorrhage-induced oxidative stress and neuroinflammation. Future Med Chem. 12:583–592. 2020.PubMed/NCBI View Article : Google Scholar | |
Gao Y and Dong Z: Protective effect of procyanidins on experimental rats with intracerebral hemorrhage. Zhongguo Zhong Yao Za Zhi. 34:3078–3081. 2009.PubMed/NCBI(In Chinese). | |
Pyrzynska K: Hesperidin: A review on extraction methods, stability and biological activities. Nutrients. 14(2387)2022.PubMed/NCBI View Article : Google Scholar | |
Qin Z, Chen L, Liu M, Tan H and Zheng L: Hesperidin reduces adverse symptomatic intracerebral hemorrhage by promoting TGF-β1 for treating ischemic stroke using tissue plasminogen activator. Neurol Sci. 41:139–147. 2020.PubMed/NCBI View Article : Google Scholar | |
Dumont AS, Dumont RJ, Chow MM, Lin CL, Calisaneller T, Ley KF, Kassell NF and Lee KS: Cerebral vasospasm after subarachnoid hemorrhage: Putative role of inflammation. Neurosurgery. 53:123–135. 2003.PubMed/NCBI View Article : Google Scholar | |
Erdi F, Keskin F, Esen H, Kaya B, Feyzioglu B, Kilinc I, Karatas Y, Cuce G and Kalkan E: Telmisartan ameliorates oxidative stress and subarachnoid haemorrhage-induced cerebral vasospasm. Neurol Res. 38:224–231. 2016.PubMed/NCBI View Article : Google Scholar | |
Xu W, Li T, Gao L, Zheng J, Yan J, Zhang J and Shao A: Apelin-13/APJ system attenuates early brain injury via suppression of endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation and oxidative stress in a AMPK-dependent manner after subarachnoid hemorrhage in rats. J Neuroinflammation. 16(247)2019.PubMed/NCBI View Article : Google Scholar | |
Kuo CP, Wen LL, Chen CM, Huh B, Cherng CH, Wong CS, Liaw WJ, Yeh CC, Lin BF and Wu CT: Attenuation of neurological injury with early baicalein treatment following subarachnoid hemorrhage in rats. J Neurosurg. 119:1028–1037. 2013.PubMed/NCBI View Article : Google Scholar | |
Hao G, Dong Y, Huo R, Wen K, Zhang Y and Liang G: Rutin Inhibits neuroinflammation and provides neuroprotection in an experimental rat model of subarachnoid hemorrhage, possibly through suppressing the RAGE-NF-κB inflammatory signaling pathway. Neurochem Res. 41:1496–1504. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhang T, Su J, Guo B, Wang K, Li X and Liang G: Apigenin protects blood-brain barrier and ameliorates early brain injury by inhibiting TLR4-mediated inflammatory pathway in subarachnoid hemorrhage rats. Int Immunopharmacol. 28:79–87. 2015.PubMed/NCBI View Article : Google Scholar | |
Shi X, Fu Y, Zhang S, Ding H and Chen J: Baicalin attenuates subarachnoid hemorrhagic brain injury by modulating blood-brain barrier disruption, inflammation, and oxidative damage in mice. Oxid Med Cell Longev. 2017(1401790)2017.PubMed/NCBI View Article : Google Scholar | |
Zhang H, Tu X, Song S, Liang R and Shi S: Baicalin reduces early brain injury after subarachnoid hemorrhage in rats. Chin J Integr Med. 26:510–518. 2020.PubMed/NCBI View Article : Google Scholar | |
Gül Ş, Aydoğmuş E, Bahadir B, Büyükuysal MÇ and Güven B: Neuroprotective effects of quercetin on cerebral vasospasm following experimental subarachnoid haemorrhage in rats. Turk J Med Sci. 50:1106–1110. 2020.PubMed/NCBI View Article : Google Scholar | |
Dong YS, Wang JL, Feng DY, Qin HZ, Wen H, Yin ZM, Gao GD and Li C: Protective effect of quercetin against oxidative stress and brain edema in an experimental rat model of subarachnoid hemorrhage. Int J Med Sci. 11:282–290. 2014.PubMed/NCBI View Article : Google Scholar | |
Tekiner A, Yilmaz MB, Bolat E, Goker T, Sargon MF and Arat A: The therapeutic value of proanthocyanidin in experimental cerebral vasospasm following subarachnoid hemorrhage. Turk Neurosurg. 24:885–890. 2014.PubMed/NCBI View Article : Google Scholar | |
Zhang ZH, Liu JQ, Hu CD, Zhao XT, Qin FY, Zhuang Z and Zhang XS: Luteolin confers cerebroprotection after subarachnoid hemorrhage by suppression of NLPR3 inflammasome activation through Nrf2-dependent pathway. Oxid Med Cell Longev. 2021(5838101)2021.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Yang X, Ge X and Zhang F: Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice. Biomed Pharmacother. 109:726–733. 2019.PubMed/NCBI View Article : Google Scholar | |
Zeng Y, Fang Z, Lai J, Wu Z, Lin W, Yao H, Hu W, Chen J, Guo X and Chen X: Activation of sirtuin-1 by pinocembrin treatment contributes to reduced early brain injury after subarachnoid hemorrhage. Oxid Med Cell Longev. 2022(2242833)2022.PubMed/NCBI View Article : Google Scholar | |
Xu W, Yan J, Ocak U, Lenahan C, Shao A, Tang J, Zhang J and Zhang JH: Melanocortin 1 receptor attenuates early brain injury following subarachnoid hemorrhage by controlling mitochondrial metabolism via AMPK/SIRT1/PGC-1α pathway in rats. Theranostics. 11:522–539. 2021.PubMed/NCBI View Article : Google Scholar | |
Li Q, Chen Y, Zhang X, Zuo S, Ge H, Chen Y, Liu X, Zhang JH, Ruan H and Feng H: Scutellarin attenuates vasospasm through the Erk5-KLF2-eNOS pathway after subarachnoid hemorrhage in rats. J Clin Neurosci. 34:264–270. 2016.PubMed/NCBI View Article : Google Scholar | |
Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, Xu S, Gao Y, Chen X, Sui X and Li G: The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 127(110108)2020.PubMed/NCBI View Article : Google Scholar | |
Wang F, He J, Xing R, Sha T and Sun B: Molecular mechanisms of ferroptosis and their role in inflammation. Int Rev Immunol. 42:71–81. 2023.PubMed/NCBI View Article : Google Scholar | |
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11(88)2020.PubMed/NCBI View Article : Google Scholar | |
Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G, Liu Y, Zhao X, Qian L, Liu P and Xiong Y: Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 7(193)2021.PubMed/NCBI View Article : Google Scholar | |
Gao S, Zhou L, Lu J, Fang Y, Wu H, Xu W, Pan Y, Wang J, Wang X, Zhang J and Shao A: Cepharanthine attenuates early brain injury after subarachnoid hemorrhage in mice via inhibiting 15-lipoxygenase-1-mediated microglia and endothelial cell ferroptosis. Oxid Med Cell Longev. 2022(4295208)2022.PubMed/NCBI View Article : Google Scholar | |
Zheng B, Zhou X, Pang L, Che Y and Qi X: Baicalin suppresses autophagy-dependent ferroptosis in early brain injury after subarachnoid hemorrhage. Bioengineered. 12:7794–7804. 2021.PubMed/NCBI View Article : Google Scholar | |
Chen D, Chen JJ, Yin Q, Guan JH and Liu YH: Role of ERK1/2 and vascular cell proliferation in cerebral vasospasm after experimental subarachnoid hemorrhage. Acta Neurochir (Wien). 151:1127–1134. 2009.PubMed/NCBI View Article : Google Scholar | |
Curson JEB, Liu L, Luo L, Muusse TW, Lucas RM, Gunther KS, Vajjhala PR, Abrol R, Jones A, Kapetanovic R, et al: TLR4 phosphorylation at tyrosine 672 activates the ERK/c-FOS signaling module for LPS-induced cytokine responses in macrophages. Eur J Immunol. 53(e2250056)2023.PubMed/NCBI View Article : Google Scholar | |
Lin CW, Chen PN, Chen MK, Yang WE, Tang CH, Yang SF and Hsieh YS: Kaempferol reduces matrix metalloproteinase-2 expression by down-regulating ERK1/2 and the activator protein-1 signaling pathways in oral cancer cells. PLoS One. 8(e80883)2013.PubMed/NCBI View Article : Google Scholar | |
Zong J, Zhang DP, Zhou H, Bian ZY, Deng W, Dai J, Yuan Y, Gan HW, Guo HP and Tang QZ: Baicalein protects against cardiac hypertrophy through blocking MEK-ERK1/2 signaling. J Cell Biochem. 114:1058–1065. 2013.PubMed/NCBI View Article : Google Scholar | |
Cheng Y, Zhang Z, Tang H, Chen B, Cai Y, Wei Y, Zhao W, Wu ZB and Shang H: Mitochondrial inhibitor rotenone triggers and enhances neuronal ferroptosis following intracerebral hemorrhage. ACS Chem Neurosci. 14:1071–1079. 2023.PubMed/NCBI View Article : Google Scholar | |
Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA and Robinson JP: Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem. 278:8516–8525. 2003.PubMed/NCBI View Article : Google Scholar | |
Li K, Liang Y, Cheng A, Wang Q, Li Y, Wei H, Zhou C and Wan X: Antiviral properties of baicalin: A concise review. Rev Bras Farmacogn. 31:408–419. 2021.PubMed/NCBI View Article : Google Scholar | |
Yao C, Dai S, Wang C, Fu K, Wu R, Zhao X, Yao Y and Li Y: Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategies. Biomed Pharmacother. 167(115464)2023.PubMed/NCBI View Article : Google Scholar | |
Choi EJ, Lee BH, Lee K and Chee KM: Long-term combined administration of quercetin and daidzein inhibits quercetin-induced suppression of glutathione antioxidant defenses. Food Chem Toxicol. 43:793–798. 2005.PubMed/NCBI View Article : Google Scholar | |
Di Lorenzo C, Colombo F, Biella S, Stockley C and Restani P: Polyphenols and human health: The role of bioavailability. Nutrients. 13(273)2021.PubMed/NCBI View Article : Google Scholar | |
Galho AR, Cordeiro MF, Ribeiro SA, Marques MS, Antunes MF, Luz DC, Hädrich G, Muccillo-Baisch AL, Barros DM, Lima JV, et al: Protective role of free and quercetin-loaded nanoemulsion against damage induced by intracerebral haemorrhage in rats. Nanotechnology. 27(175101)2016.PubMed/NCBI View Article : Google Scholar | |
Waki T, Nakanishi I, Matsumoto K, Kitajima J, Chikuma T and Kobayashi S: Key role of chemical hardness to compare 2,2-diphenyl-1-picrylhydrazyl radical scavenging power of flavone and flavonol O-glycoside and C-glycoside derivatives. Chem Pharm Bull (Tokyo). 60:37–44. 2012.PubMed/NCBI View Article : Google Scholar | |
Cassidy A, O'Reilly ÉJ, Kay C, Sampson L, Franz M, Forman JP, Curhan G and Rimm EB: Habitual intake of flavonoid subclasses and incident hypertension in adults. Am J Clin Nutr. 93:338–347. 2011.PubMed/NCBI View Article : Google Scholar | |
Elijovich L, Patel PV and Hemphill JC III: Intracerebral hemorrhage. Semin Neurol. 28:657–667. 2008.PubMed/NCBI View Article : Google Scholar | |
Sung B, Chung HY and Kim ND: Role of apigenin in cancer prevention via the induction of apoptosis and autophagy. J Cancer Prev. 21:216–226. 2016.PubMed/NCBI View Article : Google Scholar | |
Ganeshpurkar A and Saluja AK: The pharmacological potential of rutin. Saudi Pharm J. 25:149–164. 2017.PubMed/NCBI View Article : Google Scholar | |
Jäger A and Saaby L: Flavonoids and the CNS. Molecules. 16:1471–1485. 2011.PubMed/NCBI View Article : Google Scholar | |
Parrella E, Gussago C, Porrini V, Benarese M and Pizzi M: From preclinical stroke models to humans: Polyphenols in the prevention and treatment of stroke. Nutrients. 13(85)2020.PubMed/NCBI View Article : Google Scholar |