1
|
Vaidya SR and Aeddula NR: Chronic Kidney
Disease. In: StatPearls. StatPearls Publishing, Treasure Island
(FL), 2023.
|
2
|
Naghavi M, Ong KL, Aali A, Ababneh HS,
Abate YH, Abbafati C, Abbasgholizadeh R, Abbasian M,
Abbasi-Kangevari M, Abbastabar H, et al: Global burden of 288
causes of death and life expectancy decomposition in 204 countries
and territories and 811 subnational locations, 1990-2021: A
systematic analysis for the Global Burden of Disease Study 2021.
Lancet. 403:2100–2132. 2024.PubMed/NCBI View Article : Google Scholar
|
3
|
Murray CJL: The global burden of disease
study at 30 years. Nat Med. 28:2019–2026. 2022.PubMed/NCBI View Article : Google Scholar
|
4
|
Colegio de Nefrólogos de México. Revista
nefrología Mexicana-colegio de nefrólogos de méxico. Nefrol Mex.
41(34)2020.
|
5
|
Liu BC, Lan HY and Lv LL: Renal fibrosis:
Mechanisms and therapies. Springer, Singapore, 2019.
|
6
|
Arreola-Guerra JM, Gutiérrez-Peña CM,
Zúñiga L, Ovalle-Robles I, García-Díaz AL, Macías-Guzmán MJ,
Delgado A, Macías D, Prado C, Vega A, et al: Enfermedad renal
Crónica en aguascalientes. ISEA México, 2019.
|
7
|
Awad AM, Saleh MA, Abu-Elsaad NM and
Ibrahim TM: Erlotinib can halt adenine induced nephrotoxicity in
mice through modulating ERK1/2, STAT3, p53 and apoptotic pathways.
Sci Rep. 10(11524)2020.PubMed/NCBI View Article : Google Scholar
|
8
|
Herman LL, Padala SA, Ahmed I and Bashir
K: Angiotensin-Converting Enzyme Inhibitors (ACEI). In: StatPearls.
StatPearls Publishing, Treasure Island (FL), 2024.
|
9
|
John M: Eisenberg Center for Clinical
Decisions and Communications Science: Medicamentos para la
enfermedad renal crónica en fase inicial. In: Las Guías Sumarias de
los Consumidores. Agency for Healthcare Research and Quality (US),
Rockville (MD), 2012.
|
10
|
Hill RD and Vaidya PN: Angiotensin II
Receptor Blockers (ARB). In: StatPearls. StatPearls Publishing,
Treasure Island (FL), 2024.
|
11
|
Crowley SD, Zhang J, Herrera M, Griffiths
R, Ruiz P and Coffman TM: Role of AT1 receptor-mediated salt
retention in angiotensin II-dependent hypertension. Am J Physiol
Renal Physiol. 301:F1124–F1130. 2011.PubMed/NCBI View Article : Google Scholar
|
12
|
Brunton L, Knollmann B and Hilal-Dandan R:
Goodman and Gilman's the Pharmacological Basis of Therapeutics,
13th Edition. New York, 2017.
|
13
|
Niemi M, Kivistö KT, Backman JT and
Neuvonen PJ: Effect of rifampicin on the pharmacokinetics and
pharmacodynamics of glimepiride. Br J Clin Pharmacol. 50:591–595.
2000.PubMed/NCBI View Article : Google Scholar
|
14
|
Liu J, Zhang J, Hou MH and Du WX: Clinical
efficacy of linagliptin combined with irbesartan in patients with
diabetic nephropathy. Pak J Med Sci. 38:52–56. 2022.PubMed/NCBI View Article : Google Scholar
|
15
|
Wanner C, Inzucchi SE, Lachin JM, Fitchett
D, von Eynatten M, Mattheus M, Johansen OE, Woerle HJ, Broedl UC
and Zinman B: EMPA-REG OUTCOME Investigators. Empagliflozin and
progression of kidney disease in type 2 diabetes. N Engl J Med.
375:323–334. 2016.PubMed/NCBI View Article : Google Scholar
|
16
|
Martin AE and Montgomery PA: Acarbose: An
alpha-glucosidase inhibitor. Am J Health Syst Pharm. 53:2277–2290.
1996.PubMed/NCBI View Article : Google Scholar
|
17
|
Lehmann JM, Moore LB, Smith-Oliver TA,
Wilkison WO, Willson TM and Kliewer SA: An antidiabetic
thiazolidinedione is a high affinity ligand for peroxisome
proliferator-activated receptor gamma (PPAR gamma). J Biol Chem.
270:12953–12956. 1995.PubMed/NCBI View Article : Google Scholar
|
18
|
Yamanouchi T: Concomitant therapy with
pioglitazone and insulin for the treatment of type 2 diabetes. Vasc
Health Risk Manag. 6:189–197. 2010.PubMed/NCBI View Article : Google Scholar
|
19
|
PubChem CID 60560 for Chemical Safety:
Pioglitazone Hydrochloride., 2024.
|
20
|
Ceddia RB, Somwar R, Maida A, Fang X,
Bikopoulos G and Sweeney G: Globular adiponectin increases GLUT4
translocation and glucose uptake but reduces glycogen synthesis in
rat skeletal muscle cells. Diabetologia. 48:132–139.
2005.PubMed/NCBI View Article : Google Scholar
|
21
|
Ho CC, Yang YS, Huang CN, Lo SC, Wang YH
and Kornelius E: The efficacy of pioglitazone for renal protection
in diabetic kidney disease. PLoS One. 17(e0264129)2022.PubMed/NCBI View Article : Google Scholar
|
22
|
Kubota N, Terauchi Y, Kubota T, Kumagai H,
Itoh S, Satoh H, Yano W, Ogata H, Tokuyama K, Takamoto I, et al:
Pioglitazone ameliorates insulin resistance and diabetes by both
adiponectin-dependent and -independent pathways. J Biol Chem.
281:8748–8755. 2006.PubMed/NCBI View Article : Google Scholar
|
23
|
Yau H, Rivera K, Lomonaco R and Cusi K:
The future of thiazolidinedione therapy in the management of type 2
diabetes mellitus. Curr Diab Rep. 13:329–341. 2013.PubMed/NCBI View Article : Google Scholar
|
24
|
Libby AE, Jones B, Lopez-Santiago I,
Rowland E and Levi M: Nuclear receptors in the kidney during health
and disease. Mol Aspects Med. 78(100935)2021.PubMed/NCBI View Article : Google Scholar
|
25
|
Platt C and Coward RJ: Peroxisome
proliferator activating receptor-γ and the podocyte. Nephrol Dial
Transplant. 32:423–433. 2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Németh Á, Mózes MM, Calvier L, Hansmann G
and Kökény G: The PPARγ agonist pioglitazone prevents TGF-β induced
renal fibrosis by repressing EGR-1 and STAT3. BMC Nephrol.
20(245)2019.PubMed/NCBI View Article : Google Scholar
|
27
|
Kaplan J, Nowell M, Chima R and Zingarelli
B: Pioglitazone reduces inflammation through inhibition of NF-κB in
polymicrobial sepsis. Innate Immun. 20:519–528. 2014.PubMed/NCBI View Article : Google Scholar
|
28
|
Ko GJ, Kang YS, Han SY, Lee MH, Song HK,
Han KH, Kim HK, Han JY and Cha DR: Pioglitazone attenuates diabetic
nephropathy through an anti-inflammatory mechanism in type 2
diabetic rats. Nephrol Dial Transplant. 23:2750–2760.
2008.PubMed/NCBI View Article : Google Scholar
|
29
|
Sun L, Xu T, Chen Y, Qu W, Sun D, Song X,
Yuan Q and Yao L: Pioglitazone attenuates kidney fibrosis via
miR-21-5p modulation. Life Sci. 232(116609)2019.PubMed/NCBI View Article : Google Scholar
|
30
|
Wyngaarden JB and Dunn JT:
8-Hydroxyadenine as the intermediate in the oxidation of adenine to
2,8-dihydroxyadenine by xanthine oxidase. Arch Biochem Biophys.
70:150–156. 1957.PubMed/NCBI View Article : Google Scholar
|
31
|
George J: Role of urate, xanthine oxidase
and the effects of allopurinol in vascular oxidative stress. Vasc
Health Risk Manag. 5:265–272. 2009.PubMed/NCBI View Article : Google Scholar
|
32
|
Herlitz LC, D'Agati VD and Markowitz GS:
Crystalline nephropathies. Arch Pathol Lab Med. 136:713–720.
2012.PubMed/NCBI View Article : Google Scholar
|
33
|
Yang Q, Su S, Luo N and Cao G:
Adenine-induced animal model of chronic kidney disease: Current
applications and future perspectives. Ren Fail.
46(2336128)2024.PubMed/NCBI View Article : Google Scholar
|
34
|
Muñoz LIO: Norma Oficial Mexicana
NOM-062-ZOO-1999, especificaciones técnicas para la producción,
cuidado y uso de los animales de laboratorio., 2001.
|
35
|
National Research Council (US) Committee
for the Update of the Guide for the Care and Use of Laboratory
Animals: Guide for the Care and Use of Laboratory Animals. 8th
edition. National Academies Press (US), Washington (DC), 2011.
|
36
|
Center For Drug Evaluation and Research:
APPLICATION NUMBER: 21-073/S023., 2004.
|
37
|
Peng XH, Liang PY, Ou SJ and Zu XB:
Protective effect of pioglitazone on kidney injury in diabetic
rats. Asian Pac J Trop Med. 7:819–822. 2014.PubMed/NCBI View Article : Google Scholar
|
38
|
Afraz S, Kamran A, Moazzami K, Nezami BG
and Dehpour AR: Protective effect of pharmacologic preconditioning
with pioglitazone on random-pattern skin flap in rat is mediated by
nitric oxide system. J Surg Res. 176:696–700. 2012.PubMed/NCBI View Article : Google Scholar
|
39
|
Leary S, Pharmaceuticals F, Underwood W,
Anthony R, Cartner S, Johnson CL and Patterson-Kane E: AVMA
guidelines for the euthanasia of animals: 2020. Edition., 2020.
|
40
|
Besseling PJ, Pieters TT, Nguyen ITN, de
Bree PM, Willekes N, Dijk AH, Bovée DM, Hoorn EJ, Rookmaaker MB,
Gerritsen KG, et al: A plasma creatinine- and urea-based equation
to estimate glomerular filtration rate in rats. Am J Physiol Renal
Physiol. 320:F518–F524. 2021.PubMed/NCBI View Article : Google Scholar
|
41
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
42
|
Farris AB and Colvin RB: Renal
interstitial fibrosis: Mechanisms and evaluation. Curr Opin Nephrol
Hypertens. 21:289–300. 2012.PubMed/NCBI View Article : Google Scholar
|
43
|
Budi EH, Schaub JR, Decaris M, Turner S
and Derynck R: TGF-β as a driver of fibrosis: Physiological roles
and therapeutic opportunities. J Pathol. 254:358–373.
2021.PubMed/NCBI View Article : Google Scholar
|
44
|
Nogueira A, Pires MJ and Oliveira PA:
Pathophysiological mechanisms of renal fibrosis: A review of animal
models and therapeutic strategies. In Vivo. 31:1–22.
2017.PubMed/NCBI View Article : Google Scholar
|
45
|
Singh MP, Sharma C and Kang SC: Morin
hydrate attenuates adenine-induced renal fibrosis via targeting
cathepsin D signaling. Int Immunopharmacol.
90(107234)2021.PubMed/NCBI View Article : Google Scholar
|
46
|
Aurelien-Cabezas NS, Paz-Michel BA,
Jacinto-Cortes I, Delgado-Enciso OG, Montes-Galindo DA,
Cabrera-Licona A, Zaizar-Fregoso SA, Paz-Garcia J, Ceja-Espiritu G,
Melnikov V, et al: Protective effect of neutral electrolyzed saline
on Gentamicin-Induced nephrotoxicity: Evaluation of histopathologic
parameters in a murine model. Medicina (Kaunas).
59(397)2023.PubMed/NCBI View Article : Google Scholar
|
47
|
Zhu CZ, Doyle KJ, Nikkel AL, Olsen L,
Namovic MT, Salte K, Widomski D, Su Z, Donnelly-Roberts DL,
Gopalakrishnan MM and McGaraughty S: Short-term oral gavage
administration of adenine induces a model of fibrotic kidney
disease in rats. J Pharmacol Toxicol Methods. 94:34–43.
2018.PubMed/NCBI View Article : Google Scholar
|
48
|
Poulsen HE, Weimann A, Henriksen T, Kjær
LK, Larsen EL, Carlsson ER, Christensen CK, Brandslund I and Fenger
M: Oxidatively generated modifications to nucleic acids in vivo:
Measurement in urine and plasma. Free Radic Biol Med. 145:336–341.
2019.PubMed/NCBI View Article : Google Scholar
|
49
|
Weiner ID, Mitch WE and Sands JM: Urea and
ammonia metabolism and the control of renal nitrogen excretion.
Clin J Am Soc Nephrol. 10:1444–1458. 2015.PubMed/NCBI View Article : Google Scholar
|
50
|
Kvandova M, Barancik M, Balis P, Puzserova
A, Majzunova M and Dovinova I: The peroxisome
proliferator-activated receptor gamma agonist pioglitazone improves
nitric oxide availability, renin-angiotensin system and aberrant
redox regulation in the kidney of pre-hypertensive rats. J Physiol
Pharmacol: 69, 2018 doi: 10.26402/jpp.2018.2.09. Epub 2018 Jul
4.
|
51
|
Asplin JR and Goldfarb DS: Effect of
thiazolidinedione therapy on the risk of uric acid stones. Kidney
Int. 95:1022–1024. 2019.PubMed/NCBI View Article : Google Scholar
|
52
|
Maalouf NM, Poindexter JR, Adams-Huet B,
Moe OW and Sakhaee K: Increased production and reduced urinary
buffering of acid in uric acid stone formers is ameliorated by
pioglitazone. Kidney Int. 95:1262–1268. 2019.PubMed/NCBI View Article : Google Scholar
|
53
|
Freudlsperger C, Bian Y, Contag Wise S,
Burnett J, Coupar J, Yang X, Chen Z and Van Waes C: TGF-β and NF-κB
signal pathway cross-talk is mediated through TAK1 and SMAD7 in a
subset of head and neck cancers. Oncogene. 32:1549–1559.
2013.PubMed/NCBI View Article : Google Scholar
|
54
|
Ni XX, Li XY, Wang Q and Hua J: Regulation
of peroxisome proliferator-activated receptor-gamma activity
affects the hepatic stellate cell activation and the progression of
NASH via TGF-β1/Smad signaling pathway. J Physiol Biochem.
77:35–45. 2021.PubMed/NCBI View Article : Google Scholar
|
55
|
Zhang L, Xu C, Hu W, Wu P, Qin C and Zhang
J: Anti-inflammatory effects of Lefty-1 in renal tubulointerstitial
inflammation via regulation of the NF-κB pathway. Int J Mol Med.
41:1293–1304. 2018.PubMed/NCBI View Article : Google Scholar
|
56
|
Hou Y, Moreau F and Chadee K: PPARγ is an
E3 ligase that induces the degradation of NFκB/p65. Nat Commun.
3(1300)2012.PubMed/NCBI View Article : Google Scholar
|
57
|
Zhang HB, Zhang Y, Chen C, Li YQ, Ma C and
Wang ZJ: Pioglitazone inhibits advanced glycation end
product-induced matrix metalloproteinases and apoptosis by
suppressing the activation of MAPK and NF-κB. Apoptosis.
21:1082–1093. 2016.PubMed/NCBI View Article : Google Scholar
|
58
|
Sun L, Yuan Q, Xu T, Yao L, Feng J, Ma J,
Wang L, Lu C and Wang D: Pioglitazone, a peroxisome
proliferator-activated receptor γ agonist, ameliorates chronic
kidney disease by enhancing antioxidative capacity and attenuating
angiogenesis in the kidney of a 5/6 nephrectomized rat model. Cell
Physiol Biochem. 38:1831–1840. 2016.PubMed/NCBI View Article : Google Scholar
|
59
|
Miyamae Y: Insights into dynamic mechanism
of ligand binding to peroxisome proliferator-activated receptor γ
toward potential pharmacological applications. Biol Pharm Bull.
44:1185–1195. 2021.PubMed/NCBI View Article : Google Scholar
|