PANoptosis: Novel insight into regulated cell death and its potential role in cardiovascular diseases (Review)
- Authors:
- Xinyu Gao
- Cuixue Ma
- Shan Liang
- Meihong Chen
- Yuan He
- Wei Lei
-
Affiliations: Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China - Published online on: July 4, 2024 https://doi.org/10.3892/ijmm.2024.5398
- Article Number: 74
-
Copyright: © Gao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sun X, Yang Y, Meng X, Li J, Liu X and Liu H: PANoptosis: Mechanisms, biology, and role in disease. Immunol Rev. 321:246–262. 2024. View Article : Google Scholar | |
Lee S, Karki R, Wang Y, Nguyen LN, Kalathur RC and Kanneganti T-D: AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature. 597:415–419. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gullett JM, Tweedell RE and Kanneganti TD: It's all in the PAN: Crosstalk, plasticity, redundancies, switches, and interconnectedness encompassed by PANoptosis underlying the totality of cell death-associated biological effects. Cells. 11:14952022. View Article : Google Scholar : PubMed/NCBI | |
Yan WT, Yang YD, Hu XM, Ning WY, Liao LS, Lu S, Zhao WJ, Zhang Q and Xiong K: Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies. Neural Regen Res. 17:1761–1768. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pan H, Pan J, Li P and Gao J: Characterization of PANoptosis patterns predicts survival and immunotherapy response in gastric cancer. Clin Immunol. 238:1090192022. View Article : Google Scholar : PubMed/NCBI | |
Pandian N and Kanneganti TD: PANoptosis: A unique innate immune inflammatory cell death modality. J Immunol. 209:1625–1633. 2022. View Article : Google Scholar : PubMed/NCBI | |
Piamsiri C, Maneechote C, Siri-Angkul N, Chattipakorn SC and Chattipakorn N: Targeting necroptosis as therapeutic potential in chronic myocardial infarction. J Biomed Sci. 28:252021. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Yu W, Wang Y, Wu R, Dai Y, Deng Y, Wang S, Yuan J and Tan R: p53 contributes to cardiovascular diseases via mitochondria dysfunction: A new paradigm. Free Radic Biol Med. 208:846–858. 2023. View Article : Google Scholar : PubMed/NCBI | |
Toldo S and Abbate A: The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases. Nat Rev Cardiol. 21:219–237. 2024. View Article : Google Scholar | |
Bi Y, Xu H, Wang X, Zhu H, Ge J, Ren J and Zhang Y: FUNDC1 protects against doxorubicin-induced cardiomyocyte PANoptosis through stabilizing mtDNA via interaction with TUFM. Cell Death Dis. 13:10202022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y and Kanneganti TD: From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Comput Struct Biotechnol J. 19:4641–4657. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Gullett JM, Tweedell RE and Kanneganti TD: Innate immune inflammatory cell death: PANoptosis and PANoptosomes in host defense and disease. Eur J Immunol. 53:e22502352023. View Article : Google Scholar : PubMed/NCBI | |
Ji X, Huang X, Li C, Guan N, Pan T, Dong J and Li L: Effect of tumor-associated macrophages on the pyroptosis of breast cancer tumor cells. Cell Commun Signal. 21:1972023. View Article : Google Scholar : PubMed/NCBI | |
Nagata S and Tanaka M: Programmed cell death and the immune system. Nat Rev Immunol. 17:333–340. 2017. View Article : Google Scholar : PubMed/NCBI | |
Man SM, Karki R and Kanneganti TD: Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 277:61–75. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Zhang J, Yu S, Li Y, Zhu J, Zhang K and Zhang R: Cell pyroptosis in health and inflammatory diseases. Cell Death Discov. 8:1912022. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Xia S, Zhang Z, Wu H and Lieberman J: Channelling inflammation: Gasdermins in physiology and disease. Nat Rev Drug Discov. 20:384–405. 2021. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Li M, Yangzhong X, Zhang X, Zu A, Hou Y, Li L and Sun S: Pyroptosis in inflammation-related respiratory disease. J Physiol Biochem. 78:721–737. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhu H and Sun A: Programmed necrosis in heart disease: Molecular mechanisms and clinical implications. J Mol Cell Cardiol. 116:125–134. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mishra PK, Adameova A, Hill JA, Baines CP, Kang PM, Downey JM, Narula J, Takahashi M, Abbate A, Piristine HC, et al: Guidelines for evaluating myocardial cell death. Am J Physiol Heart Circ Physiol. 317:H891–H922. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shi Z, Yuan S, Shi L, Li J, Ning G, Kong X and Feng S: Programmed cell death in spinal cord injury pathogenesis and therapy. Cell Proliferation. 54:e129922021. View Article : Google Scholar : PubMed/NCBI | |
Li M, Wang ZW, Fang LJ, Cheng SQ, Wang X and Liu NF: Programmed cell death in atherosclerosis and vascular calcification. Cell Death Dis. 13:4672022. View Article : Google Scholar : PubMed/NCBI | |
Shi C, Cao P, Wang Y, Zhang Q, Zhang D, Wang Y, Wang L and Gong Z: PANoptosis: A cell death characterized by pyroptosis, apoptosis, and necroptosis. J Inflamm Res. 16:1523–1532. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wei Q, Ren H, Zhang J, Yao W, Zhao B and Miao J: An inhibitor of Grp94 inhibits OxLDL-Induced autophagy and apoptosis in VECs and stabilized atherosclerotic plaques. Front Cardiovasc Med. 8:7575912021. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Li J, Zhang J, Guo X, Liu H, Li P, Zhang Y, Lin C and Fan Z: LncRNA PVT1 knockdown alleviated ox-LDL-induced vascular endothelial cell injury and atherosclerosis by miR-153-3p/GRB2 axis via ERK/p38 pathway. Nutr Metab Cardiovasc Dis. 31:3508–3521. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Tang W, Shan E, Zhang L, Chen S, Yu C and Gao Y: MiR-130a-5p contributed to the progression of endothelial cell injury by regulating FAS. Eur J Histochem. 66:33422022. View Article : Google Scholar : PubMed/NCBI | |
Sayed S, Faruq O, Preya UH and Kim JT: Cathepsin S knockdown suppresses endothelial inflammation, angiogenesis, and complement protein activity under hyperglycemic conditions in vitro by inhibiting NF-κB signaling. Int J Mol Sci. 24:54282023. View Article : Google Scholar | |
Tang H, Li K, Zhang S, Lan H, Liang L, Huang C and Li T: Inhibitory effect of paeonol on apoptosis, oxidative stress, and inflammatory response in human umbilical vein endothelial cells induced by high glucose and palmitic acid induced through regulating SIRT1/FOXO3a/NF-κB pathway. J Interferon Cytokine Res. 41:111–124. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Xu Y, Cheng S, Zhou X, Zhou F, He P, Hu F, Zhang L, Chen Y and Jia Y: Geniposide combined with Notoginsenoside R1 attenuates inflammation and apoptosis in atherosclerosis via the AMPK/mTOR/Nrf2 signaling pathway. Front Pharmacol. 12:6873942021. View Article : Google Scholar : PubMed/NCBI | |
Du M, Wang C, Yang L, Liu B, Zheng Z, Yang L, Zhang F, Peng J, Huang D and Huang K: The role of long noncoding RNA Nron in atherosclerosis development and plaque stability. iScience. 25:1039782022. View Article : Google Scholar : PubMed/NCBI | |
Sinha SK, Miikeda A, Fouladian Z, Mehrabian M, Edillor C, Shih D, Zhou Z, Paul MK, Charugundla S, Davis RC, et al: Local M-CSF (Macrophage Colony-stimulating factor) expression regulates macrophage proliferation and apoptosis in atherosclerosis. Arterioscler Thromb Vasc Biol. 41:220–233. 2021. View Article : Google Scholar | |
Niu N, Miao H and Ren H: Effect of miR-182-5p on apoptosis in myocardial infarction. Heliyon. 9:e215242023. View Article : Google Scholar : PubMed/NCBI | |
Lin M, Liu X, Zheng H, Huang X, Wu Y, Huang A, Zhu H, Hu Y, Mai W and Huang Y: IGF-1 enhances BMSC viability, migration, and anti-apoptosis in myocardial infarction via secreted frizzled-related protein 2 pathway. Stem Cell Res Ther. 11:222020. View Article : Google Scholar : PubMed/NCBI | |
Fu DL, Jiang H, Li CY, Gao T, Liu MR and Li HW: MicroRNA-338 in MSCs-derived exosomes inhibits cardiomyocyte apoptosis in myocardial infarction. Eur Rev Med Pharmacol Sci. 24:10107–10117. 2020.PubMed/NCBI | |
Wu H, Zhao ZA, Liu J, Hao K, Yu Y, Han X, Li J, Wang Y, Lei W, Dong N, et al: Long noncoding RNA Meg3 regulates cardiomyocyte apoptosis in myocardial infarction. Gene Ther. 25:511–523. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Yang XR and Han X: MicroRNA-146b induces the PI3K/Akt/NF-κB signaling pathway to reduce vascular inflammation and apoptosis in myocardial infarction by targeting PTEN. Exp Ther Med. 17:1171–1181. 2019.PubMed/NCBI | |
Luo C, Xiong S, Huang Y, Deng M, Zhang J, Chen J, Yang R and Ke X: The Novel Non-coding transcriptional regulator Gm18840 drives cardiomyocyte apoptosis in myocardial infarction post ischemia/reperfusion. Front Cell Dev Biol. 9:6159502021. View Article : Google Scholar : PubMed/NCBI | |
Zhou F, Fu WD and Chen L: MiRNA-182 regulates the cardiomyocyte apoptosis in heart failure. Eur Rev Med Pharmacol Sci. 23:4917–4923. 2019.PubMed/NCBI | |
Zhang Y, Li C, Meng H, Guo D, Zhang Q, Lu W, Wang Q, Wang Y and Tu P: BYD Ameliorates oxidative stress-induced myocardial apoptosis in heart failure post-acute myocardial infarction via the P38 MAPK-CRYAB signaling pathway. Front Physiol. 9:5052018. View Article : Google Scholar : PubMed/NCBI | |
Yan X, Wu H, Ren J, Liu Y, Wang S, Yang J, Qin S and Wu D: Shenfu Formula reduces cardiomyocyte apoptosis in heart failure rats by regulating microRNAs. J Ethnopharmacol. 227:105–112. 2018. View Article : Google Scholar : PubMed/NCBI | |
Colpman P, Dasgupta A and Archer SL: The role of mitochondrial dynamics and mitotic fission in regulating the cell cycle in cancer and pulmonary arterial hypertension: Implications for dynamin-related protein 1 and mitofusin2 in hyperproliferative diseases. Cells. 12:18972023. View Article : Google Scholar : PubMed/NCBI | |
Dabral S, Tian X, Kojonazarov B, Savai R, Ghofrani HA, Weissmann N, Florio M, Sun J, Jonigk D, Maegel L, et al: Notch1 signalling regulates endothelial proliferation and apoptosis in pulmonary arterial hypertension. Eur Respir J. 48:1137–1149. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jiang DT, Tuo L, Bai X, Bing WD, Qu QX, Zhao X, Song GM, Bi YW and Sun WY: Prostaglandin E1 reduces apoptosis and improves the homing of mesenchymal stem cells in pulmonary arterial hypertension by regulating hypoxia-inducible factor 1 alpha. Stem Cell Res Ther. 13:3162022. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Hei B, Hao W, Lin S, Wang Y, Liu X, Meng X and Guan Z: Clinical value of lncRNA SOX2-OT in pulmonary arterial hypertension and its role in pulmonary artery smooth muscle cell proliferation, migration, apoptosis, and inflammatory. Heart Lung. 55:16–23. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hu F, Liu H, Wang C, Li H and Qiao L: Expression of the microRNA-30 family in pulmonary arterial hypertension and the role of microRNA-30d-5p in the regulation of pulmonary arterial smooth muscle cell toxicity and apoptosis. Exp Ther Med. 23:1082022. View Article : Google Scholar : PubMed/NCBI | |
Li X, Liu C, Qi W, Meng Q, Zhao H, Teng Z, Xu R, Wu X, Zhu F, Qin Y, et al: Endothelial Dec1-PPARγ axis impairs proliferation and apoptosis homeostasis under hypoxia in pulmonary arterial hypertension. Front Cell Dev Biol. 9:7571682021. View Article : Google Scholar | |
Cuthbertson I, Morrell NW and Caruso P: BMPR2 mutation and metabolic reprogramming in pulmonary arterial hypertension. Circ Res. 132:109–126. 2023. View Article : Google Scholar : PubMed/NCBI | |
Vera-Zambrano A, Lago-Docampo M, Gallego N, Franco-Gonzalez JF, Morales-Cano D, Cruz-Utrilla A, Villegas-Esguevillas M, Fernández-Malavé E, Escribano-Subías P, Tenorio-Castaño JA, et al: Novel Loss-of-function KCNA5 variants in pulmonary arterial hypertension. Am J Respir Cell Mol Biol. 69:147–158. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ye B, Peng X, Su D, Liu D, Huang Y, Huang Y and Pang Y: Effects of YM155 on the proliferation and apoptosis of pulmonary artery smooth muscle cells in a rat model of high pulmonary blood flow-induced pulmonary arterial hypertension. Clin Exp Hypertens. 44:470–479. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Wu J, Sun Y, Xin L, Jiang Z, Lin H, Zhao M and Cui X: Qiliqiangxin prevents right ventricular remodeling by inhibiting apoptosis and improving metabolism reprogramming with pulmonary arterial hypertension. Am J Transl Res. 12:5655–5669. 2020.PubMed/NCBI | |
Xu YJ, Zheng L, Hu YW and Wang Q: Pyroptosis and its relationship to atherosclerosis. Clin Chim Acta. 476:28–37. 2018. View Article : Google Scholar | |
Wu X, Zhang H, Qi W, Zhang Y, Li J, Li Z, Lin Y, Bai X, Liu X, Chen X, et al: Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis. Cell Death Dis. 9:1712018. View Article : Google Scholar : PubMed/NCBI | |
Din AU, Hassan A, Zhu Y, Yin T, Gregersen H and Wang G: Amelioration of TMAO through probiotics and its potential role in atherosclerosis. Appl Microbiol Biotechnol. 103:9217–9228. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu P, Chen J, Chen J, Tao J, Wu S, Xu G, Wang Z, Wei D and Yin W: Trimethylamine N-oxide promotes apoE-/-mice atherosclerosis by inducing vascular endothelial cell pyroptosis via the SDHB/ROS pathway. J Cell Physiol. 235:6582–6591. 2020. View Article : Google Scholar : PubMed/NCBI | |
Moore KJ, Sheedy FJ and Fisher EA: Macrophages in atherosclerosis: A dynamic balance. Nat Rev Immunol. 13:709–721. 2013. View Article : Google Scholar : PubMed/NCBI | |
Peng X, Chen H, Li Y, Huang D, Huang B and Sun D: Effects of NIX-mediated mitophagy on ox-LDL-induced macrophage pyroptosis in atherosclerosis. Cell Biol Int. 44:1481–1490. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Chen H, Ni H and Dai Q: Targeting HDAC6 attenuates nicotine-induced macrophage pyroptosis via NF-κB/NLRP3 pathway. Atherosclerosis. 317:1–9. 2021. View Article : Google Scholar | |
Wu L, Xie W, Li Y, Ni Q, Timashev P, Lyu M, Xia L, Zhang Y, Liu L, Yuan Y, et al: Biomimetic nanocarriers guide extracellular ATP homeostasis to remodel energy metabolism for activating innate and adaptive immunity system. Adv Sci (Weinh). 9:e21053762022. View Article : Google Scholar : PubMed/NCBI | |
Kiyan Y, Tkachuk S, Hilfiker-Kleiner D, Haller H, Fuhrman B and Dumler I: oxLDL induces inflammatory responses in vascular smooth muscle cells via urokinase receptor association with CD36 and TLR4. J Mol Cell Cardiol. 66:72–82. 2014. View Article : Google Scholar | |
Pang Q, Wang P, Pan Y, Dong X, Zhou T, Song X and Zhang A: Irisin protects against vascular calcification by activating autophagy and inhibiting NLRP3-mediated vascular smooth muscle cell pyroptosis in chronic kidney disease. Cell Death Dis. 13:2832022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Niu X, Xu H, Li Q, Meng L, He M, Zhang J and Zhang Z and Zhang Z: VX-765 attenuates atherosclerosis in ApoE deficient mice by modulating VSMCs pyroptosis. Exp Cell Res. 389:1118472020. View Article : Google Scholar : PubMed/NCBI | |
Yue RC, Lu SZ, Luo Y, Wang T, Liang H, Zeng J, Liu J and Hu HX: Calpain silencing alleviates myocardial ischemia-reperfusion injury through the NLRP3/ASC/Caspase-1 axis in mice. Life Sci. 233:1166312019. View Article : Google Scholar : PubMed/NCBI | |
Ding S, Liu D, Wang L, Wang G and Zhu Y: Inhibiting MicroRNA-29a protects myocardial ischemia-reperfusion injury by targeting SIRT1 and suppressing oxidative stress and NLRP3-mediated pyroptosis pathway. J Pharmacol Exp Ther. 372:128–135. 2020. View Article : Google Scholar | |
Rauf A, Shah M, Yellon DM and Davidson SM: Role of Caspase 1 in ischemia/reperfusion injury of the myocardium. J Cardiovasc Pharmacol. 74:194–200. 2019. View Article : Google Scholar : PubMed/NCBI | |
Do Carmo H, Arjun S, Petrucci O, Yellon DM and Davidson SM: The Caspase 1 inhibitor VX-765 protects the isolated rat heart via the RISK pathway. Cardiovasc Drugs Ther. 32:165–168. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Fu Y, Li H, Shen L, Chang Q, Pan L, Hong S and Yin X: H3 relaxin inhibits the collagen synthesis via ROS- and P2X7R-mediated NLRP3 inflammasome activation in cardiac fibroblasts under high glucose. J Cell Mol Med. 22:1816–1825. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zeng C, Duan F, Hu J, Luo B, Huang B, Lou X, Sun X, Li H, Zhang X, Yin S and Tan H: NLRP3 inflammasome-mediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy. Redox Biol. 34:1015232020. View Article : Google Scholar : PubMed/NCBI | |
Bai Y, Sun X, Chu Q, Li A, Qin Y, Li Y, Yue E, Wang H, Li G, Zahra SM, et al: Caspase-1 regulate AngII-induced cardiomyocyte hypertrophy via upregulation of IL-1β. Biosci Rep. 38:BSR201714382018. View Article : Google Scholar | |
Aluganti Narasimhulu C and Singla DK: Amelioration of diabetes-induced inflammation mediated pyroptosis, sarcopenia, and adverse muscle remodelling by bone morphogenetic protein-7. J Cachexia Sarcopenia Muscle. 12:403–420. 2021. View Article : Google Scholar : PubMed/NCBI | |
He S, Ma C, Zhang L, Bai J, Wang X, Zheng X, Zhang J, Xin W, Li Y, Jiang Y, et al: GLI1-mediated pulmonary artery smooth muscle cell pyroptosis contributes to hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 318:L472–L482. 2020. View Article : Google Scholar | |
Cero FT, Hillestad V, Sjaastad I, Yndestad A, Aukrust P, Ranheim T, Lunde IG, Olsen MB, Lien E, Zhang L, et al: Absence of the inflammasome adaptor ASC reduces hypoxia-induced pulmonary hypertension in mice. Am J Physiol Lung Cell Mol Physiol. 309:L378–L387. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Xin W, Yu Y, Yang X, Ma C, Zhang H, Liu Y, Zhao X, Guan X, Wang X and Zhu D: Programmed death-ligand 1 triggers PASMCs pyroptosis and pulmonary vascular fibrosis in pulmonary hypertension. J Mol Cell Cardiol. 138:23–33. 2020. View Article : Google Scholar | |
Udjus C, Cero FT, Halvorsen B, Behmen D, Carlson CR, Bendiksen BA, Espe EKS, Sjaastad I, Løberg EM, Yndestad A, et al: Caspase-1 induces smooth muscle cell growth in hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 316:L999–L1012. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zha LH, Zhou J, Li TZ, Luo H, He JN, Zhao L and Yu ZX: NLRC3: A novel noninvasive biomarker for pulmonary hypertension diagnosis. Aging Dis. 9:843–851. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chai SD, Li ZK, Liu R, Liu T, Dong MF, Tang PZ, Wang JT and Ma SJ: The role of miRNA-155 in monocrotaline-induced pulmonary arterial hypertension through c-Fos/NLRP3/caspase-1. Mol Cell Toxicol. 16:311–320. 2020. View Article : Google Scholar | |
Tang B, Chen G, Liang M, Yao J and Wu Z: Ellagic acid prevents monocrotaline-induced pulmonary artery hypertension via inhibiting NLRP3 inflammasome activation in rats. Int J Cardiol. 180:134–141. 2015. View Article : Google Scholar | |
Lin J, Li H, Yang M, Ren J, Huang Z, Han F, Huang J, Ma J, Zhang D, Zhang Z, et al: A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell Rep. 3:200–210. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guo N, Zhou H, Zhang Q, Fu Y, Jia Q, Gan X, Wang Y, He S, Li C, Tao Z, et al: Exploration and bioinformatic prediction for profile of mRNA bound to circular RNA BTBD7_hsa_circ_0000563 in coronary artery disease. BMC Cardiovasc Disord. 24:712024. View Article : Google Scholar : PubMed/NCBI | |
Meng L, Jin W, Wang Y, Huang H, Li J and Zhang C: RIP3-dependent necrosis induced inflammation exacerbates atherosclerosis. Biochem Biophys Res Commun. 473:497–502. 2016. View Article : Google Scholar : PubMed/NCBI | |
Karunakaran D, Geoffrion M, Wei L, Gan W, Richards L, Shangari P, DeKemp EM, Beanlands RA, Perisic L, Maegdefessel L, et al: Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis. Sci Adv. 2:e16002242016. View Article : Google Scholar : PubMed/NCBI | |
Meng L, Jin W and Wang X: RIP3-mediated necrotic cell death accelerates systematic inflammation and mortality. Proc Natl Acad Sci USA. 112:11007–11012. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rasheed A, Robichaud S, Nguyen MA, Geoffrion M, Wyatt H, Cottee ML, Dennison T, Pietrangelo A, Lee R, Lagace TA, et al: Loss of MLKL (Mixed Lineage Kinase Domain-Like Protein) decreases necrotic core but increases macrophage lipid accumulation in atherosclerosis. Arterioscler Thromb Vasc Biol. 40:1155–1167. 2020. View Article : Google Scholar : PubMed/NCBI | |
Akhtar S, Hartmann P, Karshovska E, Rinderknecht FA, Subramanian P, Gremse F, Grommes J, Jacobs M, Kiessling F, Weber C, et al: Endothelial hypoxia-inducible Factor-1α promotes atherosclerosis and monocyte recruitment by upregulating MicroRNA-19a. Hypertension. 66:1220–1226. 2015. View Article : Google Scholar : PubMed/NCBI | |
Luedde M, Lutz M, Carter N, Sosna J, Jacoby C, Vucur M, Gautheron J, Roderburg C, Borg N, Reisinger F, et al: RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovasc Res. 103:206–216. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Li C, Wang Y, Yang J, Yin Y, Liu M, Shi Z, Mu N, Yu L and Ma H: Melatonin attenuates chronic pain related myocardial ischemic susceptibility through inhibiting RIP3-MLKL/CaMKII dependent necroptosis. J Mol Cell Cardiol. 125:185–194. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Yin H, Li L, Chen Y, Li J, Doan J, Steinmetz R and Liu Q: Cardioprotective role of tumor necrosis factor receptor-associated factor 2 by suppressing apoptosis and necroptosis. Circulation. 136:729–742. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li L, Chen Y, Doan J, Murray J, Molkentin JD and Liu Q: Transforming growth factor β-activated kinase 1 signaling pathway critically regulates myocardial survival and remodeling. Circulation. 130:2162–2172. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang DY, Wang BJ, Ma M, Yu K, Zhang Q and Zhang XW: MicroRNA-325-3p protects the heart after myocardial infarction by inhibiting RIPK3 and programmed necrosis in mice. BMC Mol Biol. 20:172019. View Article : Google Scholar : PubMed/NCBI | |
Yue LJ, Zhu XY, Li RS, Chang HJ, Gong B, Tian CC, Liu C, Xue YX, Zhou Q, Xu TS and Wang DJ: S-allyl-cysteine sulfoxide (alliin) alleviates myocardial infarction by modulating cardiomyocyte necroptosis and autophagy. Int J Mol Med. 44:1943–1951. 2019.PubMed/NCBI | |
Liu J, Wu P, Wang Y, Du Y, A N, Liu S, Zhang Y, Zhou N, Xu Z and Yang Z: Ad-HGF improves the cardiac remodeling of rat following myocardial infarction by upregulating autophagy and necroptosis and inhibiting apoptosis. Am J Transl Res. 8:4605–4627. 2016.PubMed/NCBI | |
Škėmienė K, Jablonskienė G, Liobikas J and Borutaitė V: Protecting the heart against ischemia/reperfusion-induced necrosis and apoptosis: The effect of anthocyanins. Medicina (Kaunas). 49:84–88. 2013.PubMed/NCBI | |
Szobi A, Gonçalvesová E, Varga ZV, Leszek P, Kuśmierczyk M, Hulman M, Kyselovič J, Ferdinandy P and Adameová A: Analysis of necroptotic proteins in failing human hearts. J Transl Med. 15:862017. View Article : Google Scholar : PubMed/NCBI | |
Marunouchi T, Nishiumi C, Iinuma S, Yano E and Tanonaka K: Effects of Hsp90 inhibitor on the RIP1-RIP3-MLKL pathway during the development of heart failure in mice. Eur J Pharmacol. 898:1739872021. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Zhang F, Shi H, Gao Y, Dong Z, Ma L, Sun X, Li X, Chang S, Wang Z, et al: Neutrophil-derived advanced glycation end products-Nε-(carboxymethyl) lysine promotes RIP3-mediated myocardial necroptosis via RAGE and exacerbates myocardial ischemia/reperfusion injury. FASEB J. 33:14410–14422. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, Liu Y, Zheng W, Shang H, Zhang J, et al: CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med. 22:175–182. 2016. View Article : Google Scholar : PubMed/NCBI | |
Koshinuma S, Miyamae M, Kaneda K, Kotani J and Figueredo VM: Combination of necroptosis and apoptosis inhibition enhances cardioprotection against myocardial ischemia-reperfusion injury. J Anesth. 28:235–241. 2014. View Article : Google Scholar | |
Xiao G, Zhuang W, Wang T, Lian G, Luo L, Ye C, Wang H and Xie L: Transcriptomic analysis identifies Toll-like and Nod-like pathways and necroptosis in pulmonary arterial hypertension. J Cell Mol Med. 24:11409–11421. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jarabicová I, Horváth C, Veľasová E, Bies Piváčková L, Vetešková J, Klimas J, Křenek P and Adameová A: Analysis of necroptosis and its association with pyroptosis in organ damage in experimental pulmonary arterial hypertension. J Cell Mol Med. 26:2633–2645. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tweedell RE and Kanneganti TD: Advances in inflammasome research: Recent breakthroughs and future hurdles. Trends Mol Med. 26:969–971. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao P, Yao R, Du X and Yao Y: Research progress on the role of PANoptosis in human diseases. Zhonghua Yi Xue Za Zhi. 102:2549–2554. 2022. | |
Malireddi RKS, Kesavardhana S and Kanneganti TD: ZBP1 and TAK1: Master Regulators of NLRP3 Inflammasome/Pyroptosis, Apoptosis, and Necroptosis (PAN-optosis). Front Cell Infect Microbiol. 9:4062019. View Article : Google Scholar : PubMed/NCBI | |
Zheng M and Kanneganti TD: The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunol Rev. 297:26–38. 2020. View Article : Google Scholar : PubMed/NCBI | |
Karki R, Lee S, Mall R, Pandian N, Wang Y, Sharma BR, Malireddi RS, Yang D, Trifkovic S, Steele JA, et al: ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection. Sci Immunol. 7:eabo62942022. View Article : Google Scholar : PubMed/NCBI | |
Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, Hakem R, Salvesen GS and Green DR: Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature. 471:363–367. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gurung P, Anand PK, Malireddi RK, Vande Walle L, Van Opdenbosch N, Dillon CP, Weinlich R, Green DR, Lamkanfi M and Kanneganti TD: FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J Immunol. 192:1835–1846. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Zhu Y, Zhang L, Guo L, Wang X, Pan Z, Jiang X, Wu F and He G: Mechanisms of PANoptosis and relevant small-molecule compounds for fighting diseases. Cell Death Dis. 14:8512023. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Tang AL, Cheng J, Gao N, Zhang G and Xiao C: RIPK1 in the inflammatory response and sepsis: Recent advances, drug discovery and beyond. Front Immunol. 14:11141032023. View Article : Google Scholar : PubMed/NCBI | |
Qi Z, Zhu L, Wang K and Wang N: PANoptosis: Emerging mechanisms and disease implications. Life Sci. 333:1221582023. View Article : Google Scholar : PubMed/NCBI | |
Tian J, Zhang YY, Peng YW, Liu B, Zhang XJ, Hu ZY, Hu CP, Luo XJ and Peng J: Polymyxin B reduces brain injury in ischemic stroke rat through a mechanism involving targeting ESCRT-III Machinery and RIPK1/RIPK3/MLKL pathway. J Cardiovasc Transl Res. 15:1129–1142. 2022. View Article : Google Scholar : PubMed/NCBI | |
Duan X, Liu X, Liu N, Huang Y, Jin Z, Zhang S, Ming Z and Chen H: Inhibition of keratinocyte necroptosis mediated by RIPK1/RIPK3/MLKL provides a protective effect against psoriatic inflammation. Cell Death Dis. 11:1342020. View Article : Google Scholar : PubMed/NCBI | |
Meng Y, Davies KA, Fitzgibbon C, Young SN, Garnish SE, Horne CR, Luo C, Garnier JM, Liang LY, Cowan AD, et al: Human RIPK3 maintains MLKL in an inactive conformation prior to cell death by necroptosis. Nat Commun. 12:67832021. View Article : Google Scholar : PubMed/NCBI | |
Alaaeldin R, Abdel-Rahman IM, Ali FEM, Bekhit AA, Elhamadany EY, Zhao QL, Cui ZG and Fathy M: Dual Topoisomerase I/II Inhibition-Induced Apoptosis and Necro-Apoptosis in cancer cells by a novel ciprofloxacin derivative via RIPK1/RIPK3/MLKL activation. Molecules. 27:79932022. View Article : Google Scholar : PubMed/NCBI | |
Morgan MJ and Kim YS: Roles of RIPK3 in necroptosis, cell signaling, and disease. Exp Mol Med. 54:1695–1704. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang YY, Liu WN, Li YQ, Zhang XJ, Yang J, Luo XJ and Peng J: Ligustroflavone reduces necroptosis in rat brain after ischemic stroke through targeting RIPK1/RIPK3/MLKL pathway. Naunyn Schmiedebergs Arch Pharmacol. 392:1085–1095. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yan ZY, Jiao HY, Chen JB, Zhang KW, Wang XH, Jiang YM, Liu YY, Xue Z, Ma QY, Li XJ and Chen JX: Antidepressant mechanism of traditional Chinese medicine formula Xiaoyaosan in CUMS-induced depressed mouse model via RIPK1-RIPK3-MLKL mediated necroptosis based on Network Pharmacology Analysis. Front Pharmacol. 12:7735622021. View Article : Google Scholar : PubMed/NCBI | |
Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, Zheng M, Sundaram B, Banoth B, Malireddi RKS, et al: Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. bioRxiv [Preprint] 2020.10.29.361048. 2020. | |
Ma W, Chen X, Wu X, Li J, Mei C, Jing W, Teng L, Tu H, Jiang X, Wang G, et al: Long noncoding RNA SPRY4-IT1 promotes proliferation and metastasis of hepatocellular carcinoma via mediating TNF signaling pathway. J Cell Physiol. 235:7849–7862. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kawasaki T and Kawai T: Toll-Like receptor signaling pathways. Front Immunol. 5:4612014. View Article : Google Scholar : PubMed/NCBI | |
Damoogh S, Vosough M, Hadifar S, Rasoli M, Gorjipour A, Falsafi S and Behrouzi A: Evaluation of E. coli Nissle1917 derived metabolites in modulating key mediator genes of the TLR signaling pathway. BMC Res Notes. 14:1562021. View Article : Google Scholar : PubMed/NCBI | |
Azam S, Jakaria M, Kim IS, Kim J, Haque ME and Choi DK: Regulation of Toll-like receptor (TLR) signaling pathway by polyphenols in the treatment of Age-linked neurodegenerative diseases: Focus on TLR4 signaling. Front Immunol. 10:10002019. View Article : Google Scholar : PubMed/NCBI | |
Chipurupalli S, Samavedam U and Robinson N: Crosstalk between ER stress, autophagy and inflammation. Front Med (Lausanne). 8:7583112021. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Yu J, Gong J, Shen J, Ye D, Cheng D, Xie Z, Zeng J, Xu K, Shen J, et al: PTP1B inhibitor alleviates deleterious microglial activation and neuronal injury after ischemic stroke by modulating the ER stress-autophagy axis via PERK signaling in microglia. Aging (Albany NY). 13:3405–3427. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tait SWG and Green DR: Mitochondria and cell death: Outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 11:621–632. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shi FL, Li Q, Xu R, Yuan LS, Chen Y, Shi ZJ, Li YP, Zhou ZY, Xu LH, Zha QB, et al: Blocking reverse electron transfer-mediated mitochondrial DNA oxidation rescues cells from PANoptosis. Acta Pharmacol Sin. 45:594–608. 2024. View Article : Google Scholar | |
Yuan X, Zhang S, Zhong X, Yuan H, Song D, Wang X, Yu H and Guo Z: The induction of PANoptosis in KRAS-mutant pancreatic ductal adenocarcinoma cells by a multispecific platinum complex. SCC. 1978–1984 | |
She R, Liu D, Liao J, Wang G, Ge J and Mei Z: Mitochondrial dysfunctions induce PANoptosis and ferroptosis in cerebral ischemia/reperfusion injury: From pathology to therapeutic potential. Front Cell Neurosci. 17:11916292023. View Article : Google Scholar : PubMed/NCBI | |
Briard B, Malireddi RKS and Kanneganti TD: Role of inflammasomes/pyroptosis and PANoptosis during fungal infection. PLoS Pathog. 17:e10093582021. View Article : Google Scholar : PubMed/NCBI | |
Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cadwell K, Cecconi F, Choi AMK, et al: Autophagy in major human diseases. EMBO J. 40:e1088632021. View Article : Google Scholar : PubMed/NCBI | |
Debnath J, Gammoh N and Ryan KM: Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 24:560–575. 2023. View Article : Google Scholar : PubMed/NCBI | |
González-Rodríguez P, Klionsky DJ and Joseph B: Autophagy regulation by RNA alternative splicing and implications in human diseases. Nat Commun. 13:27352022. View Article : Google Scholar : PubMed/NCBI | |
Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif A, Abdoli A, Abel S, Abeliovich H, Abildgaard MH, Princely Abudu Y, Acevedo-Arozena A, et al: Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1. Autophagy. 17:1–382. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ajoolabady A, Kaplowitz N, Lebeaupin C, Kroemer G, Kaufman RJ, Malhi H and Ren J: Endoplasmic reticulum stress in liver diseases. Hepatology. 77:619–639. 2023. View Article : Google Scholar | |
Ren J, Bi Y, Sowers JR, Hetz C and Zhang Y: Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol. 18:499–521. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen X and Cubillos-Ruiz JR: Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer. 21:71–88. 2021. View Article : Google Scholar : | |
Marciniak SJ, Chambers JE and Ron D: Pharmacological targeting of endoplasmic reticulum stress in disease. Nat Rev Drug Discov. 21:115–140. 2022. View Article : Google Scholar | |
Hu C, Wu Z and Li L: Pre-treatments enhance the therapeutic effects of mesenchymal stem cells in liver diseases. J Cell Mol Med. 24:40–49. 2020. View Article : Google Scholar | |
Rafiq K, Hanscom M, Valerie K, Steinberg SF and Sabri A: Novel mode for neutrophil protease cathepsin G-mediated signaling: Membrane shedding of epidermal growth factor is required for cardiomyocyte anoikis. Circ Res. 102:32–41. 2008. View Article : Google Scholar | |
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S and Xiao M: Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer. 22:482023. View Article : Google Scholar : PubMed/NCBI | |
Weems A D, Welf ES, Dr Iscoll MK , Zhou FY, Mazloom-Farsibaf H, Chang BJ, Murali VS, Gihana GM, Weiss BG, Chi J, et al: Blebs promote cell survival by assembling oncogenic signalling hubs. Nature. 615:517–525. 2023. View Article : Google Scholar : PubMed/NCBI | |
Nakad A, Jonard P, Geubel A, Warzee P, Coppens JP, Dehennin JP and Dive C: CA 19-9 in neoplasms. Comparison with CEA. Acta Gastroenterol Belg. 50:36–44. 1987.In French. PubMed/NCBI | |
Taylor MJ: Clinical cryobiology of tissues: Preservation of corneas. Cryobiology. 23:323–353. 1986. View Article : Google Scholar : PubMed/NCBI | |
Paolillo M, Galiazzo MC, Daga A, Ciusani E, Serra M, Colombo L and Schinelli S: An RGD small-molecule integrin antagonist induces detachment-mediated anoikis in glioma cancer stem cells. Int J Oncol. 53:2683–2694. 2018.PubMed/NCBI | |
Bourguignon LYW: Matrix Hyaluronan-CD44 interaction activates MicroRNA and LncRNA signaling associated with chemoresistance, invasion, and tumor progression. Front Oncol. 9:4922019. View Article : Google Scholar : PubMed/NCBI | |
Zhu P, Lu H, Wang M, Chen K, Chen Z and Yang L: Targeted mechanical forces enhance the effects of tumor immunotherapy by regulating immune cells in the tumor microenvironment. Cancer Biol Med. 20:44–55. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tong J, Lan XT, Zhang Z, Liu Y, Sun DY, Wang XJ, Ou-Yang SX, Zhuang CL, Shen FM, Wang P and Li DJ: Ferroptosis inhibitor liproxstatin-1 alleviates metabolic dysfunction-associated fatty liver disease in mice: Potential involvement of PANoptosis. Acta Pharmacol Sin. 44:1014–1028. 2023. View Article : Google Scholar : |