1
|
Wyatt MC, Foxall-Smith M, Roberton A,
Beswick A, Kieser DC and Whitehouse MR: The use of silver coating
in hip megaprostheses: A systematic review. HIP Int. 29:7–20.
2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Hardes J, Henrichs MP, Hauschild G,
Nottrott M, Guder W and Streitbuerger A: Silver-Coated
megaprosthesis of the proximal tibia in patients with sarcoma. J
Arthroplasty. 32:2208–2213. 2017.PubMed/NCBI View Article : Google Scholar
|
3
|
Fiore M, Sambri A, Zucchini R, Giannini C,
Donati DM and De Paolis M: Silver-coated megaprosthesis in
prevention and treatment of peri-prosthetic infections: A
systematic review and meta-analysis about efficacy and toxicity in
primary and revision surgery. Eur J Orthop Surg Traumatol.
31:201–220. 2021.PubMed/NCBI View Article : Google Scholar
|
4
|
Sportelli MC, Izzi M, Volpe A, Clemente M,
Picca RA, Ancona A, Lugarà PM, Palazzo G and Cioffi N: The pros and
cons of the use of laser ablation synthesis for the production of
silver nano-antimicrobials. Antibiotics (Basel).
7(67)2018.PubMed/NCBI View Article : Google Scholar
|
5
|
Kontakis MG, Diez-Escudero A, Hariri H,
Andersson B, Jarhult JD and Hailer NP: Antimicrobial and
osteoconductive properties of two different types of titanium
silver coating. Eur Cell Mater. 41:694–706. 2021.PubMed/NCBI View Article : Google Scholar
|
6
|
Diez-Escudero A, Andersson B, Carlsson E,
Recker B, Link H, Jarhult JD and Hailer NP: 3D-printed porous
Ti6Al4V alloys with silver coating combine osteocompatibility and
antimicrobial properties. Biomater Adv. 133(112629)2022.PubMed/NCBI View Article : Google Scholar
|
7
|
Morimoto T, Hirata H, Eto S, Hashimoto A,
Kii S, Kobayashi T, Tsukamoto M, Yoshihara T, Toda Y and Mawatari
M: Development of silver-containing hydroxyapatite-coated
antimicrobial implants for orthopaedic and spinal surgery. Medicina
(Kaunas). 58(519)2022.PubMed/NCBI View Article : Google Scholar
|
8
|
Eto S, Kawano S, Someya S, Miyamoto H,
Sonohata M and Mawatari M: First clinical experience with
thermal-sprayed silver oxide-containing hydroxyapatite coating
implant. J Arthroplasty. 31:1498–1503. 2016.PubMed/NCBI View Article : Google Scholar
|
9
|
Diez-Escudero A and Hailer NP: The role of
silver coating for arthroplasty components. Bone Joint J.
103-B:423–429. 2021.PubMed/NCBI View Article : Google Scholar
|
10
|
Glehr M, Leithner A, Friesenbichler J,
Goessler W, Avian A, Andreou D, Maurer-Ertl W, Windhager R and Tunn
PU: Argyria following the use of silver-coated megaprostheses. Bone
Joint J. 95-B:988–992. 2013.PubMed/NCBI View Article : Google Scholar
|
11
|
Hardes J, Ahrens H, Gebert C,
Streitbuerger A, Buerger H, Erren M, Gunsel A, Wedemeyer C, Saxler
G, Winkelmann W and Gosheger G: Lack of toxicological side-effects
in silver-coated megaprostheses in humans. Biomaterials.
28:2869–2875. 2007.PubMed/NCBI View Article : Google Scholar
|
12
|
Hussmann B, Johann I, Kauther MD,
Landgraeber S, Jäger M and Lendemans S: Measurement of the silver
ion concentration in wound fluids after implantation of
silver-coated megaprostheses: Correlation with the clinical
outcome. Biomed Res Int. 2013:1–11. 2013.PubMed/NCBI View Article : Google Scholar
|
13
|
Karupiah T, Yong AP, Ong ZW, Tan HK, Tang
WC and Salam HB: Use of a novel anti-infective noble metal
alloy-coated titanium orthopedic nail in patients with open
fractures: A case series from Malaysia. Antibiotics (Basel).
11(1763)2022.PubMed/NCBI View Article : Google Scholar
|
14
|
Schoder S, Lafuente M and Alt V:
Silver-coated versus uncoated locking plates in subjects with
fractures of the distal tibia: A randomized, subject and
observer-blinded, multi-center non-inferiority study. Trials.
23(968)2022.PubMed/NCBI View Article : Google Scholar
|
15
|
Arens D, Zeiter S, Nehrbass D, Ranjan N,
Paulin T and Alt V: Antimicrobial silver-coating for locking plates
shows uneventful osteotomy healing and good biocompatibility
results of an experimental study in rabbits. Injury. 51:830–839.
2020.PubMed/NCBI View Article : Google Scholar
|
16
|
Shimabukuro M, Tsutsumi Y, Yamada R,
Ashida M, Chen P, Doi H, Nozaki K, Nagai A and Hanawa T:
Investigation of realizing both antibacterial property and
osteogenic cell compatibility on titanium surface by simple
electrochemical treatment. ACS Biomater Sci Eng. 5:5623–5630.
2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Komori T: Regulation of bone development
and extracellular matrix protein genes by RUNX2. Cell Tissue Res.
339:189–195. 2010.PubMed/NCBI View Article : Google Scholar
|
18
|
Choi KY, Lee SW, Park MH, Bae YC, Shin HI,
Nam S, Kim YJ, Kim HJ and Ryoo HM: Spatio-temporal expression
patterns of Runx2 isoforms in early skeletogenesis. Exp Mol Med.
34:426–433. 2002.PubMed/NCBI View Article : Google Scholar
|
19
|
Hauschka PV, Lian JB, Cole DE and Gundberg
CM: Osteocalcin and matrix Gla protein: Vitamin K-dependent
proteins in bone. Physiol Rev. 69:990–1047. 1989.PubMed/NCBI View Article : Google Scholar
|
20
|
Jayakumar P and Di Silvio L: Osteoblasts
in bone tissue engineering. Proc Inst Mech Eng H. 224:1415–1440.
2010.PubMed/NCBI View Article : Google Scholar
|
21
|
Mestres G, Carter SD, Hailer NP and
Diez-Escudero A: A practical guide for evaluating the
osteoimmunomodulatory properties of biomaterials. Acta Biomater.
130:115–137. 2021.PubMed/NCBI View Article : Google Scholar
|
22
|
Grzeskowiak RM, Schumacher J, Dhar MS,
Harper DP, Mulon PY and Anderson DE: Bone and cartilage interfaces
with orthopedic implants: A literature review. Front Surg.
7(601244)2020.PubMed/NCBI View Article : Google Scholar
|
23
|
Dillon JP, Waring-Green VJ, Taylor AM,
Wilson PJM, Birch M, Gartland A and Gallagher JA: Primary human
osteoblast cultures. Methods Mol Biol. 816:3–18. 2012.PubMed/NCBI View Article : Google Scholar
|
24
|
R Core Team (2021). R: A language and
environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. URL https://www.R-project.org/.
|
25
|
Liu X, He W, Fang Z, Kienzle A and Feng Q:
Influence of silver nanoparticles on osteogenic differentiation of
human mesenchymal stem cells. J Biomed Nanotechnol. 10:1277–1285.
2014.PubMed/NCBI View Article : Google Scholar
|
26
|
Kersey AL, Singh I and Gaharwar AK:
Inorganic ions activate lineage-specific gene regulatory networks.
Acta Biomater. 183:371–386. 2024.PubMed/NCBI View Article : Google Scholar
|
27
|
He W, Elkhooly TA, Liu X, Cavallaro A,
Taheri S, Vasilev K and Feng Q: Silver nanoparticle-based coatings
enhance adipogenesis compared to osteogenesis in human mesenchymal
stem cells through oxidative stress. J Mater Chem B. 4:1466–1479.
2016.PubMed/NCBI View Article : Google Scholar
|
28
|
Saravanapavan P, Gough JE, Jones JR and
Hench LL: Antimicrobial macroporous gel-glasses: Dissolution and
cytotoxicity. Key Engineering Materials. 254-256:1087–1090.
2003.
|
29
|
Panacek A, Kvitek L, Prucek R, Kolar M,
Vecerova R, Pizurova N, Sharma VK, Nevecna T and Zboril R: Silver
colloid nanoparticles: Synthesis, characterization, and their
antibacterial activity. J Phys Chem B. 110:16248–16253.
2006.PubMed/NCBI View Article : Google Scholar
|
30
|
Feller L, Jadwat Y, Khammissa RAG, Meyerov
R, Schechter I and Lemmer J: Cellular responses evoked by different
surface characteristics of intraosseous titanium implants. Biomed
Res Int. 2015(171945)2015.PubMed/NCBI View Article : Google Scholar
|
31
|
Diez-Escudero A, Andersson B, Persson C
and Hailer NP: Hexagonal pore geometry and the presence of
hydroxyapatite enhance deposition of mineralized bone matrix on
additively manufactured polylactic acid scaffolds. Mater Sci Eng C
Mater Biol Appl. 125(112091)2021.PubMed/NCBI View Article : Google Scholar
|
32
|
Sanchez-Salcedo S, Garcia A,
Gonzalez-Jimenez A and Vallet-Regi M: Antibacterial effect of 3D
printed mesoporous bioactive glass scaffolds doped with metallic
silver nanoparticles. Acta Biomater. 155:654–666. 2023.PubMed/NCBI View Article : Google Scholar
|
33
|
Parizi MK, Doll K, Rahim MI, Mikolai C,
Winkel A and Stiesch M: Antibacterial and cytocompatible: Combining
silver nitrate with strontium acetate increases the therapeutic
window. Int J Mol Sci. 23(8058)2022.PubMed/NCBI View Article : Google Scholar
|
34
|
Cheng H, Xiong W, Fang Z, Guan H, Wu W, Li
Y, Zhang Y, Alvarez MM, Gao B, Huo K, et al: Strontium (Sr) and
silver (Ag) loaded nanotubular structures with combined
osteoinductive and antimicrobial activities. Acta Biomater.
31:388–400. 2016.PubMed/NCBI View Article : Google Scholar
|
35
|
Pinera-Avellaneda D, Buxadera-Palomero J,
Delint RC, Dalby MJ, Burgess KV, Ginebra MP, Rupérez E and Manero
JM: Gallium and silver-doped titanium surfaces provide enhanced
osteogenesis, reduce bone resorption and prevent bacterial
infection in co-culture. Acta Biomater. 180:154–170.
2024.PubMed/NCBI View Article : Google Scholar
|
36
|
Eto S, Miyamoto H, Shobuike T, Noda I,
Akiyama T, Tsukamoto M, Ueno M, Someya S, Kawano S, Sonohata M and
Mawatari M: Silver oxide-containing hydroxyapatite coating supports
osteoblast function and enhances implant anchorage strength in rat
femur. J Orthop Res. 33:1391–1397. 2015.PubMed/NCBI View Article : Google Scholar
|
37
|
Yusuf A and Casey A: Liposomal
encapsulation of silver nanoparticles (AgNP) improved nanoparticle
uptake and induced redox imbalance to activate caspase-dependent
apoptosis. Apoptosis. 25:120–134. 2020.PubMed/NCBI View Article : Google Scholar
|
38
|
Spriano S, Yamaguchi S, Baino F and
Ferraris S: A critical review of multifunctional titanium surfaces:
New frontiers for improving osseointegration and host response,
avoiding bacteria contamination. Acta Biomater. 79:1–22.
2018.PubMed/NCBI View Article : Google Scholar
|
39
|
Czekanska EM, Stoddart MJ, Richards RG and
Hayes JS: In search of an osteoblast cell model for in vitro
research. Eur Cells Mater. 24:1–17. 2012.PubMed/NCBI View Article : Google Scholar
|
40
|
Bretschneider H, Mettelsiefen J, Rentsch
C, Gelinsky M, Link HD, Gunther KP, Lode A and Hofbauer C:
Evaluation of topographical and chemical modified TiAl6V4 implant
surfaces in a weight-bearing intramedullary femur model in rabbit.
J Biomed Mater Res B Appl Biomater. 108:1117–1128. 2020.PubMed/NCBI View Article : Google Scholar
|
41
|
Hauschild G, Hardes J, Gosheger G,
Stoeppeler S, Ahrens H, Blaske F, Wehe C, Karst U and Höll S:
Evaluation of osseous integration of PVD-silver-coated hip
prostheses in a canine model. Biomed Res Int.
2015(292406)2015.PubMed/NCBI View Article : Google Scholar
|
42
|
Mallucci CL, Jenkinson MD, Conroy EJ,
Hartley JC, Brown M, Dalton J, Kearns T, Moitt T, Griffiths MJ,
Culeddu G, et al: Antibiotic or silver versus standard
ventriculoperitoneal shunts (BASICS): A multicentre,
single-blinded, randomised trial and economic evaluation. Lancet.
394:1530–1539. 2019.PubMed/NCBI View Article : Google Scholar
|