Bax cleavage implicates caspase-dependent H2O2-induced apoptosis of hepatocytes
- Authors:
- Published online on: March 1, 2003 https://doi.org/10.3892/ijmm.11.3.369
- Pages: 369-374
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
Oxidative stress plays an important role in the development of ischemia/reperfusion (I/R)-induced apoptosis of hepatocytes. We aimed to examine the involvement of caspases and calpains in H2O2-induced hepatic cell apoptosis. TUNEL-positive apoptotic cells appeared in parallel with poly(ADP-ribose) polymerase (PARP) cleavage and procaspase-3 proteolysis by H2O2 treatment in a dose-dependent manner (250-1,000 µM). Bcl-xL and intact Bax expression levels decreased when H2O2 was >250 µM. The cleaved form of Bax appeared prior to caspase-3 activation, increasing in a dose-dependent manner. A pan-caspase inhibitor, Z-VAD-fmk, completely blocked H2O2-induced procaspase-3 proteolysis and PARP cleavage without changing Bax cleavage, but partially attenuated H2O2-induced apoptosis. Calpeptin, a calpain inhibitor, did not inhibit caspase-3 activation, Bax cleavage or apoptosis. Our results indicate that Bax cleavage is upstream signal of caspase-dependent apoptosis in hepatocytes exposed to H2O2, but not independent upon calpain. Molecular targeting of Bax cleavage may allow the development of strategies to prevent hepatic I/R injury.