Current strategies for nonalcoholic fatty liver disease treatment (Review)
- Authors:
- Jing Sun
- Xiuli Jin
- Yiling Li
-
Affiliations: Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China - Published online on: August 8, 2024 https://doi.org/10.3892/ijmm.2024.5412
- Article Number: 88
-
Copyright: © Sun et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Tao L, Ren X, Zhai W and Chen Z: Progress and prospects of non-canonical NF-κB signaling pathway in the regulation of liver diseases. Molecules. 27:42752022. View Article : Google Scholar | |
Hofmann J, Hackl V, Esser H, Meszaros AT, Fodor M, Öfner D, Troppmair J, Schneeberger S and Hautz T: Cell-Based regeneration and treatment of liver diseases. Int J Mol Sci. 22:102762021. View Article : Google Scholar : PubMed/NCBI | |
Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, Zelber-Sagi S, Wai-Sun Wong V, Dufour JF, Schattenberg JM, et al: A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol. 73:202–209. 2020. View Article : Google Scholar : PubMed/NCBI | |
Inoue Y, Qin B, Poti J, Sokol R and Gordon-Larsen P: Epidemiology of obesity in Adults: Latest trends. Curr Obes Rep. 7:276–288. 2018. View Article : Google Scholar : PubMed/NCBI | |
Papatheodoridi M and Cholongitas E: Diagnosis of non-alcoholic fatty liver disease (NAFLD): Current concepts. Curr Pharm Des. 24:4574–4586. 2018. View Article : Google Scholar | |
Dongiovanni P, Paolini E, Corsini A, Sirtori CR and Ruscica M: Nonalcoholic fatty liver disease or metabolic dysfunction-associated fatty liver disease diagnoses and cardiovascular diseases: From epidemiology to drug approaches. Eur J Clin Invest. 51:e135192021. View Article : Google Scholar : PubMed/NCBI | |
Lazarus JV, Palayew A, Carrieri P, Ekstedt M, Marchesini G, Novak K, Ratziu V, Romero-Gómez M, Tacke F, Zelber-Sagi S, et al: European 'NAFLD Preparedness Index'-Is Europe ready to meet the challenge of fatty liver disease? JHEP Rep. 3:1002342021. View Article : Google Scholar | |
Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N, Qiu Y, Burns L, Afendy A and Nader F: The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol. 71:793–801. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A, Scorletti E, Mosca A, Alisi A, Byrne CD and Targher G: Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism. 111s:1541702020. View Article : Google Scholar : PubMed/NCBI | |
Ballestri S, Zona S, Targher G, Romagnoli D, Baldelli E, Nascimbeni F, Roverato A, Guaraldi G and Lonardo A: Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis. J Gastroenterol Hepatol. 31:936–944. 2016. View Article : Google Scholar | |
Lonardo A, Nascimbeni F, Mantovani A and Targher G: Hypertension, diabetes, atherosclerosis and NASH: Cause or consequence? J Hepatol. 68:335–352. 2018. View Article : Google Scholar | |
Targher G, Lonardo A and Byrne CD: Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus. Nat Rev Endocrinol. 14:99–114. 2018. View Article : Google Scholar | |
Powell EE, Wong VW and Rinella M: Non-alcoholic fatty liver disease. Lancet. 397:2212–2224. 2021. View Article : Google Scholar : PubMed/NCBI | |
Woo Baidal JA and Lavine JE: The intersection of nonalcoholic fatty liver disease and obesity. Sci Transl Med. 8:323rv12016. View Article : Google Scholar : PubMed/NCBI | |
Velazquez AM, Bentanachs R, Sala-Vila A, Lazaro I, Rodríguez-Morató J, Sánchez RM, Alegret M, Roglans N and Laguna JC: ChREBP-driven DNL and PNPLA3 expression induced by liquid fructose are essential in the production of fatty liver and hypertriglyceridemia in a high-fat diet-fed rat model. Mol Nutr Food Res. 66:e21011152022. View Article : Google Scholar : PubMed/NCBI | |
Mato JM, Alonso C, Noureddin M and Lu SC: Biomarkers and subtypes of deranged lipid metabolism in non-alcoholic fatty liver disease. World J Gastroenterol. 25:3009–3020. 2019. View Article : Google Scholar : PubMed/NCBI | |
Petroni ML, Brodosi L, Bugianesi E and Marchesini G: Management of non-alcoholic fatty liver disease. BMJ. 372:m47472021. View Article : Google Scholar : PubMed/NCBI | |
European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO): EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 64:1388–1402. 2016. View Article : Google Scholar : PubMed/NCBI | |
Koopman KE, Caan MW, Nederveen AJ, Pels A, Ackermans MT, Fliers E, la Fleur SE and Serlie MJ: Hypercaloric diets with increased meal frequency, but not meal size, increase intrahepatic triglycerides: A randomized controlled trial. Hepatology. 60:545–553. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, Torres-Gonzalez A, Gra-Oramas B, Gonzalez-Fabian L, Friedman SL, Diago M and Romero-Gomez M: Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology. 149:367–378 e5; quiz e14-5. 2015. View Article : Google Scholar : PubMed/NCBI | |
Uribarri J, del Castillo MD, de la Maza MP, Filip R, Gugliucci A, Luevano-Contreras C, Macías-Cervantes MH, Markowicz Bastos DH, Medrano A, Menini T, et al: Dietary advanced glycation end products and their role in health and disease. Adv Nutr. 6:461–473. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lopez-Moreno J, Quintana-Navarro GM, Delgado-Lista J, Garcia-Rios A, Alcala-Diaz JF, Gomez-Delgado F, Camargo A, Perez-Martinez P, Tinahones FJ, Striker GE, et al: Mediterranean diet supplemented with coenzyme Q10 modulates the postprandial metabolism of advanced glycation end products in elderly men and women. J Gerontol A Biol Sci Med Sci. 73:340–346. 2018. | |
Asadipooya K, Lankarani KB, Raj R and Kalantarhormozi M: RAGE is a potential cause of onset and progression of nonalcoholic fatty liver disease. Int J Endocrinol. 2019:21513022019. View Article : Google Scholar : PubMed/NCBI | |
Helsley RN, Moreau F, Gupta MK, Radulescu A, DeBosch B and Softic S: Tissue-Specific fructose metabolism in obesity and diabetes. Curr Diab Rep. 20:642020. View Article : Google Scholar : PubMed/NCBI | |
Romero-Gomez M, Zelber-Sagi S and Trenell M: Treatment of NAFLD with diet, physical activity and exercise. J Hepatol. 67:829–846. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shim P, Choi D and Park Y: Association of blood fatty acid composition and dietary pattern with the risk of non-alcoholic fatty liver disease in patients who underwent cholecystectomy. Ann Nutr Metab. 70:303–311. 2017. View Article : Google Scholar : PubMed/NCBI | |
Moreira RJ, Castro É, Oliveira TE, Belchior T, Peixoto AS, Chaves-Filho AB, Moreno MF, Lima JD, Yoshinaga M, Miyamoto S, et al: Lipoatrophy-Associated insulin resistance and hepatic steatosis are attenuated by intake of diet rich in omega 3 fatty acids. Mol Nutr Food Res. 64:e19008332020. View Article : Google Scholar : PubMed/NCBI | |
Musazadeh V, Dehghan P, Saleh-Ghadimi S and Abbasalizad Farhangi M: Omega 3-rich Camelina sativa oil in the context of a weight loss program improves glucose homeostasis, inflammation and oxidative stress in patients with NAFLD: A randomised placebo-controlled clinical trial. Int J Clin Pract. 75:e147442021. View Article : Google Scholar : PubMed/NCBI | |
Tosti V, Bertozzi B and Fontana L: Health benefits of the mediterranean diet: Metabolic and molecular mechanisms. J Gerontol A Biol Sci Med Sci. 73:318–326. 2018. View Article : Google Scholar | |
Alonso-Domínguez R, García-Ortiz L, Patino-Alonso MC, Sánchez-Aguadero N and Gómez-Marcos MA: Recio-Rodríguez JI: Effectiveness of a multifactorial intervention in increasing adherence to the mediterranean diet among patients with diabetes mellitus type 2: A Controlled and Randomized Study (EMID Study). Nutrients. 11:1622019. View Article : Google Scholar | |
Mohammadi S, Lotfi K, Mirzaei S, Asadi A, Akhlaghi M and Saneei P: Adherence to mediterranean diet and its association with metabolic health status in overweight and obese adolescents. Int J Clin Pract. 2022:99252672022. View Article : Google Scholar : PubMed/NCBI | |
Torres-Collado L, García-de la Hera M, Lopes C, Compañ-Gabucio LM, Oncina-Cánovas A, Notario-Barandiaran L, González-Palacios S and Vioque J: Olive oil consumption and all-cause, cardiovascular and cancer mortality in an adult mediterranean population in Spain. Front Nutr. 9:9979752022. View Article : Google Scholar : PubMed/NCBI | |
Martínez-González M, Martín-Calvo N, Bretos-Azcona T, Carlos S and Delgado-Rodríguez M: Mediterranean diet and cardiovascular prevention: why analytical observational designs do support causality and not only associations. Int J Environ Res Public Health. 19:136532022. View Article : Google Scholar : PubMed/NCBI | |
Zelber-Sagi S, Salomone F and Mlynarsky L: The Mediterranean dietary pattern as the diet of choice for non-alcoholic fatty liver disease: Evidence and plausible mechanisms. Liver Int. 37:936–949. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang XL, Wang TY, Targher G, Byrne CD and Zheng MH: Lifestyle interventions for non-obese patients both with, and at risk, of non-alcoholic fatty liver disease. Diabetes Metab J. 46:391–401. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hinrichs H, Faerber A, Young M, Ballentine SJ and Thompson MD: Maternal exercise protects male offspring from maternal diet-programmed nonalcoholic fatty liver disease progression. Endocrinology. 164:bqad0102023. View Article : Google Scholar : PubMed/NCBI | |
Hashida R, Kawaguchi T, Bekki M, Omoto M, Matsuse H, Nago T, Takano Y, Ueno T, Koga H, George J, et al: Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: A systematic review. J Hepatol. 66:142–152. 2017. View Article : Google Scholar | |
Zhang HJ, Pan LL, Ma ZM, Chen Z, Huang ZF, Sun Q, Lu Y, Han CK, Lin MZ, Li XJ, et al: Long-term effect of exercise on improving fatty liver and cardiovascular risk factors in obese adults: A 1-year follow-up study. Diabetes Obes Metab. 19:284–289. 2017. View Article : Google Scholar | |
Wong VW, Wong GL, Chan RS, Shu SS, Cheung BH, Li LS, Chim AM, Chan CK, Leung JK, Chu WC, et al: Beneficial effects of lifestyle intervention in non-obese patients with non-alcoholic fatty liver disease. J Hepatol. 69:1349–1356. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kasper P, Breuer S, Hoffmann T, Vohlen C, Janoschek R, Schmitz L, Appel S, Fink G, Hünseler C, Quaas A, et al: Maternal exercise mediates hepatic metabolic programming via activation of AMPK-PGC1α axis in the offspring of obese mothers. Cells. 10:12472021. View Article : Google Scholar | |
Battista F, Ermolao A, van Baak MA, Beaulieu K, Blundell JE, Busetto L, Carraça EV, Encantado J, Dicker D, Farpour-Lambert N, et al: Effect of exercise on cardiometabolic health of adults with overweight or obesity: Focus on blood pressure, insulin resistance, and intrahepatic fat-A systematic review and meta-analysis. Obes Rev. 22(Suppl 4): e132692021. View Article : Google Scholar : PubMed/NCBI | |
Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, Harrison SA, Brunt EM and Sanyal AJ: The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the study of liver diseases. Hepatology. 67:328–357. 2018. View Article : Google Scholar | |
Nguyen NT and Varela JE: Bariatric surgery for obesity and metabolic disorders: state of the art. Nat Rev Gastroenterol Hepatol. 14:160–169. 2017. View Article : Google Scholar | |
Cabré N, Luciano-Mateo F, Fernández-Arroyo S, Baiges-Gayà G, Hernández-Aguilera A, Fibla M, Fernández-Julià R, París M, Sabench F, Castillo DD, et al: Laparoscopic sleeve gastrectomy reverses non-alcoholic fatty liver disease modulating oxidative stress and inflammation. Metabolism. 99:81–89. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nobili V, Carpino G, De Peppo F, Caccamo R, Mosca A, Romito I, Overi D, Franchitto A, Onori P, Alisi A and Gaudio E: Laparoscopic sleeve gastrectomy improves nonalcoholic fatty liver disease-related liver damage in adolescents by reshaping cellular interactions and hepatic adipocytokine production. J Pediatr. 194:100–108.e3. 2018. View Article : Google Scholar | |
Pan Q, Qin T, Gao Y, Li S, Li D, Peng M, Zhai H and Xu G: Hepatic mTOR-AKT2-Insig2 signaling pathway contributes to the improvement of hepatic steatosis after Roux-en-Y Gastric Bypass in mice. Biochim Biophys Acta Mol Basis Dis. 1865:525–534. 2019. View Article : Google Scholar | |
Caiazzo R, Lassailly G, Leteurtre E, Baud G, Verkindt H, Raverdy V, Buob D, Pigeyre M, Mathurin P and Pattou F: Roux-en-Y gastric bypass versus adjustable gastric banding to reduce nonalcoholic fatty liver disease: A 5-year controlled longitudinal study. Ann Surg. 260:893–898; discussion 898-9. 2014. View Article : Google Scholar : PubMed/NCBI | |
Feng W, Yin T, Chu X, Shan X, Jiang C, Wang Y, Qian Y, Zhu D, Sun X and Bi Y: Metabolic effects and safety of Roux-en-Y gastric bypass surgery vs. conventional medication in obese Chinese patients with type 2 diabetes. Diabetes Metab Res Rev. 35:e31382019. View Article : Google Scholar : PubMed/NCBI | |
Malo FC, Marion A, Rioux A, Lebel S, Hould F, Julien F, Marceau S, Lescelleur O, Lafortune A, Bouvet-Bouchard L and Biertho L: Long alimentary limb duodenal switch (LADS): An exploratory randomized trial, results at 2 years. Obes Surg. 30:5047–5058. 2020. View Article : Google Scholar : PubMed/NCBI | |
Russo MF, Lembo E, Mari A, Angelini G, Verrastro O, Nanni G, Pompili M, Raffaelli M, Vecchio FM, Bornstein SR and Mingrone G: Insulin resistance is central to long-term reversal of histologic nonalcoholic steatohepatitis after metabolic surgery. J Clin Endocrinol Metab. 106:750–761. 2021. View Article : Google Scholar | |
Giannini EG, Coppo C, Romana C, Camerini GB, De Cian F, Scopinaro N and Papadia FS: Long-term follow-up study of liver-related outcome after bilio-pancreatic diversion in patients with initial, significant liver damage. Dig Dis Sci. 63:1946–1951. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hassanian M, Al-Mulhim A, Al-Sabhan A, Al-Amro S, Bamehriz F, Abdo A, Al Khalidi H and Aldoheyan TA: The effect of bariatric surgeries on nonalcoholic fatty liver disease. Saudi J Gastroenterol. 20:270–278. 2014. View Article : Google Scholar : PubMed/NCBI | |
Aldoheyan T, Hassanain M, Al-Mulhim A, Al-Sabhan A, Al-Amro S, Bamehriz F and Al-Khalidi H: The effects of bariatric surgeries on nonalcoholic fatty liver disease. Surg Endosc. 31:1142–1147. 2017. View Article : Google Scholar | |
Karlsson C, Wallenius K, Walentinsson A, Greasley PJ, Miliotis T, Hammar M, Iaconelli A, Tapani S, Raffaelli M, Mingrone G and Carlsson B: Identification of proteins associated with the early restoration of insulin sensitivity after biliopancreatic diversion. J Clin Endocrinol Metab. 105:e4157–e4168. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu HH, Hsieh MC, Wu SY, Sy ED and Shan YS: Effects of duodenal-jejunal bypass surgery in ameliorating nonalcoholic steatohepatitis in diet-induced obese rats. Diabetes Metab Syndr Obes. 12:149–159. 2019. View Article : Google Scholar : PubMed/NCBI | |
Talavera-Urquijo E, Beisani M, Balibrea JM and Alverdy JC: Is bariatric surgery resolving NAFLD via microbiota-mediated bile acid ratio reversal? A comprehensive review. Surg Obes Relat Dis. 16:1361–1369. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Zheng J, Zhang S, Wang B, Wu C and Guo X: Advances in the involvement of gut microbiota in pathophysiology of NAFLD. Front Med (Lausanne). 7:3612020. View Article : Google Scholar : PubMed/NCBI | |
Yao Z, Song S, Li X, Wang W, Ren P, Wang H, Xie Y and Li Z: Corn peptides ameliorate nonalcoholic fatty liver disease by suppressing endoplasmic reticulum stress via the AMPKα/Sirt1 pathway in vivo and in vitro. Journal of Functional Foods. 93:1050632022. View Article : Google Scholar | |
Santos-Sanchez G, Cruz-Chamorro I, Alvarez-Rios AI, Fernández-Santos JM, Vázquez-Román MV, Rodríguez-Ortiz B, Álvarez-Sánchez N, Álvarez-López AI, Millán-Linares MDC, Millán F, et al: Lupinus angustifolius protein hydrolysates reduce abdominal adiposity and ameliorate metabolic associated fatty liver disease (MAFLD) in Western Diet Fed-ApoE(-/-) Mice. Antioxidants (Basel). 10:12222021. View Article : Google Scholar : PubMed/NCBI | |
Dumeus S, Shibu MA, Lin WT, Wang MF, Lai CH, Shen CY, Lin YM, Viswanadha VP, Kuo WW and Huang CY: Bioactive peptide improves diet-induced hepatic fat deposition and hepatocyte proinflammatory response in SAMP8 ageing mice. Cell Physiol Biochem. 48:1942–1952. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhong D, Xie Z, Huang B, Zhu S, Wang G, Zhou H, Lin S, Lin Z and Yang B: Ganoderma lucidum polysaccharide peptide alleviates hepatoteatosis via modulating bile acid metabolism dependent on FXR-SHP/FGF. Cell Physiol Biochem. 49:1163–1179. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ye J, Tian X, Wang Q, Zheng J, Yang Y, Xu B, Zhang S, Yuan F and Yang Z: Monkfish peptides mitigate high fat diet-induced hepatic steatosis in mice. Mar Drugs. 20:3122022. View Article : Google Scholar : PubMed/NCBI | |
Pittala S, Krelin Y, Kuperman Y and Shoshan-Barmatz V: A Mitochondrial VDAC1-Based peptide greatly suppresses steatosis and NASH-Associated pathologies in a mouse model. Mol Ther. 27:1848–1862. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chiang WD, Shibu MA, Lee KI, Wu JP, Tsai FJ, Pan LF, Huang CY and Lin WT: Lipolysis-stimulating peptide-VHVV ameliorates high fat diet induced hepatocyte apoptosis and fibrosis. J Func Foods. 11:482–492. 2014. View Article : Google Scholar | |
Moreira GV, Azevedo FF, Ribeiro LM, Santos A, Guadagnini D, Gama P, Liberti EA, Saad M and Carvalho C: Liraglutide modulates gut microbiota and reduces NAFLD in obese mice. J Nutr Biochem. 62:143–154. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Ji L, Zhu C, Xiao Y, Zhang J, Lu J, Yin J and Wei L: Liraglutide alleviates hepatic steatosis by activating the TFEB-Regulated autophagy-lysosomal pathway. Front Cell Dev Biol. 8:6025742020. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Ma X, Xuan X, Deng H, Chen Q and Yuan L: Liraglutide attenuates non-alcoholic fatty liver disease in mice by regulating the local renin-angiotensin system. Front Pharmacol. 11:4322020. View Article : Google Scholar : PubMed/NCBI | |
Armstrong MJ, Gaunt P, Aithal GP, Barton D, Hull D, Parker R, Hazlehurst JM, Guo K, Abouda G; LEAN trial team; et al: Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): A multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. 387:679–690. 2016. View Article : Google Scholar | |
Kuchay MS, Krishan S, Mishra SK, Choudhary NS, Singh MK, Wasir JS, Kaur P, Gill HK, Bano T, Farooqui KJ and Mithal A: Effect of dulaglutide on liver fat in patients with type 2 diabetes and NAFLD: Randomised controlled trial (D-LIFT trial). Diabetologia. 63:2434–2445. 2020. View Article : Google Scholar : PubMed/NCBI | |
Newsome PN, Buchholtz K, Cusi K, Linder M, Okanoue T, Ratziu V, Sanyal AJ, Sejling AS and Harrison SA; NN9931-4296 Investigators: A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N Engl J Med. 384:1113–1124. 2021. View Article : Google Scholar | |
Flint A, Andersen G, Hockings P, Johansson L, Morsing A, Sundby Palle M, Vogl T, Loomba R and Plum-Mörschel L: Randomised clinical trial: Semaglutide versus placebo reduced liver steatosis but not liver stiffness in subjects with non-alcoholic fatty liver disease assessed by magnetic resonance imaging. Aliment Pharmacol Ther. 54:1150–1161. 2021. View Article : Google Scholar : PubMed/NCBI | |
Newsome P, Francque S, Harrison S, Ratziu V, Van Gaal L, Calanna S, Hansen M, Linder M and Sanyal A: Effect of semaglutide on liver enzymes and markers of inflammation in subjects with type 2 diabetes and/or obesity. Aliment Pharmacol Ther. 50:193–203. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jin L, Sun Y, Li Y, Zhang H, Yu W, Li Y, Xin Y, Alsareii SA, Wang Q and Zhang D: A synthetic peptide AWRK6 ameliorates metabolic associated fatty liver disease: Involvement of lipid and glucose homeostasis. Peptides. 143:1705972021. View Article : Google Scholar : PubMed/NCBI | |
van Dalem J, Driessen JHM, Burden AM, Stehouwer CDA, Klungel OH, de Vries F and Brouwers MCGJ: Thiazolidinediones and glucagon-like peptide-1 receptor agonists and the risk of nonalcoholic fatty liver disease: A cohort study. Hepatology. 74:2467–2477. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao JV, Yeung WF, Chan YH, Vackova D, Leung JYY, Ip DKM, Zhao J, Ho WK, Tse HF and Schooling CM: Effect of berberine on cardiovascular disease risk factors: A mechanistic randomized controlled trial. Nutrients. 13:25502021. View Article : Google Scholar : PubMed/NCBI | |
Majidzadeh H, Araj-Khodaei M, Ghaffari M, Torbati M, Ezzati Nazhad Dolatabadi J and Hamblin MR: Nano-based delivery systems for berberine: A modern anti-cancer herbal medicine. Colloids Surf B Biointerfaces. 194:1111882020. View Article : Google Scholar : PubMed/NCBI | |
Koperska A, Wesolek A, Moszak M and Szulinska M: Berberine in non-alcoholic fatty liver disease-A review. Nutrients. 14:34592022. View Article : Google Scholar : PubMed/NCBI | |
Wei X, Wang C, Hao S, Song H and Yang L: The therapeutic effect of berberine in the treatment of nonalcoholic fatty liver disease: A meta-analysis. Evid Based Complement Alternat Med. 2016:35939512016. View Article : Google Scholar : PubMed/NCBI | |
Guo T, Woo SL, Guo X, Li H, Zheng J, Botchlett R, Liu M, Pei Y, Xu H, Cai Y, et al: Berberine ameliorates hepatic steatosis and suppresses liver and adipose tissue inflammation in mice with diet-induced obesity. Sci Rep. 6:226122016. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Bian H, Wang L, Sun X, Xu X, Yan H, Xia M, Chang X, Lu Y, Li Y, et al: Berberine attenuates nonalcoholic hepatic steatosis through the AMPK-SREBP-1c-SCD1 pathway. Free Radic Biol Med. 141:192–204. 2019. View Article : Google Scholar : PubMed/NCBI | |
Vivoli E, Cappon A, Milani S, Piombanti B, Provenzano A, Novo E, Masi A, Navari N, Narducci R, Mannaioni G, et al: NLRP3 inflammasome as a target of berberine in experimental murine liver injury: Interference with P2X7 signalling. Clin Sci (Lond). 130:1793–1806. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Yuan X, Zhang F, Han Y, Chang X, Xu X, Li Y and Gao X: Berberine ameliorates fatty acid-induced oxidative stress in human hepatoma cells. Sci Rep. 7:113402017. View Article : Google Scholar : PubMed/NCBI | |
Li D, Zheng J, Hu Y, Hou H, Hao S, Liu N and Wang Y: Amelioration of intestinal barrier dysfunction by berberine in the treatment of nonalcoholic fatty liver disease in rats. Pharmacogn Mag. 13:677–682. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhao Y, Xu J, Xue Z, Zhang M, Pang X, Zhang X and Zhao L: Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Sci Rep. 5:144052015. View Article : Google Scholar : PubMed/NCBI | |
Cui HX, Hu YN, Li JW and Yuan K: Hypoglycemic mechanism of the berberine organic acid salt under the synergistic effect of intestinal flora and oxidative stress. Oxid Med Cell Longev. 2018:89303742018. View Article : Google Scholar | |
Li G, Zhou F, Chen Y, Zhang W and Wang N: Kukoamine A attenuates insulin resistance and fatty liver through downregulation of Srebp-1c. Biomed Pharmacother. 89:536–543. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sharma L, Lone NA, Knott RM, Hassan A and Abdullah T: Trigonelline prevents high cholesterol and high fat diet induced hepatic lipid accumulation and lipo-toxicity in C57BL/6J mice, via restoration of hepatic autophagy. Food Chem Toxicol. 121:283–296. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liang L, Ye S, Jiang R, Zhou X, Zhou J and Meng S: Liensinine alleviates high fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) through suppressing oxidative stress and inflammation via regulating TAK1/AMPK signaling. Int Immunopharmacol. 104:1083062022. View Article : Google Scholar : PubMed/NCBI | |
Cai L, Liu S, Sun L, Wang Y, Ji H and Li J: Application of tea polyphenols in combination with 6-gingerol on shrimp paste of during storage: Biogenic amines formation and quality determination. Front Microbiol. 6:9812015. View Article : Google Scholar : PubMed/NCBI | |
Panahi Y, Hossein i MS, Khalili N, Naimi E, Simental-Mendía LE, Majeed M and Sahebkar A: Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomed Pharmacother. 82:578–582. 2016. View Article : Google Scholar : PubMed/NCBI | |
Panahi Y, Hosseini MS, Khalili N, Naimi E, Majeed M and Sahebkar A: Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: A randomized controlled trial and an updated meta-analysis. Clin Nutr. 34:1101–1108. 2015. View Article : Google Scholar : PubMed/NCBI | |
Panahi Y, Kianpour P, Mohtashami R, Jafari R, Simental-Mendía LE and Sahebkar A: Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: A Randomized controlled trial. Drug Res (Stuttg). 67:244–251. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rahmani S, Asgary S, Askari G, Keshvari M, Hatamipour M, Feizi A and Sahebkar A: Treatment of non-alcoholic fatty liver disease with curcumin: A Randomized placebo-controlled trial. Phytother Res. 30:1540–1548. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mokgalaboni K, Ntamo Y, Ziqubu K, Nyambuya TM, Nkambule BB, Mazibuko-Mbeje SE, Gabuza KB, Chellan N, Tiano L and Dludla PV: Curcumin supplementation improves biomarkers of oxidative stress and inflammation in conditions of obesity, type 2 diabetes and NAFLD: Updating the status of clinical evidence. Food Funct. 12:12235–12249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mahmoudi A, Butler AE, Majeed M, Banach M and Sahebkar A: Investigation of the effect of curcumin on protein targets in NAFLD using bioinformatic analysis. Nutrients. 14:13312022. View Article : Google Scholar : PubMed/NCBI | |
Korsholm AS, Kjær TN, Ornstrup MJ and Pedersen SB: Comprehensive metabolomic analysis in blood, urine, fat, and muscle in men with metabolic Syndrome: A Randomized, placebo-controlled clinical trial on the effects of resveratrol after four months' treatment. Int J Mol Sci. 18:5542017. View Article : Google Scholar : PubMed/NCBI | |
Méndez-del Villar M, González-Ortiz M, Martínez-Abundis E, Pérez-Rubio KG and Lizárraga-Valdez R: Effect of resveratrol administration on metabolic syndrome, insulin sensitivity, and insulin secretion. Metab Syndr Relat Disord. 12:497–501. 2014. View Article : Google Scholar : PubMed/NCBI | |
Faghihzadeh F, Adibi P and Hekmatdoost A: The effects of resveratrol supplementation on cardiovascular risk factors in patients with non-alcoholic fatty liver disease: A randomised, double-blind, placebo-controlled study. Br J Nutr. 114:796–803. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cheng C, Li Z, Zhao X, Liao C, Quan J, Bode AM, Cao Y and Luo X: Natural alkaloid and polyphenol compounds targeting lipid metabolism: Treatment implications in metabolic diseases. Eur J Pharmacol. 870:1729222020. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Zhao X, Ran L, Wan J, Wang X, Qin Y, Shu F, Gao Y, Yuan L, Zhang Q and Mi M: Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: A randomized controlled trial. Dig Liver Dis. 47:226–232. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tejada S, Capó X, Mascaró CM, Monserrat-Mesquida M, Quetglas-Llabrés MM, Pons A, Tur JA and Sureda A: Hepatoprotective effects of resveratrol in non-alcoholic fatty live disease. Curr Pharm Des. 27:2558–2570. 2021. View Article : Google Scholar | |
Hosseini H, Teimouri M, Shabani M, Koushki M, Babaei Khorzoughi R, Namvarjah F, Izadi P and Meshkani R: Resveratrol alleviates non-alcoholic fatty liver disease through epigenetic modification of the Nrf2 signaling pathway. Int J Biochem Cell Biol. 119:1056672020. View Article : Google Scholar | |
Ebrahimpour S, Zakeri M and Esmaeili A: Crosstalk between obesity, diabetes, and alzheimer's disease: Introducing quercetin as an effective triple herbal medicine. Ageing Res Rev. 62:1010952020. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Yang T, Heng C, Zhou Y, Jiang Z, Qian X, Du L, Mao S, Yin X and Lu Q: Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother Res. 33:3140–3152. 2019. View Article : Google Scholar : PubMed/NCBI | |
Porras D, Nistal E, Martínez-Flórez S, Pisonero-Vaquero S, Olcoz JL, Jover R, González-Gallego J, García-Mediavilla MV and Sánchez-Campos S: Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic Biol Med. 102:188–202. 2017. View Article : Google Scholar | |
Zhu X, Xiong T, Liu P, Guo X, Xiao L, Zhou F, Tang Y and Yao P: Quercetin ameliorates HFD-induced NAFLD by promoting hepatic VLDL assembly and lipophagy via the IRE1a/XBP1s pathway. Food Chem Toxicol. 114:52–60. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Liu J, Mei G, Chen H, Peng S, Zhao Y, Yao P and Tang Y: Quercetin and non-alcoholic fatty liver disease: A review based on experimental data and bioinformatic analysis. Food Chem Toxicol. 154:1123142021. View Article : Google Scholar : PubMed/NCBI | |
Saha S, Sadhukhan P and Sil PC: Mangiferin: A xanthonoid with multipotent anti-inflammatory potential. BioFactors. 42:459–474. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gold-Smith F, Fernandez A and Bishop K: Mangiferin and cancer: Mechanisms of action. Nutrients. 8:3962016. View Article : Google Scholar : PubMed/NCBI | |
Yong Z, Ruiqi W, Hongji Y, Ning M, Chenzuo J, Yu Z, Zhixuan X, Qiang L, Qibing L, Weiying L and Xiaopo Z: Mangiferin Ameliorates HFD-Induced NAFLD through Regulation of the AMPK and NLRP3 inflammasome signal pathways. J Immunol Res. 2021:40845662021. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Liu Q, Liu L, Hu YY and Feng Q: Potential biological effects of (−)-epigallocatechin-3-gallate on the treatment of nonalcoholic fatty liver disease. Mol Nutr Food Res. 62:17004832018. View Article : Google Scholar | |
Chen Q and Wang T, Li J, Wang S, Qiu F, Yu H, Zhang Y and Wang T: Effects of natural products on fructose-induced nonalcoholic fatty liver disease (NAFLD). Nutrients. 9:962017. View Article : Google Scholar : PubMed/NCBI | |
Abenavoli L, Izzo AA, Milic N, Cicala C, Santini A and Capasso R: Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother Res. 32:2202–2213. 2018. View Article : Google Scholar : PubMed/NCBI | |
Marin V, Gazzin S, Gambaro SE, Dal Ben M, Calligaris S, Anese M, Raseni A, Avellini C, Giraudi PJ, Tiribelli C and Rosso N: Effects of oral administration of silymarin in a juvenile murine model of non-alcoholic steatohepatitis. Nutrients. 9:10062017. View Article : Google Scholar : PubMed/NCBI | |
Ni X and Wang H: Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD). Am J Transl Res. 8:1073–1081. 2016.PubMed/NCBI | |
Gu M, Zhao P, Huang J, Zhao Y, Wang Y, Li Y, Li Y, Fan S, Ma YM, Tong Q, et al: Silymarin ameliorates metabolic dysfunction associated with diet-induced obesity via activation of farnesyl X receptor. Front Pharmacol. 7:3452016. View Article : Google Scholar : PubMed/NCBI | |
Wah Kheong C, Nik Mustapha NR and Mahadeva S: A Randomized trial of silymarin for the treatment of nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 15:1940–1949.e8. 2017. View Article : Google Scholar | |
Curcio A, Romano A, Cuozzo S, Nicola AD, Grassi O, Schiaroli D, Nocera GF and Pironti M: Silymarin in combination with vitamin C, vitamin E, coenzyme Q10 and selenomethionine to improve liver enzymes and blood lipid profile in NAFLD patients. Medicina (Kaunas). 56:5442020. View Article : Google Scholar : PubMed/NCBI | |
Ou Q, Weng Y, Wang S, Zhao Y, Zhang F, Zhou J and Wu X: Silybin alleviates hepatic steatosis and fibrosis in NASH mice by inhibiting oxidative stress and involvement with the Nf-κB pathway. Dig Dis Sci. 63:3398–3408. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cui CX, Deng JN, Yan L, Liu YY, Fan JY, Mu HN, Sun HY, Wang YH and Han JY: Silibinin Capsules improves high fat diet-induced nonalcoholic fatty liver disease in hamsters through modifying hepatic de novo lipogenesis and fatty acid oxidation. J Ethnopharmacol. 208:24–35. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Xu W, Zhai T, You J and Chen Y: Silibinin ameliorates hepatic lipid accumulation and oxidative stress in mice with non-alcoholic steatohepatitis by regulating CFLAR-JNK pathway. Acta Pharm Sin B. 9:745–757. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cassard AM and Ciocan D: Microbiota, a key player in alcoholic liver disease. Clin Mol Hepatol. 24:100–107. 2018. View Article : Google Scholar : | |
Fujinaga Y, Kawaratani H, Kaya D, Tsuji Y, Ozutsumi T, Furukawa M, Kitagawa K, Sato S, Nishimura N, Sawada Y, et al: effective combination therapy of angiotensin-II receptor blocker and rifaximin for hepatic fibrosis in rat model of nonalcoholic steatohepatitis. Int J Mol Sci. 21:55892020. View Article : Google Scholar : PubMed/NCBI | |
Jian J, Nie MT, Xiang B, Qian H, Yin C, Zhang X, Zhang M, Zhu X and Xie WF: Rifaximin ameliorates non-alcoholic steatohepatitis in mice through regulating gut microbiome-related bile acids. Front Pharmacol. 13:8411322022. View Article : Google Scholar : PubMed/NCBI | |
Gangarapu V, Ince AT, Baysal B, Kayar Y, Kılıç U, Gök Ö, Uysal Ö and Şenturk H: Efficacy of rifaximin on circulating endotoxins and cytokines in patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 27:840–845. 2015. View Article : Google Scholar : PubMed/NCBI | |
Abdel-Razik A, Mousa N, Shabana W, Refaey M, Elzehery R, Elhelaly R, Zalata K, Abdelsalam M, Eldeeb AA, Awad M, et al: Rifaximin in nonalcoholic fatty liver disease: Hit multiple targets with a single shot. Eur J Gastroenterol Hepatol. 30:1237–1246. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sumida Y and Yoneda M: Current and future pharmacological therapies for NAFLD/NASH. J Gastroenterol. 53:362–376. 2018. View Article : Google Scholar : | |
Rotman Y and Sanyal AJ: Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease. Gut. 66:180–190. 2017. View Article : Google Scholar | |
Brandt A, Jin CJ, Nolte K, Sellmann C, Engstler AJ and Bergheim I: Short-Term intake of a fructose-, fat- and cholesterol-rich diet causes hepatic steatosis in mice: Effect of antibiotic treatment. Nutrients. 9:10132017. View Article : Google Scholar : PubMed/NCBI | |
Suk KT and Kim DJ: Gut microbiota: novel therapeutic target for nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol. 13:193–204. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liao CC, Ou TT, Huang HP and Wang CJ: The inhibition of oleic acid induced hepatic lipogenesis and the promotion of lipolysis by caffeic acid via up-regulation of AMP-activated kinase. J Sci Food Agric. 94:1154–1162. 2014. View Article : Google Scholar | |
Pardo V, González-Rodríguez Á, Muntané J, Kozma SC and Valverde ÁM: Role of hepatocyte S6K1 in palmitic acid-induced endoplasmic reticulum stress, lipotoxicity, insulin resistance and in oleic acid-induced protection. Food Chem Toxicol. 80:298–309. 2015. View Article : Google Scholar : PubMed/NCBI | |
Reyes-Quiroz ME, Alba G, Saenz J, Santa-María C, Geniz I, Jiménez J, Ramírez R, Martín-Nieto J, Pintado E and Sobrino F: Oleic acid modulates mRNA expression of liver X receptor (LXR) and its target genes ABCA1 and SREBP1c in human neutrophils. Eur J Nutr. 53:1707–1717. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gu LY, Qiu LW, Chen XF, Lü L and Mei ZC: Oleic acid-induced hepatic steatosis is coupled with downregulation of aquaporin 3 and upregulation of aquaporin 9 via activation of p38 signaling. Horm Metab Res. 47:259–264. 2015. | |
Miyake T, Furukawa S, Matsuura B, Yoshida O, Miyazaki M, Shiomi A, Kanzaki S, Nakaguchi H, Sunago K, Nakamura Y, et al: Plasma fatty acid composition is associated with histological findings of nonalcoholic steatohepatitis. Biomedicines. 10:25402022. View Article : Google Scholar : PubMed/NCBI | |
Rodrigues PO, Martins SV, Lopes PA, Ramos C, Miguéis S, Alfaia CM, Pinto RM, Rolo EA, Bispo P, Batista I, et al: Influence of feeding graded levels of canned sardines on the inflammatory markers and tissue fatty acid composition of Wistar rats. Br J Nutr. 112:309–319. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tapia G, Valenzuela R, Espinosa A, Romanque P, Dossi C, Gonzalez-Mañán D, Videla LA and D'Espessailles A: N-3 long-chain PUFA supplementation prevents high fat diet induced mouse liver steatosis and inflammation in relation to PPAR-α upregulation and NF-κB DNA binding abrogation. Mol Nutr Food Res. 58:1333–1341. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Ma LJ, Yang Y, Xiao Z and Wan JB: n-3 Polyunsaturated fatty acids for the management of alcoholic liver disease: A critical review. Crit Rev Food Sci Nutr. 59(sup1): S116–S129. 2019. View Article : Google Scholar | |
Smid V, Dvorak K, Sedivy P, Kosek V, Leníček M, Dezortová M, Hajšlová J, Hájek M, Vítek L, Bechyňská K and Brůha R: Effect of Omega-3 polyunsaturated fatty acids on lipid metabolism in patients with metabolic Syndrome and NAFLD. Hepatol Commun. 6:1336–1349. 2022. View Article : Google Scholar : PubMed/NCBI | |
Albracht-Schulte K, Kalupahana NS, Ramalingam L, Wang S, Rahman SM, Robert-McComb J and Moustaid-Moussa N: Omega-3 fatty acids in obesity and metabolic syndrome: A mechanistic update. J Nutr Biochem. 58:1–16. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pacifico L, Giansanti S, Gallozzi A and Chiesa C: Long chain omega-3 polyunsaturated fatty acids in pediatric metabolic syndrome. Mini Rev Med Chem. 14:791–804. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jeyapal S, Kona SR, Mullapudi SV, Putcha UK, Gurumurthy P and Ibrahim A: Substitution of linoleic acid with alpha-linolenic acid or long chain n-3 polyunsaturated fatty acid prevents Western diet induced nonalcoholic steatohepatitis. Sci Rep. 8:109532018. View Article : Google Scholar | |
Da Silva HE, Arendt BM, Noureldin SA, Therapondos G, Guindi M and Allard JP: A cross-sectional study assessing dietary intake and physical activity in Canadian patients with nonalcoholic fatty liver disease vs healthy controls. J Acad Nutr Diet. 114:1181–1194. 2014. View Article : Google Scholar : PubMed/NCBI | |
Silva Figueiredo P, Inada AC, Ribeiro Fernandes M, Granja Arakaki D, Freitas KC, Avellaneda Guimarães RC, Aragão do Nascimento V and Aiko Hiane P: An overview of novel dietary supplements and food ingredients in patients with metabolic Syndrome and non-alcoholic fatty liver disease. Molecules. 23:8772018. View Article : Google Scholar : PubMed/NCBI | |
Glen J, Floros L, Day C and Pryke R; Guideline Development Group: Non-alcoholic fatty liver disease (NAFLD): Summary of NICE guidance. BMJ. 354:i44282016. View Article : Google Scholar : PubMed/NCBI | |
Presa N, Clugston RD, Lingrell S, Kelly SE, Merrill AH Jr, Jana S, Kassiri Z, Gómez-Muñoz A, Vance DE, Jacobs RL and van der Veen JN: Vitamin E alleviates non-alcoholic fatty liver disease in phosphatidylethanolamine N-methyltransferase deficient mice. Biochim Biophys Acta Mol Basis Dis. 1865:14–25. 2019. View Article : Google Scholar | |
Amanullah I, Khan YH, Anwar I, Gulzar A, Mallhi TH and Raja AA: Effect of vitamin E in non-alcoholic fatty liver disease: A systematic review and meta-analysis of randomised controlled trials. Postgrad Med J. 95:601–611. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sebastiani G, Saeed S, Lebouche B, de Pokomandy A, Szabo J, Haraoui LP, Routy JP, Wong P, Deschenes M, Ghali P, et al: Vitamin E is an effective treatment for nonalcoholic steatohepatitis in HIV mono-infected patients. AIDS. 34:237–244. 2020. View Article : Google Scholar | |
Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, Neuschwander-Tetri BA, Lavine JE, Tonascia J, Unalp A, et al: Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 362:1675–1685. 2010. View Article : Google Scholar : PubMed/NCBI | |
He W, Xu Y, Ren X, Xiang D, Lei K, Zhang C and Liu D: Vitamin E ameliorates lipid metabolism in mice with nonalcoholic fatty liver disease via Nrf2/CES1 signaling pathway. Dig Dis Sci. 64:3182–3191. 2019. View Article : Google Scholar : PubMed/NCBI | |
Klaebel JH, Rakipovski G, Andersen B, Lykkesfeldt J and Tveden-Nyborg P: Dietary intervention accelerates NASH resolution depending on inflammatory status with minor additive effects on hepatic injury by vitamin E supplementation. Antioxidants (Basel). 9:8082020. View Article : Google Scholar : PubMed/NCBI | |
Farrag SM, Hamzawy MA, El-Yamany MF, Saad MA and Nassar NN: Atorvastatin in nano-particulate formulation abates muscle and liver affliction when coalesced with coenzyme Q10 and/or vitamin E in hyperlipidemic rats. Life Sci. 203:129–140. 2018. View Article : Google Scholar : PubMed/NCBI | |
Klaebel JH, Skjodt M, Skat-Rordam J, Rakipovski G, Ipsen DH, Schou-Pedersen AMV, Lykkesfeldt J and Tveden-Nyborg P: Atorvastatin and vitamin E accelerates NASH resolution by dietary intervention in a preclinical guinea pig model. Nutrients. 11:28342019. View Article : Google Scholar : PubMed/NCBI | |
Xin J, Jiang X, Ben S, Yuan Q, Su L, Zhang Z, Christiani DC, Du M and Wang M: Association between circulating vitamin E and ten common cancers: Evidence from large-scale Mendelian randomization analysis and a longitudinal cohort study. BMC Med. 20:1682022. View Article : Google Scholar : PubMed/NCBI | |
Brunner KT, Henneberg CJ, Wilechansky RM and Long MT: Nonalcoholic fatty liver disease and obesity treatment. Curr Obes Rep. 8:220–228. 2019. View Article : Google Scholar : PubMed/NCBI | |
Muscogiuri G, Mitri J, Mathieu C, Badenhoop K, Tamer G, Orio F, Mezza T, Vieth R, Colao A and Pittas A: Mechanisms in endocrinology: Vitamin D as a potential contributor in endocrine health and disease. Eur J Endocrinol. 171:R101–R110. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bea JW, Jurutka PW, Hibler EA, Lance P, Martínez ME, Roe DJ, Sardo Molmenti CL, Thompson PA and Jacobs ET: Concentrations of the vitamin D metabolite 1,25(OH)2D and odds of metabolic syndrome and its components. Metabolism. 64:447–459. 2015. View Article : Google Scholar : | |
Wang Q, Shi X, Wang J, Zhang J and Xu C: Low serum vitamin D concentrations are associated with obese but not lean NAFLD: A cross-sectional study. Nutr J. 20:302021. View Article : Google Scholar : PubMed/NCBI | |
Zeng Y, Luo M, Pan L, Chen Y, Guo S, Luo D, Zhu L, Liu Y, Pan L, Xu S, et al: Vitamin D signaling maintains intestinal innate immunity and gut microbiota: potential intervention for metabolic syndrome and NAFLD. Am J Physiol Gastrointest Liver Physiol. 318:G542–G553. 2020. View Article : Google Scholar : PubMed/NCBI | |
Barchetta I, Cimini FA and Cavallo MG: Vitamin D and metabolic dysfunction-associated fatty liver disease (MAFLD): An update. Nutrients. 12:33022020. View Article : Google Scholar : PubMed/NCBI | |
Liu XJ, Wang BW, Zhang C, Xia MZ, Chen YH, Hu CQ, Wang H, Chen X and Xu DX: Vitamin d deficiency attenuates high-fat diet-induced hyperinsulinemia and hepatic lipid accumulation in male mice. Endocrinology. 156:2103–2113. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wang M, Xu W, Zhang H, Qian W, Li X and Cheng X: Active vitamin D supplementation alleviates initiation and progression of nonalcoholic fatty liver disease by repressing the p53 pathway. Life Sci. 241:1170862020. View Article : Google Scholar | |
Sharifi N, Amani R, Hajiani E and Cheraghian B: Does vitamin D improve liver enzymes, oxidative stress, and inflammatory biomarkers in adults with non-alcoholic fatty liver disease? A randomized clinical trial. Endocrine. 47:70–80. 2014. View Article : Google Scholar : PubMed/NCBI | |
Eliades M and Spyrou E: Vitamin D: A new player in non-alcoholic fatty liver disease? World J Gastroenterol. 21:1718–1727. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xie ZQ, Li HX, Tan WL, Yang L, Ma XW, Li WX, Wang QB, Shang CZ and Chen YJ: Association of serum vitamin C With NAFLD and MAFLD among adults in the United States. Front Nutr. 8:7953912022. View Article : Google Scholar : PubMed/NCBI | |
He Z, Li X, Yang H, Wu P, Wang S, Cao D, Guo X, Xu Z, Gao J, Zhang W and Luo X: Effects of oral vitamin C supplementation on liver health and associated parameters in patients with non-alcoholic fatty liver disease: A Randomized clinical trial. Front Nutr. 8:7456092021. View Article : Google Scholar : PubMed/NCBI | |
Gu X and Luo X, Wang Y, He Z, Li X, Wu K, Zhang Y, Yang Y, Ji J and Luo X: Ascorbic acid attenuates cell stress by activating the fibroblast growth factor 21/fibroblast growth factor receptor 2/adiponectin pathway in HepG2 cells. Mol Med Rep. 20:2450–2458. 2019.PubMed/NCBI | |
Woodhouse CA, Patel VC, Singanayagam A and Shawcross DL: Review article: the gut microbiome as a therapeutic target in the pathogenesis and treatment of chronic liver disease. Aliment Pharmacol Ther. 47:192–202. 2018. View Article : Google Scholar | |
Arai N, Miura K, Aizawa K, Sekiya M, Nagayama M, Sakamoto H, Maeda H, Morimoto N, Iwamoto S and Yamamoto H: Probiotics suppress nonalcoholic steatohepatitis and carcinogenesis progression in hepatocyte-specific PTEN knockout mice. Sci Rep. 12:162062022. View Article : Google Scholar : PubMed/NCBI | |
Xue L, He J, Gao N, Lu X, Li M, Wu X, Liu Z, Jin Y, Liu J, Xu J and Geng Y: Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci Rep. 7:451762017. View Article : Google Scholar : PubMed/NCBI | |
Alisi A, Bedogni G, Baviera G, Giorgio V, Porro E, Paris C, Giammaria P, Reali L, Anania F and Nobili V: Randomised clinical trial: The beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 39:1276–1285. 2014. View Article : Google Scholar : PubMed/NCBI | |
Famouri F, Shariat Z, Hashemipour M, Keikha M and Kelishadi R: Effects of probiotics on nonalcoholic fatty liver disease in obese children and adolescents. J Pediatr Gastroenterol Nutr. 64:413–417. 2017. View Article : Google Scholar : PubMed/NCBI | |
Saez-Lara MJ, Robles-Sanchez C, Ruiz-Ojeda FJ, Plaza-Diaz J and Gil A: Effects of probiotics and synbiotics on obesity, insulin resistance Syndrome, type 2 diabetes and non-alcoholic fatty liver disease: A review of human clinical trials. Int J Mol Sci. 17:9282016. View Article : Google Scholar : PubMed/NCBI | |
Eslamparast T, Poustchi H, Zamani F, Sharafkhah M, Malekzadeh R and Hekmatdoost A: Synbiotic supplementation in nonalcoholic fatty liver disease: A randomized, double-blind, placebo-controlled pilot study. Am J Clin Nutr. 99:535–542. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mofidi F, Poustchi H, Yari Z, Nourinayyer B, Merat S, Sharafkhah M, Malekzadeh R and Hekmatdoost A: Synbiotic supplementation in lean patients with non-alcoholic fatty liver disease: A pilot, randomised, double-blind, placebo-controlled, clinical trial. Br J Nutr. 117:662–668. 2017. View Article : Google Scholar : PubMed/NCBI | |
Khalesi S, Johnson DW, Campbell K, Williams S, Fenning A, Saluja S and Irwin C: Effect of probiotics and synbiotics consumption on serum concentrations of liver function test enzymes: A systematic review and meta-analysis. Eur J Nutr. 57:2037–2053. 2018. View Article : Google Scholar | |
Gutiérrez-Grijalva EP, Antunes-Ricardo M, Acosta-Estrada BA, Gutiérrez-Uribe JA and Basilio Heredia J: Cellular antioxidant activity and in vitro inhibition of α-glucosidase, α-amylase and pancreatic lipase of oregano polyphenols under simulated gastrointestinal digestion. Food Res Int. 116:676–686. 2019. View Article : Google Scholar | |
Pasavei AG, Mohebbati R, Boroumand N, Ghorbani A, Hosseini A, Jamshidi ST and Soukhtanloo M: Anti-Hypolipidemic and anti-oxidative effects of hydroalcoholic extract of origanum majorana on the hepatosteatosis induced with high-fat diet in rats. Malays J Med Sci. 27:57–69. 2020.PubMed/NCBI | |
Sharifi-Rad J, Quispe C, Turgumbayeva A, Mertdinç Z, Tütüncü S, Aydar EF, Özçelik B, Anna SW, Mariola S, Koziróg A, et al: Santalum Genus: phytochemical constituents, biological activities and health promoting-effects. Z Naturforsch C J Biosci. 78:9–25. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fernández-Martínez E, Lira-Islas IG, Cariño-Cortés R, Soria-Jasso LE, Pérez-Hernández E and Pérez-Hernández N: Dietary chia seeds (Salvia hispanica) improve acute dyslipidemia and steatohepatitis in rats. J Food Biochem. 43:e129862019. View Article : Google Scholar : PubMed/NCBI | |
Medina-Urrutia A, Lopez-Uribe AR, El Hafidi M, González-Salazar MDC, Posadas-Sánchez R, Jorge-Galarza E, Del Valle-Mondragón L and Juárez-Rojas JG: Chia (Salvia hispanica)-supplemented diet ameliorates non-alcoholic fatty liver disease and its metabolic abnormalities in humans. Lipids Health Dis. 19:962020. View Article : Google Scholar : PubMed/NCBI | |
Diab F, Zbeeb H, Baldini F, Portincasa P, Khalil M and Vergani L: The potential of lamiaceae herbs for mitigation of overweight, obesity, and fatty liver: Studies and perspectives. Molecules. 27:50432022. View Article : Google Scholar : PubMed/NCBI | |
Khalil M, Khalifeh H, Baldini F, Salis A, Damonte G, Daher A, Voci A and Vergani L: Antisteatotic and antioxidant activities of Thymbra spicata L. extracts in hepatic and endothelial cells as in vitro models of non-alcoholic fatty liver disease. J Ethnopharmacol. 239:1119192019. View Article : Google Scholar : PubMed/NCBI | |
Hu Q, Zhang W, Wu Z, Tian X, Xiang J, Li L, Li Z, Peng X, Wei S, Ma X and Zhao Y: Baicalin and the liver-gut system: Pharmacological bases explaining its therapeutic effects. Pharmacol Res. 165:1054442021. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhang H, Deng X, Zhang Y and Xu K: Baicalin protects AML-12 cells from lipotoxicity via the suppression of ER stress and TXNIP/NLRP3 inflammasome activation. Chem Biol Interact. 278:189–196. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li P, Zhang R, Wang M, Chen Y, Chen Z, Ke X, Zuo L and Wang J: Baicalein prevents fructose-induced hepatic steatosis in rats: in the regulation of fatty acid de novo synthesis, fatty acid elongation and fatty acid oxidation. Front Pharmacol. 13:9173292022. View Article : Google Scholar : PubMed/NCBI | |
Beltran Romero LM, Vallejo-Vaz AJ and Muniz Grijalvo O: Cerebrovascular disease and statins. Front Cardiovasc Med. 8:7787402021. View Article : Google Scholar : PubMed/NCBI | |
Pastori D, Pani A, Di Rocco A, Menichelli D, Gazzaniga G, Farcomeni A, D'Erasmo L, Angelico F, Del Ben M and Baratta F: Statin liver safety in non-alcoholic fatty liver disease: A systematic review and metanalysis. Br J Clin Pharmacol. 88:441–451. 2022. View Article : Google Scholar | |
Lee JI, Lee HW, Lee KS, Lee HS and Park JY: Effects of statin use on the development and progression of nonalcoholic fatty liver disease: A nationwide nested case-control study. Am J Gastroenterol. 116:116–124. 2021. View Article : Google Scholar | |
Sfikas G, Psallas M, Koumaras C, Imprialos K, Perdikakis E, Doumas M, Giouleme O, Karagiannis A and Athyros VG: Prevalence, diagnosis, and treatment with 3 different statins of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis in military personnel. do genetics play a role? Curr Vasc Pharmacol. 19:572–581. 2021. View Article : Google Scholar | |
Yarahmadi S, Farahmandian N, Fadaei R, Koushki M, Bahreini E, Karima S, Barzin Tond S, Rezaei A, Nourbakhsh M and Fallah S: Therapeutic potential of resveratrol and atorvastatin following high-fat diet uptake-induced nonalcoholic fatty liver disease by targeting genes involved in cholesterol metabolism and miR33. DNA Cell Biol. 42:82–90. 2023. View Article : Google Scholar : PubMed/NCBI | |
Husain NE, Hassan AT, Elmadhoun WM and Ahmed MH: Evaluating the safety of Liptruzet (ezetimibe and atorvastatin): What are the potential benefits beyond low-density lipoprotein cholesterol-lowering effect? Expert Opin Drug Saf. 14:1445–1455. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kostapanos MS, Rizos CV and Elisaf MS: Benefit-risk assessment of rosuvastatin in the treatment of atherosclerosis and related diseases. Drug Saf. 37:481–500. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cho Y, Rhee H, Kim YE, Lee M, Lee BW, Kang ES, Cha BS, Choi JY and Lee YH: Ezetimibe combination therapy with statin for non-alcoholic fatty liver disease: An open-label randomized controlled trial (ESSENTIAL study). BMC Med. 20:932022. View Article : Google Scholar : PubMed/NCBI | |
Seo SH, Lee DH, Lee YS, Cho KJ, Park HJ, Lee HW, Kim BK, Park JY, Kim DY, Ahn SH, et al: Co-administration of ursodeoxycholic acid with rosuvastatin/ezetimibe in a non-alcoholic fatty liver disease model. Gastroenterol Rep (Oxf). 10:goac0372022. View Article : Google Scholar : PubMed/NCBI | |
Pereira ENGDS, Araujo BP, Rodrigues KL, Silvares RR, Martins CSM, Flores EEI, Fernandes-Santos C and Daliry A: Simvastatin improves microcirculatory function in nonalcoholic fatty liver disease and downregulates oxidative and ALE-RAGE stress. Nutrients. 14:7162022. View Article : Google Scholar : PubMed/NCBI | |
Brault M, Ray J, Gomez YH, Mantzoros CS and Daskalopoulou SS: Statin treatment and new-onset diabetes: A review of proposed mechanisms. Metabolism. 63:735–745. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ortiz-Lopez N, Fuenzalida C, Dufeu MS, Pinto-León A, Escobar A, Poniachik J, Roblero JP, Valenzuela-Pérez L and Beltrán CJ: The immune response as a therapeutic target in non-alcoholic fatty liver disease. Front Immunol. 13:9548692022. View Article : Google Scholar : PubMed/NCBI | |
Du WW, Liu F, Shan SW, Ma XC, Gupta S, Jin T, Spaner D, Krylov SN, Zhang Y, Ling W and Yang BB: Inhibition of dexamethasone-induced fatty liver development by reducing miR-17-5p levels. Mol Ther. 23:1222–1233. 2015. View Article : Google Scholar : PubMed/NCBI | |
Barbosa-da-Silva S, Souza-Mello V, Magliano DC, Marinho Tde S, Aguila MB and Mandarim-de-Lacerda CA: Singular effects of PPAR agonists on nonalcoholic fatty liver disease of diet-induced obese mice. Life Sci. 127:73–81. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Lu Y, Shen X, Bao Y, Cheng J, Chen L, Li B and Zhang Q: Fenofibrate treatment attenuated chronic endoplasmic reticulum stress in the liver of nonalcoholic fatty liver disease mice. Pharmacology. 95:173–180. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yaghoubi M, Jafari S, Sajedi B, Gohari S, Akbarieh S, Heydari AH and Jameshoorani M: Comparison of fenofibrate and pioglitazone effects on patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 29:1385–1388. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liss KH and Finck BN: PPARs and nonalcoholic fatty liver disease. Biochimie. 136:65–74. 2017. View Article : Google Scholar : | |
Peters JM, Gonzalez FJ and Müller R: Establishing the Role of PPARβ/δ in Carcinogenesis. Trends Endocrinol Metab. 26:595–607. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sahebkar A, Chew GT and Watts GF: New peroxisome proliferator-activated receptor agonists: Potential treatments for atherogenic dyslipidemia and non-alcoholic fatty liver disease. Expert Opin Pharmacother. 15:493–503. 2014. View Article : Google Scholar : PubMed/NCBI | |
Silva-Veiga FM, Rachid TL, de Oliveira L, Graus-Nunes F, Mandarim-de-Lacerda CA and Souza-Mello V: GW0742 (PPAR-beta agonist) attenuates hepatic endoplasmic reticulum stress by improving hepatic energy metabolism in high-fat diet fed mice. Mol Cell Endocrinol. 474:227–237. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ratziu V, Harrison SA, Francque S, Bedossa P, Lehert P, Serfaty L, Romero-Gomez M, Boursier J, Abdelmalek M, Caldwell S, et al: Elafibranor, an agonist of the peroxisome proliferator-activated Receptor-α and -δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology. 150:1147–1159.e5. 2016. View Article : Google Scholar | |
Choudhary NS, Kumar N and Duseja A: Peroxisome proliferator-activated receptors and their agonists in nonalcoholic fatty liver disease. J Clin Exp Hepatol. 9:731–739. 2019. View Article : Google Scholar : | |
van der Veen JN, Lingrell S, Gao X, Quiroga AD, Takawale A, Armstrong EA, Yager JY, Kassiri Z, Lehner R, Vance DE and Jacobs RL: Pioglitazone attenuates hepatic inflammation and fibrosis in phosphatidylethanolamine N-methyltransferase-deficient mice. Am J Physiol Gastrointest Liver Physiol. 310:G526–G538. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cusi K, Orsak B, Bril F, Lomonaco R, Hecht J, Ortiz-Lopez C, Tio F, Hardies J, Darland C, Musi N, et al: Long-Term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: A Randomized trial. Ann Intern Med. 165:305–315. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jain MR, Giri SR, Bhoi B, Trivedi C, Rath A, Rathod R, Ranvir R, Kadam S, Patel H, Swain P, et al: Dual PPARα/ү agonist saroglitazar improves liver histopathology and biochemistry in experimental NASH models. Liver Int. 38:1084–1094. 2018. View Article : Google Scholar | |
Gawrieh S, Noureddin M, Loo N, Mohseni R, Awasty V, Cusi K, Kowdley KV, Lai M, Schiff E, Parmar D, et al: Saroglitazar, a PPAR-α/γ Agonist, for Treatment of NAFLD: A Randomized controlled double-blind phase 2 trial. Hepatology. 74:1809–1824. 2021. View Article : Google Scholar : PubMed/NCBI | |
Boubia B, Poupardin O, Barth M, Binet J, Peralba P, Mounier L, Jacquier E, Gauthier E, Lepais V, Chatar M, et al: Design, synthesis, and evaluation of a novel series of indole sulfonamide peroxisome proliferator activated receptor (PPAR) α/γ/δ triple activators: Discovery of lanifibranor, a new antifibrotic clinical candidate. J Med Chem. 61:2246–2265. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wettstein G, Luccarini JM, Poekes L, Faye P, Kupkowski F, Adarbes V, Defrêne E, Estivalet C, Gawronski X, Jantzen I, et al: The new-generation pan-peroxisome proliferator-activated receptor agonist IVA337 protects the liver from metabolic disorders and fibrosis. Hepatol Commun. 1:524–537. 2017. View Article : Google Scholar | |
Mossanen JC, Krenkel O, Ergen C, Govaere O, Liepelt A, Puengel T, Heymann F, Kalthoff S, Lefebvre E, Eulberg D, et al: Chemokine (C-C motif) receptor 2-positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury. Hepatology. 64:1667–1682. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lefebvre E, Moyle G, Reshef R, Richman LP, Thompson M, Hong F, Chou HL, Hashiguchi T, Plato C, Poulin D, et al: Antifibrotic effects of the dual CCR2/CCR5 antagonist cenicriviroc in animal models of liver and kidney fibrosis. PLoS One. 11:e01581562016. View Article : Google Scholar : PubMed/NCBI | |
Friedman SL, Ratziu V, Harrison SA, Abdelmalek MF, Aithal GP, Caballeria J, Francque S, Farrell G, Kowdley KV, Craxi A, et al: A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis. Hepatology. 67:1754–1767. 2018. View Article : Google Scholar | |
Ratziu V, Sanyal A, Harrison SA, Wong VW, Francque S, Goodman Z, Aithal GP, Kowdley KV, Seyedkazemi S, Fischer L, et al: Cenicriviroc treatment for adults with nonalcoholic steatohepatitis and fibrosis: Final analysis of the phase 2b CENTAUR Study. Hepatology. 72:892–905. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tacke F: Cenicriviroc for the treatment of non-alcoholic steatohepatitis and liver fibrosis. Expert Opin Investig Drugs. 27:301–311. 2018. View Article : Google Scholar : PubMed/NCBI | |
Abenavoli L, Falalyeyeva T, Boccuto L, Tsyryuk O and Kobyliak N: Obeticholic Acid: A new Era in the treatment of nonalcoholic fatty liver disease. Pharmaceuticals (Basel). 11:1042018. View Article : Google Scholar : PubMed/NCBI | |
Younossi ZM, Stepanova M, Nader F, Loomba R, Anstee QM, Ratziu V, Harrison S, Sanyal AJ, Schattenberg JM, Barritt AS, et al: Obeticholic acid impact on quality of life in patients with nonalcoholic steatohepatitis: REGENERATE 18-Month interim analysis. Clin Gastroenterol Hepatol. 20:2050–2058.e12. 2022. View Article : Google Scholar | |
Loomba R, Neuschwander-Tetri BA, Sanyal A, Chalasani N, Diehl AM, Terrault N, Kowdley K, Dasarathy S, Kleiner D, Behling C, et al: Multicenter validation of association between decline in MRI-PDFF and histologic response in NASH. Hepatology. 72:1219–1229. 2020. View Article : Google Scholar : PubMed/NCBI | |
Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, Chalasani N, Dasarathy S, Diehl AM, Hameed B, et al: Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): A multicentre, randomised, placebo-controlled trial. Lancet. 385:956–965. 2015. View Article : Google Scholar : | |
Hernandez ED, Zheng L, Kim Y, Fang B, Liu B, Valdez RA, Dietrich WF, Rucker PV, Chianelli D, Schmeits J, et al: Tropifexor-Mediated abrogation of steatohepatitis and fibrosis is associated with the antioxidative gene expression profile in rodents. Hepatol Commun. 3:1085–1097. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rau M and Geier A: An update on drug development for the treatment of nonalcoholic fatty liver disease - from ongoing clinical trials to future therapy. Expert Rev Clin Pharmacol. 14:333–340. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fiorucci S, Biagioli M, Sepe V, Zampella A and Distrutti E: Bile acid modulators for the treatment of nonalcoholic steatohepatitis (NASH). Expert Opin Investig Drugs. 29:623–632. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Poulsen KL, Wu L, Liu S, Miyata T, Song Q, Wei Q, Zhao C, Lin C and Yang J: Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct Target Ther. 7:2872022. View Article : Google Scholar : PubMed/NCBI | |
Leong PK and Ko KM: Schisandrin B: A double-edged sword in nonalcoholic fatty liver disease. Oxid Med Cell Longev. 2016:61716582016. View Article : Google Scholar : PubMed/NCBI | |
Parker HM, Johnson NA, Burdon CA, Cohn JS, O'Connor HT and George J: Omega-3 supplementation and non-alcoholic fatty liver disease: A systematic review and meta-analysis. J Hepatol. 56:944–951. 2012. View Article : Google Scholar | |
Li H, Liu NN, Li JR, Dong B, Wang MX, Tan JL, Wang XK, Jiang J, Lei L, Li HY, et al: Combined use of bicyclol and berberine alleviates mouse nonalcoholic fatty liver disease. Front Pharmacol. 13:8438722022. View Article : Google Scholar : PubMed/NCBI | |
Zhan Z, Chen Y, Duan Y, Li L, Mew K, Hu P, Ren H and Peng M: Identification of key genes, pathways and potential therapeutic agents for liver fibrosis using an integrated bioinformatics analysis. PeerJ. 7:e66452019. View Article : Google Scholar : PubMed/NCBI | |
Rey E, Melendez-Rodriguez F, Maranon P, Gil-Valle M, Carrasco AG, Torres-Capelli M, Chávez S, Del Pozo-Maroto E, Rodríguez de Cía J, Aragonés J, et al: Hypoxia-inducible factor 2α drives hepatosteatosis through the fatty acid translocase CD36. Liver Int. 40:2553–2567. 2020. View Article : Google Scholar : PubMed/NCBI |