Mining the epigenetic landscape of medulloblastoma (Review)
- Authors:
- Kawalpreet K. Aneja
-
Affiliations: Dr. Harvey Rubin Laboratory, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA - Published online on: December 17, 2024 https://doi.org/10.3892/ije.2024.23
- Article Number: 4
-
Copyright : © Aneja . This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the united states in 2016-2020. Neuro Oncol. 25 (12 Suppl 2):iv1–iv99. 2023.PubMed/NCBI View Article : Google Scholar |
|
Neff C, Price M, Cioffi G, Kruchko C, Waite KA, Barnholtz-Sloan JS and Ostrom QT: Complete prevalence of primary malignant and nonmalignant brain tumors in comparison to other cancers in the United States. Cancer. 129:2514–2521. 2023.PubMed/NCBI View Article : Google Scholar |
|
Johnson DR, Guerin JB, Giannini C, Morris JM, Eckel LJ and Kaufmann TJ: 2016 updates to the WHO brain tumor classification system: What the radiologist needs to know. Radiographics. 37:2164–2180. 2017.PubMed/NCBI View Article : Google Scholar |
|
Kaifi R: A review of recent advances in brain tumor diagnosis based on AI-based classification. Diagnostics (Basel). 13(3007)2023.PubMed/NCBI View Article : Google Scholar |
|
Buckner JC, Brown PD, O'Neill BP, Meyer FB, Wetmore CJ and Uhm JH: Central nervous system tumors. Mayo Clin Proc. 82:1271–1286. 2007.PubMed/NCBI View Article : Google Scholar |
|
Mahapatra S and Amsbaugh MJ: Medulloblastoma. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island, FL, 2024. |
|
Fincham JRS: Epigenetic mechanisms of gene regulation. Edited by V. E. A. Russo, R. A. Martienssen and A. D. Riggs. Cold Spring Harbor Laboratory Press, 1996. 693+xii pages. Price $125. ISBN 0 87969 490 4. Genetical Res 69: 159-162, 1997. |
|
Avery OT, Macleod CM and McCarty M: Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med. 79:137–158. 1944.PubMed/NCBI View Article : Google Scholar |
|
McCarty M and Avery OT: Studies on the chemical nature of the substance inducing transformation on pneumococcal types; an improved method for the isolation of the transforming substance and its application to Pneumococcus types II, III, and VI. J Exp Med. 83:97–104. 1946.PubMed/NCBI |
|
Hotchkiss RD: The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem. 175:315–332. 1948.PubMed/NCBI |
|
Moore LD, Le T and Fan G: DNA methylation and its basic function. Neuropsychopharmacology. 38:23–38. 2013.PubMed/NCBI View Article : Google Scholar |
|
El-Osta A and Wolffe AP: DNA methylation and histone deacetylation in the control of gene expression: Basic biochemistry to human development and disease. Gene Expr. 9:63–75. 2000.PubMed/NCBI View Article : Google Scholar |
|
Lazar NH, Nevonen KA, O'Connell B, McCann C, O'Neill RJ, Green RE, Meyer TJ, Okhovat M and Carbone L: Epigenetic maintenance of topological domains in the highly rearranged gibbon genome. Genome Res. 28:983–997. 2018.PubMed/NCBI View Article : Google Scholar |
|
Lu Y, Chan YT, Tan HY, Li S, Wang N and Feng Y: Epigenetic regulation in human cancer: The potential role of epi-drug in cancer therapy. Mol Cancer. 19(79)2020.PubMed/NCBI View Article : Google Scholar |
|
Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI and Martienssen RA: Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science. 297:1833–1837. 2002.PubMed/NCBI View Article : Google Scholar |
|
Xu GL, Bestor TH, Bourc'his D, Hsieh CL, Tommerup N, Bugge M, Hulten M, Qu X, Russo JJ and Viegas-Péquignot E: Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature. 402:187–191. 1999.PubMed/NCBI View Article : Google Scholar |
|
Flavahan WA, Gaskell E and Bernstein BE: Epigenetic plasticity and the hallmarks of cancer. Science. 357(eaal2380)2017.PubMed/NCBI View Article : Google Scholar |
|
Esteller M, Fraga MF, Guo M, Garcia-Foncillas J, Hedenfalk I, Godwin AK, Trojan J, Vaurs-Barrière C, Bignon YJ, Ramus S, et al: DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet. 10:3001–3007. 2001.PubMed/NCBI View Article : Google Scholar |
|
Esteller M, Avizienyte E, Corn PG, Lothe RA, Baylin SB, Aaltonen LA and Herman JG: Epigenetic inactivation of LKB1 in primary tumors associated with the Peutz-Jeghers syndrome. Oncogene. 19:164–168. 2000.PubMed/NCBI View Article : Google Scholar |
|
Esteller M, Risques RA, Toyota M, Capella G, Moreno V, Peinado MA, Baylin SB and Herman JG: Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to A:T transition mutations in p53 in human colorectal tumorigenesis. Cancer Res. 61:4689–4692. 2001.PubMed/NCBI |
|
Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM, et al: Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA. 91:9700–9704. 1994.PubMed/NCBI View Article : Google Scholar |
|
Jones PA and Baylin SB: The fundamental role of epigenetic events in cancer. Nat Rev Genet. 3:415–428. 2002.PubMed/NCBI View Article : Google Scholar |
|
Esteller M, Toyota M, Sanchez-Cespedes M, Capella G, Peinado MA, Watkins DN, Issa JP, Sidransky D, Baylin SB and Herman JG: Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. Cancer Res. 60:2368–2371. 2000.PubMed/NCBI |
|
Herman JG, Civin CI, Issa JP, Collector MI, Sharkis SJ and Baylin SB: Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res. 57:837–841. 1997.PubMed/NCBI |
|
Burbee DG, Forgacs E, Zöchbauer-Müller S, Shivakumar L, Fong K, Gao B, Randle D, Kondo M, Virmani A, Bader S, et al: Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst. 93:691–699. 2001.PubMed/NCBI View Article : Google Scholar |
|
Wang Q: Cancer predisposition genes: Molecular mechanisms and clinical impact on personalized cancer care: Examples of Lynch and HBOC syndromes. Acta Pharmacol Sin. 37:143–149. 2016.PubMed/NCBI View Article : Google Scholar |
|
Weemaes CM, van Tol MJ, Wang J, van Ostaijen-ten Dam MM, van Eggermond MC, Thijssen PE, Aytekin C, Brunetti-Pierri N, van der Burg M, Graham Davies E, et al: Heterogeneous clinical presentation in ICF syndrome: Correlation with underlying gene defects. Eur J Hum Genet. 21:1219–1225. 2013.PubMed/NCBI View Article : Google Scholar |
|
Kossel A and Pringle H: Über Protamine und Histone. J Biol Chemistry. 49:301–321. 1906.PubMed/NCBI View Article : Google Scholar |
|
Dahm R: Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum Genet. 122:565–581. 2008.PubMed/NCBI View Article : Google Scholar |
|
Hyun K, Jeon J, Park K and Kim J: Writing, erasing and reading histone lysine methylations. Exp Mol Med. 49(e324)2017.PubMed/NCBI View Article : Google Scholar |
|
Margueron R, Justin N, Ohno K, Sharpe ML, Son J, Drury WJ III, Voigt P, Martin SR, Taylor WR, De Marco V, et al: Role of the polycomb protein EED in the propagation of repressive histone marks. Nature. 461:762–767. 2009.PubMed/NCBI View Article : Google Scholar |
|
Valencia AM and Kadoch C: Chromatin regulatory mechanisms and therapeutic opportunities in cancer. Nat Cell Biol. 21:152–161. 2019.PubMed/NCBI View Article : Google Scholar |
|
Audia JE and Campbell RM: Histone modifications and cancer. Cold Spring Harb Perspect Biol. 8(a019521)2016.PubMed/NCBI View Article : Google Scholar |
|
Dhall A and Chatterjee C: Chemical approaches to understand the language of histone modifications. ACS Chem Biol. 6:987–999. 2011.PubMed/NCBI View Article : Google Scholar |
|
Angrand PO: Structure and function of the polycomb repressive complexes PRC1 and PRC2. Int J Mol Sci. 23(5971)2022.PubMed/NCBI View Article : Google Scholar |
|
Lee CH, Yu JR, Kumar S, Jin Y, LeRoy G, Bhanu N, Kaneko S, Garcia BA, Hamilton AD and Reinberg D: Allosteric activation dictates PRC2 activity independent of its recruitment to chromatin. Mol Cell. 70:422–434.e6. 2018.PubMed/NCBI View Article : Google Scholar |
|
Abdouh M, Hanna R, El Hajjar J, Flamier A and Bernier G: The polycomb repressive complex 1 protein BMI1 is required for constitutive heterochromatin formation and silencing in mammalian somatic cells. J Biol Chem. 291:182–197. 2016.PubMed/NCBI View Article : Google Scholar |
|
Gray F, Cho HJ, Shukla S, He S, Harris A, Boytsov B, Jaremko Ł, Jaremko M, Demeler B, Lawlor ER, et al: BMI1 regulates PRC1 architecture and activity through homo- and hetero-oligomerization. Nature Commun. 7(13343)2016.PubMed/NCBI View Article : Google Scholar |
|
Lessard J and Sauvageau G: Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 423:255–260. 2003.PubMed/NCBI View Article : Google Scholar |
|
Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ and Clarke MF: Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 423:302–305. 2003.PubMed/NCBI View Article : Google Scholar |
|
Yuan J, Takeuchi M, Negishi M, Oguro H, Ichikawa H and Iwama A: Bmi1 is essential for leukemic reprogramming of myeloid progenitor cells. Leukemia. 25:1335–1343. 2011.PubMed/NCBI View Article : Google Scholar |
|
Wakamori M, Okabe K, Ura K, Funatsu T, Takinoue M and Umehara T: Quantification of the effect of site-specific histone acetylation on chromatin transcription rate. Nucleic Acids Res. 48:12648–12659. 2020.PubMed/NCBI View Article : Google Scholar |
|
Hebbes TR, Clayton AL, Thorne AW and Crane-Robinson C: Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain. EMBO J. 13:1823–1830. 1994.PubMed/NCBI View Article : Google Scholar |
|
Krajewski WA and Becker PB: Reconstitution of hyperacetylated, DNase I-sensitive chromatin characterized by high conformational flexibility of nucleosomal DNA. Proc Natl Acad Sci USA. 95:1540–1545. 1998.PubMed/NCBI View Article : Google Scholar |
|
Godde JS, Kass SU, Hirst MC and Wolffe AP: Nucleosome assembly on methylated CGG triplet repeats in the fragile X mental retardation gene 1 promoter. J Biol Chem. 271:24325–24338. 1996.PubMed/NCBI View Article : Google Scholar |
|
Ball DJ, Gross DS and Garrard WT: 5-methylcytosine is localized in nucleosomes that contain histone H1. Proc Natl Acad Sci USA. 80:5490–5494. 1983.PubMed/NCBI View Article : Google Scholar |
|
Steinbach OC, Wolffe AP and Rupp RA: Somatic linker histones cause loss of mesodermal competence in Xenopus. Nature. 389:395–399. 1997.PubMed/NCBI View Article : Google Scholar |
|
Du Q, Luu PL, Stirzaker C and Clark SJ: Methyl-CpG-binding domain proteins: Readers of the epigenome. Epigenomics. 7:1051–1073. 2015.PubMed/NCBI View Article : Google Scholar |
|
Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F and Wolffe AP: Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet. 23:62–66. 1999.PubMed/NCBI View Article : Google Scholar |
|
Djupedal I and Ekwall K: Epigenetics: Heterochromatin meets RNAi. Cell Res. 19:282–295. 2009.PubMed/NCBI View Article : Google Scholar |
|
Taverna SD, Coyne RS and Allis CD: Methylation of histone h3 at lysine 9 targets programmed DNA elimination in tetrahymena. Cell. 110:701–711. 2002.PubMed/NCBI View Article : Google Scholar |
|
Holoch D and Moazed D: RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet. 16:71–84. 2015.PubMed/NCBI View Article : Google Scholar |
|
Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J and Wolffe AP: Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 19:187–191. 1998.PubMed/NCBI View Article : Google Scholar |
|
Cheng Y, Liao S, Xu G, Hu J, Guo D, Du F, Contreras A, Cai KQ, Peri S, Wang Y, et al: NeuroD1 dictates tumor cell differentiation in medulloblastoma. Cell Rep. 31(107782)2020.PubMed/NCBI View Article : Google Scholar |
|
Doussouki M, Gajjar A and Chamdine O: Molecular genetics of medulloblastoma in children: Diagnostic, therapeutic and prognostic implications. Future Neurol. 14:2019. |
|
Guo D, Qu Y, Yang Y and Yang ZJ: Medulloblastoma cells resemble neuronal progenitors in their differentiation. Mol Cell Oncol. 7(1810514)2020.PubMed/NCBI View Article : Google Scholar |
|
Roussel MF and Hatten ME: Cerebellum development and medulloblastoma. Curr Top Dev Biol. 94:235–282. 2011.PubMed/NCBI View Article : Google Scholar |
|
Rawal ZD, Upadhyay VA, Patel DD and Trivedi TI: Medulloblastoma under siege: Genetic and molecular dissection concerning recent advances in therapeutic strategies. J Pediatr Neurosci. 15:175–182. 2020.PubMed/NCBI View Article : Google Scholar |
|
Haltom AR, Toll SA, Cheng D, Maegawa S, Gopalakrishnan V and Khatua S: Medulloblastoma epigenetics and the path to clinical innovation. J Neurooncol. 150:35–46. 2020.PubMed/NCBI View Article : Google Scholar |
|
Northcott PA, Robinson GW, Kratz CP, Mabbott DJ, Pomeroy SL, Clifford SC, Rutkowski S, Ellison DW, Malkin D, Taylor MD, et al: Medulloblastoma. Nat Rev Dis Primers. 5(11)2019.PubMed/NCBI View Article : Google Scholar |
|
Northcott PA, Buchhalter I, Morrissy AS, Hovestadt V, Weischenfeldt J, Ehrenberger T, Gröbner S, Segura-Wang M, Zichner T, Rudneva VA, et al: The whole-genome landscape of medulloblastoma subtypes. Nature. 547:311–317. 2017.PubMed/NCBI View Article : Google Scholar |
|
Northcott PA, Dubuc AM, Pfister S and Taylor MD: Molecular subgroups of medulloblastoma. Expert Rev Neurother. 12:871–884. 2012.PubMed/NCBI View Article : Google Scholar |
|
Smoll NR and Drummond KJ: The incidence of medulloblastomas and primitive neurectodermal tumours in adults and children. J Clin Neurosci. 19:1541–1544. 2012.PubMed/NCBI View Article : Google Scholar |
|
Tian Z, Yu T, Liu J, Wang T and Higuchi A: Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell. 14:135–145. 2008.PubMed/NCBI View Article : Google Scholar |
|
Ramaswamy V, Nör C and Taylor MD: Taylor, p53 and meduloblastoma. Cold Spring Harb Perspect Med. 6(a026278)2015.PubMed/NCBI View Article : Google Scholar |
|
Shiraishi R and Kawauchi D: Epigenetic regulation in medulloblastoma pathogenesis revealed by genetically engineered mouse models. Cancer Sci. 112:2948–2957. 2021.PubMed/NCBI View Article : Google Scholar |
|
Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB and Issa JP: CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 96:8681–8686. 1999.PubMed/NCBI View Article : Google Scholar |
|
Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, Morozova O, Newton Y, Radenbaugh A, Pagnotta SM, et al: Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell. 164:550–563. 2016.PubMed/NCBI View Article : Google Scholar |
|
Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, Pan F, Pelloski CE, Sulman EP, Bhat KP, et al: Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 17:510–522. 2010.PubMed/NCBI View Article : Google Scholar |
|
Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, Campos C, Fabius AW, Lu C, Ward PS, et al: IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 483:479–483. 2012.PubMed/NCBI View Article : Google Scholar |
|
He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, et al: Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 333:1303–1307. 2011.PubMed/NCBI View Article : Google Scholar |
|
El-Ayadi M, Egervari K, Merkler D, McKee TA, Gumy-Pause F, Stichel D, Capper D, Pietsch T, Ansari M, von Bueren AO, et al: Concurrent IDH1 and SMARCB1 mutations in pediatric medulloblastoma: A case report. Front Neurol. 9(398)2018.PubMed/NCBI View Article : Google Scholar |
|
Kurimoto T, Kondo A, Ogino I, Fujimura J, Arakawa A, Arai H and Shimizu T: Effect of O6-methylguanine-DNA methyltransferase methylation in medulloblastoma. Mol Clin Oncol. 7:1107–1111. 2017.PubMed/NCBI View Article : Google Scholar |
|
von Bueren AO, Bacolod MD, Hagel C, Heinimann K, Fedier A, Kordes U, Pietsch T, Koster J, Grotzer MA, Friedman HS, et al: Mismatch repair deficiency: A temozolomide resistance factor in medulloblastoma cell lines that is uncommon in primary medulloblastoma tumours. Br J Cancer. 107:1399–1408. 2012.PubMed/NCBI View Article : Google Scholar |
|
Xie W, Schultz MD, Lister R, Hou Z, Rajagopal N, Ray P, Whitaker JW, Tian S, Hawkins RD, Leung D, et al: Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell. 153:1134–1148. 2013.PubMed/NCBI View Article : Google Scholar |
|
Hovestadt V, Jones DT, Picelli S, Wang W, Kool M, Northcott PA, Sultan M, Stachurski K, Ryzhova M, Warnatz HJ, et al: Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature. 510:537–541. 2014.PubMed/NCBI View Article : Google Scholar |
|
Lin CY, Erkek S, Tong Y, Yin L, Federation AJ, Zapatka M, Haldipur P, Kawauchi D, Risch T, Warnatz HJ, et al: Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature. 530:57–62. 2016.PubMed/NCBI View Article : Google Scholar |
|
Batora NV, Sturm D, Jones DT, Kool M, Pfister SM and Northcott PA: Transitioning from genotypes to epigenotypes: Why the time has come for medulloblastoma epigenomics. Neuroscience. 264:171–185. 2014.PubMed/NCBI View Article : Google Scholar |
|
Fraser J, Williamson I, Bickmore WA and Dostie J: An overview of genome organization and how we got there: From FISH to Hi-C. Microbiol Mol Biol Rev. 79:347–372. 2015.PubMed/NCBI View Article : Google Scholar |
|
Tropberger P and Schneider R: Going global: Novel histone modifications in the globular domain of H3. Epigenetics. 5:112–117. 2010.PubMed/NCBI View Article : Google Scholar |
|
Bryant JP, Heiss J and Banasavadi-Siddegowda YK: Arginine methylation in brain tumors: Tumor biology and therapeutic strategies. Cells. 10(124)2021.PubMed/NCBI View Article : Google Scholar |
|
Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K and Zhang Y: Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol. 12:1052–1058. 2002.PubMed/NCBI View Article : Google Scholar |
|
Parsons DW, Li M, Zhang X, Jones S, Leary RJ, Lin JC, Boca SM, Carter H, Samayoa J, Bettegowda C, et al: The genetic landscape of the childhood cancer medulloblastoma. Science. 331:435–439. 2011.PubMed/NCBI View Article : Google Scholar |
|
Chaturvedi NK, Mahapatra S, Kesherwani V, Kling MJ, Shukla M, Ray S, Kanchan R, Perumal N, McGuire TR, Sharp JG, et al: Role of protein arginine methyltransferase 5 in group 3 (MYC-driven) Medulloblastoma. BMC Cancer. 19(1056)2019.PubMed/NCBI View Article : Google Scholar |
|
Dubuc AM, Remke M, Korshunov A, Northcott PA, Zhan SH, Mendez-Lago M, Kool M, Jones DT, Unterberger A, Morrissy AS, et al: Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathol. 125:373–384. 2013.PubMed/NCBI View Article : Google Scholar |
|
Northcott PA, Nakahara Y, Wu X, Feuk L, Ellison DW, Croul S, Mack S, Kongkham PN, Peacock J, Dubuc A, et al: Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat Genet. 41:465–472. 2009.PubMed/NCBI View Article : Google Scholar |
|
Guo D, Wang Y, Cheng Y, Liao S, Hu J, Du F, Xu G, Liu Y, Cai KQ, Cheung M, et al: Tumor cells generate astrocyte-like cells that contribute to SHH-driven medulloblastoma relapse. J Exp Med. 218(e20202350)2021.PubMed/NCBI View Article : Google Scholar |
|
Liu Y, Yuelling LW, Wang Y, Du F, Gordon RE, O'Brien JA, Ng JMY, Robins S, Lee EH, Liu H, et al: Astrocytes promote medulloblastoma progression through hedgehog secretion. Cancer Res. 77:6692–6703. 2017.PubMed/NCBI View Article : Google Scholar |
|
Bannister AJ and Kouzarides T: Regulation of chromatin by histone modifications. Cell Res. 21:381–395. 2011.PubMed/NCBI View Article : Google Scholar |
|
Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA and Shi Y: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 119:941–953. 2004.PubMed/NCBI View Article : Google Scholar |
|
Chang B, Chen Y, Zhao Y and Bruick RK: JMJD6 is a histone arginine demethylase. Science. 318:444–447. 2007.PubMed/NCBI View Article : Google Scholar |
|
Van der Meulen J, Speleman F and Van Vlierberghe P: The H3K27me3 demethylase UTX in normal development and disease. Epigenetics. 9:658–668. 2014.PubMed/NCBI View Article : Google Scholar |
|
Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I, Canaani E, Salcini AE and Helin K: UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature. 449:731–734. 2007.PubMed/NCBI View Article : Google Scholar |
|
Yi J, Shi X, Xuan Z and Wu J: Histone demethylase UTX/KDM6A enhances tumor immune cell recruitment, promotes differentiation and suppresses medulloblastoma. Cancer Lett. 499:188–200. 2021.PubMed/NCBI View Article : Google Scholar |
|
Marmorstein R and Zhou MM: Writers and readers of histone acetylation: Structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol. 6(a018762)2014.PubMed/NCBI View Article : Google Scholar |
|
Sterner DE and Berger SL: Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev. 64:435–459. 2000.PubMed/NCBI View Article : Google Scholar |
|
Pfister S, Rea S, Taipale M, Mendrzyk F, Straub B, Ittrich C, Thuerigen O, Sinn HP, Akhtar A and Lichter P: The histone acetyltransferase hMOF is frequently downregulated in primary breast carcinoma and medulloblastoma and constitutes a biomarker for clinical outcome in medulloblastoma. Int J Cancer. 122:1207–1213. 2008.PubMed/NCBI View Article : Google Scholar |
|
Malatesta M, Steinhauer C, Mohammad F, Pandey DP, Squatrito M and Helin K: Histone acetyltransferase PCAF is required for Hedgehog-Gli-dependent transcription and cancer cell proliferation. Cancer Res. 73:6323–6333. 2013.PubMed/NCBI View Article : Google Scholar |
|
Biswas S and Rao CM: Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. Eur J Pharmacol. 837:8–24. 2018.PubMed/NCBI View Article : Google Scholar |
|
Seto E and Yoshida M: Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 6(a018713)2014.PubMed/NCBI View Article : Google Scholar |
|
Ma JX, Li H, Chen XM, Yang XH, Wang Q, Wu ML, Kong QY, Li ZX and Liu J: Expression patterns and potential roles of SIRT1 in human medulloblastoma cells in vivo and in vitro. Neuropathology. 33:7–16. 2013.PubMed/NCBI View Article : Google Scholar |
|
Milde T, Oehme I, Korshunov A, Kopp-Schneider A, Remke M, Northcott P, Deubzer HE, Lodrini M, Taylor MD, von Deimling A, et al: HDAC5 and HDAC9 in Medulloblastoma: Novel markers for risk stratification and role in tumor cell growth. Clin Cancer Res. 16:3240–3252. 2010.PubMed/NCBI View Article : Google Scholar |
|
Ecker J, Oehme I, Mazitschek R, Korshunov A, Kool M, Hielscher T, Kiss J, Selt F, Konrad C, Lodrini M, et al: Targeting class I histone deacetylase 2 in MYC amplified group 3 medulloblastoma. Acta Neuropathol Commun. 3(22)2015.PubMed/NCBI View Article : Google Scholar |
|
Wang X, Holgado BL, Ramaswamy V, Mack S, Zayne K, Remke M, Wu X, Garzia L, Daniels C, Kenney AM and Taylor MD: miR miR on the wall, who's the most malignant medulloblastoma miR of them all? Neuro Oncol. 20:313–323. 2018.PubMed/NCBI View Article : Google Scholar |
|
Harris PS, Venkataraman S, Alimova I, Birks DK, Balakrishnan I, Cristiano B, Donson AM, Dubuc AM, Taylor MD, Foreman NK, et al: Integrated genomic analysis identifies the mitotic checkpoint kinase WEE1 as a novel therapeutic target in medulloblastoma. Mol Cancer. 13(72)2014.PubMed/NCBI View Article : Google Scholar |
|
Mahajan K, Fang B, Koomen JM and Mahajan NP: H2B Tyr37 phosphorylation suppresses expression of replication-dependent core histone genes. Nat Struct Mol Biol. 19:930–937. 2012.PubMed/NCBI View Article : Google Scholar |
|
Mahajan K and Mahajan NP: WEE1 tyrosine kinase, a novel epigenetic modifier. Trends Genet. 29:394–402. 2013.PubMed/NCBI View Article : Google Scholar |
|
Wang J, Qiu Z and Wu Y: Ubiquitin regulation: The histone modifying Enzyme's story. Cells. 7(118)2018.PubMed/NCBI View Article : Google Scholar |
|
Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, et al: Landscape of transcription in human cells. Nature. 489:101–108. 2012.PubMed/NCBI View Article : Google Scholar |
|
Pennisi E: Genomics. ENCODE project writes eulogy for junk DNA. Science. 337:1159–1161. 2012.PubMed/NCBI View Article : Google Scholar |
|
Butts T, Green MJ and Wingate RJ: Development of the cerebellum: Simple steps to make a ‘little brain’. Development. 141:4031–4041. 2014.PubMed/NCBI View Article : Google Scholar |
|
Jönsson ME, Nelander Wahlestedt J, Åkerblom M, Kirkeby A, Malmevik J, Brattaas PL, Jakobsson J and Parmar M: Comprehensive analysis of microRNA expression in regionalized human neural progenitor cells reveals microRNA-10 as a caudalizing factor. Development. 142:3166–3177. 2015.PubMed/NCBI View Article : Google Scholar |
|
Laneve P and Caffarelli E: The Non-coding side of medulloblastoma. Front Cell Dev Biol. 8(275)2020.PubMed/NCBI View Article : Google Scholar |
|
Roussel MF and Stripay JL: Epigenetic drivers in pediatric medulloblastoma. Cerebellum. 17:28–36. 2018.PubMed/NCBI View Article : Google Scholar |
|
Kuang Y, Liu Q, Shu X, Zhang C, Huang N, Li J, Jiang M and Li H: Dicer1 and MiR-9 are required for proper Notch1 signaling and the Bergmann glial phenotype in the developing mouse cerebellum. Glia. 60:1734–1746. 2012.PubMed/NCBI View Article : Google Scholar |
|
Pieczora L, Stracke L, Vorgerd M, Hahn S, Theiss C and Theis V: Unveiling of miRNA expression patterns in purkinje cells during development. Cerebellum. 16:376–387. 2017.PubMed/NCBI View Article : Google Scholar |
|
Han D, Dong X, Zheng D and Nao J: MiR-124 and the underlying therapeutic promise of neurodegenerative disorders. Front Pharmacol. 10(1555)2019.PubMed/NCBI View Article : Google Scholar |
|
Ferretti E, De Smaele E, Po A, Di Marcotullio L, Tosi E, Espinola MS, Di Rocco C, Riccardi R, Giangaspero F, Farcomeni A, et al: MicroRNA profiling in human medulloblastoma. Int J Cancer. 124:568–577. 2009.PubMed/NCBI View Article : Google Scholar |
|
Laneve P, Di Marcotullio L, Gioia U, Fiori ME, Ferretti E, Gulino A, Bozzoni I and Caffarelli E: The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells. Proc Natl Acad Sci USA. 104:7957–7962. 2007.PubMed/NCBI View Article : Google Scholar |
|
Miele E, Po A, Begalli F, Antonucci L, Mastronuzzi A, Marras CE, Carai A, Cucchi D, Abballe L, Besharat ZM, et al: β-arrestin1-mediated acetylation of Gli1 regulates Hedgehog/Gli signaling and modulates self-renewal of SHH medulloblastoma cancer stem cells. BMC Cancer. 17(488)2017.PubMed/NCBI View Article : Google Scholar |
|
Cheng LC, Pastrana E, Tavazoie M and Doetsch F: miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci. 12:399–408. 2009.PubMed/NCBI View Article : Google Scholar |
|
Nowek K, Wiemer EAC and Jongen-Lavrencic M: The versatile nature of miR-9/9* in human cancer. Oncotarget. 9:20838–20854. 2018.PubMed/NCBI View Article : Google Scholar |
|
Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW and Crabtree GR: MicroRNA-mediated conversion of human fibroblasts to neurons. Nature. 476:228–231. 2011.PubMed/NCBI View Article : Google Scholar |
|
Fiaschetti G, Abela L, Nonoguchi N, Dubuc AM, Remke M, Boro A, Grunder E, Siler U, Ohgaki H, Taylor MD, et al: Epigenetic silencing of miRNA-9 is associated with HES1 oncogenic activity and poor prognosis of medulloblastoma. Br J Cancer. 110:636–647. 2014.PubMed/NCBI View Article : Google Scholar |
|
Ingram WJ, McCue KI, Tran TH, Hallahan AR and Wainwright BJ: Sonic Hedgehog regulates Hes1 through a novel mechanism that is independent of canonical Notch pathway signalling. Oncogene. 27:1489–1500. 2008.PubMed/NCBI View Article : Google Scholar |
|
Fénelon K, Mukai J, Xu B, Hsu PK, Drew LJ, Karayiorgou M, Fischbach GD, Macdermott AB and Gogos JA: Deficiency of Dgcr8, a gene disrupted by the 22q11.2 microdeletion, results in altered short-term plasticity in the prefrontal cortex. Proc Natl Acad Sci USA. 108:4447–4452. 2011.PubMed/NCBI View Article : Google Scholar |
|
Pierson J, Hostager B, Fan R and Vibhakar R: Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. J Neurooncol. 90:1–7. 2008.PubMed/NCBI View Article : Google Scholar |
|
Silber J, Hashizume R, Felix T, Hariono S, Yu M, Berger MS, Huse JT, VandenBerg SR, James CD, Hodgson JG and Gupta N: Expression of miR-124 inhibits growth of medulloblastoma cells. Neuro Oncol. 15:83–90. 2013.PubMed/NCBI View Article : Google Scholar |
|
Venkataraman S, Birks DK, Balakrishnan I, Alimova I, Harris PS, Patel PR, Handler MH, Dubuc A, Taylor MD, Foreman NK and Vibhakar R: MicroRNA 218 acts as a tumor suppressor by targeting multiple cancer phenotype-associated genes in medulloblastoma. J Biol Chem. 288:1918–1928. 2013.PubMed/NCBI View Article : Google Scholar |
|
He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ and Hammond SM: A microRNA polycistron as a potential human oncogene. Nature. 435:828–833. 2005.PubMed/NCBI View Article : Google Scholar |
|
O'Donnell KA, Wentzel EA, Zeller KI, Dang CV and Mendell JT: c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 435:839–843. 2005.PubMed/NCBI View Article : Google Scholar |
|
Schulte JH, Horn S, Otto T, Samans B, Heukamp LC, Eilers UC, Krause M, Astrahantseff K, Klein-Hitpass L, Buettner R, et al: MYCN regulates oncogenic MicroRNAs in neuroblastoma. Int J Cancer. 122:699–704. 2008.PubMed/NCBI View Article : Google Scholar |
|
Uziel T, Karginov FV, Xie S, Parker JS, Wang YD, Gajjar A, He L, Ellison D, Gilbertson RJ, Hannon G and Roussel MF: The miR-17~92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci USA. 106:2812–2817. 2009.PubMed/NCBI View Article : Google Scholar |
|
Mollashahi B, Aghamaleki FS and Movafagh A: The roles of miRNAs in medulloblastoma: A systematic review. J Cancer Prev. 24:79–90. 2019.PubMed/NCBI View Article : Google Scholar |
|
Senfter D, Samadaei M, Mader RM, Gojo J, Peyrl A, Krupitza G, Kool M, Sill M, Haberler C, Ricken G, et al: High impact of miRNA-4521 on FOXM1 expression in medulloblastoma. Cell Death Dis. 10(696)2019.PubMed/NCBI View Article : Google Scholar |
|
Agrawal K, Das V, Vyas P and Hajdúch M: Nucleosidic DNA demethylating epigenetic drugs-A comprehensive review from discovery to clinic. Pharmacol Ther. 188:45–79. 2018.PubMed/NCBI View Article : Google Scholar |
|
Diesch J, Zwick A, Garz AK, Palau A, Buschbeck M and Götze KS: A clinical-molecular update on azanucleoside-based therapy for the treatment of hematologic cancers. Clin Epigenetics. 8(71)2016.PubMed/NCBI View Article : Google Scholar |
|
Christman JK: 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: Mechanistic studies and their implications for cancer therapy. Oncogene. 21:5483–5495. 2002.PubMed/NCBI View Article : Google Scholar |
|
Zwergel C, Romanelli A, Stazi G, Besharat ZM, Catanzaro G, Tafani M, Valente S and Mai A: Application of small epigenetic modulators in pediatric medulloblastoma. Front Pediatr. 6(370)2018.PubMed/NCBI View Article : Google Scholar |
|
Inoue A and Fujimoto D: Enzymatic deacetylation of histone. Biochem Biophys Res Commun. 36:146–150. 1969.PubMed/NCBI View Article : Google Scholar |
|
Taunton J, Hassig CA and Schreiber SL: A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science. 272:408–411. 1996.PubMed/NCBI View Article : Google Scholar |
|
Kijima M, Yoshida M, Sugita K, Horinouchi S and Beppu T: Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem. 268:22429–22435. 1993.PubMed/NCBI |
|
Bolden JE, Peart MJ and Johnstone RW: Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 5:769–784. 2006.PubMed/NCBI View Article : Google Scholar |
|
Tiberi L, Bonnefont J, van den Ameele J, Le Bon SD, Herpoel A, Bilheu A, Baron BW and Vanderhaeghen P: A BCL6/BCOR/SIRT1 complex triggers neurogenesis and suppresses medulloblastoma by repressing Sonic Hedgehog signaling. Cancer Cell. 26:797–812. 2014.PubMed/NCBI View Article : Google Scholar |
|
Tang Y, Gholamin S, Schubert S, Willardson MI, Lee A, Bandopadhayay P, Bergthold G, Masoud S, Nguyen B, Vue N, et al: Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nat Med. 20:732–740. 2014.PubMed/NCBI View Article : Google Scholar |
|
Dobson THW, Hatcher RJ, Swaminathan J, Das CM, Shaik S, Tao RH, Milite C, Castellano S, Taylor PH, Sbardella G and Gopalakrishnan V: Regulation of USP37 expression by REST-Associated G9a-Dependent histone methylation. Mol Cancer Res. 5:1073–1084. 2017.PubMed/NCBI View Article : Google Scholar |
|
Inui K, Zhao Z, Yuan J, Jayaprakash S, Le LTM, Drakulic S, Sander B and Golas MM: Stepwise assembly of functional C-terminal REST/NRSF transcriptional repressor complexes as a drug target. Protein Sci. 26:997–1011. 2017.PubMed/NCBI View Article : Google Scholar |
|
Maier H, Dalianis T and Kostopoulou ON: New approaches in targeted therapy for medulloblastoma in children. Anticancer Res. 41:1715–1726. 2021.PubMed/NCBI View Article : Google Scholar |
|
Gordon RE, Zhang L and Yang ZJ: Restore the brake on tumor progression. Biochem Pharmacol. 138:1–6. 2017.PubMed/NCBI View Article : Google Scholar |
|
Wright JH: Neurocytoma or neuroblastoma, a kind of tumor not generally recognized. J Exp Med. 12:556–561. 1910.PubMed/NCBI View Article : Google Scholar |
|
MacKenzie DJ: A classification of the tumours of the glioma group on a histogenetic basis with a correlated study of prognosis. Can Med Assoc J. 16(872)1926. |
|
Hamilton SR, Liu B, Parsons RE, Papadopoulos N, Jen J, Powell SM, Krush AJ, Berk T, Cohen Z, Tetu B, et al: The molecular basis of Turcot's syndrome. N Engl J Med. 332:839–847. 1995.PubMed/NCBI View Article : Google Scholar |
|
Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, Bouffet E, Clifford SC, Hawkins CE, French P, et al: Medulloblastoma comprises four distinct molecular variants. J Clin Oncol. 29:1408–1414. 2011.PubMed/NCBI View Article : Google Scholar |
|
Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J and McMahon AP: Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science. 322:1247–1250. 2008.PubMed/NCBI View Article : Google Scholar |