Role of mesenchymal stem cells in sepsis and their therapeutic potential in sepsis‑associated myopathy (Review)
- Authors:
- Dongfang Wang
- Ligang Xu
- Yukun Liu
- Chuntao Wang
- Siyuan Qi
- Zhanfei Li
- Xiangjun Bai
- Yiliu Liao
- Yuchang Wang
-
Affiliations: Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China, Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China - Published online on: August 23, 2024 https://doi.org/10.3892/ijmm.2024.5416
- Article Number: 92
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Tupchong K, Koyfman A and Foran M: Sepsis, severe sepsis, and septic shock: A review of the literature. Afr J Emerg Med. 5:127–135. 2015. View Article : Google Scholar | |
Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, Machado FR, Mcintyre L, Ostermann M, Prescott HC, et al: Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Crit Care Med. 49:e1063–e1143. 2021. View Article : Google Scholar : PubMed/NCBI | |
Matthaeus-Kraemer CT, Thomas-Rueddel DO, Schwarzkopf D, Rueddel H, Poidinger B, Reinhart K and Bloos F: Crossing the handover chasm: Clinicians' perceptions of barriers to the early detection and timely management of severe sepsis and septic shock. J Crit Care. 36:85–91. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Xu L, Yang Z, Wang D, Li T, Yang F, Li Z, Bai X and Wang Y: Gut-muscle axis and sepsis-induced myopathy: The potential role of gut microbiota. Biomed Pharmacother. 163:1148372023. View Article : Google Scholar : PubMed/NCBI | |
Mankowski RT, Laitano O, Clanton TL and Brakenridge SC: Pathophysiology and treatment strategies of acute myopathy and muscle wasting after sepsis. J Clin Med. 10:18742021. View Article : Google Scholar : PubMed/NCBI | |
Callahan LA and Supinski GS: Sepsis-induced myopathy. Crit Care Med. 37(10 Suppl): S354–S367. 2009. View Article : Google Scholar | |
Schefold JC, Bierbrauer J and Weber-Carstens S: Intensive care unit-acquired weakness (ICUAW) and muscle wasting in critically ill patients with severe sepsis and septic shock. J Cachexia Sarcopenia Muscle. 1:147–157. 2010. View Article : Google Scholar | |
Liu W, Hu C and Zhao S: Sarcopenia and mortality risk of patients with sepsis: A meta-analysis. Int J Clin Pract. 2022:49744102022. View Article : Google Scholar : PubMed/NCBI | |
Panahi A, Malekmohammad M, Soleymani F and Hashemian SM: The prevalence and outcome of intensive care unit acquired weakness (ICUAW). Tanaffos. 19:250–255. 2020. | |
Dinglas VD, Aronson Friedman L, Colantuoni E, Mendez-Tellez PA, Shanholtz CB, Ciesla ND, Pronovost PJ and Needham DM: Muscle weakness and 5-year survival in acute respiratory distress syndrome survivors. Crit Care Med. 45:446–453. 2017. View Article : Google Scholar : PubMed/NCBI | |
Meyer-Frießem CH, Malewicz NM, Rath S, Ebel M, Kaisler M, Tegenthoff M, Schildhauer TA, Pogatzki-Zahn EM, Maier C and Zahn PK: Incidence, time course and influence on quality of life of intensive care unit-acquired weakness symptoms in long-term intensive care survivors. J Intensive Care Med. 36:1313–1322. 2021. View Article : Google Scholar | |
Appleton RT, Kinsella J and Quasim T: The incidence of intensive care unit-acquired weakness syndromes: A systematic review. J Intensive Care Soc. 16:126–136. 2015. View Article : Google Scholar : PubMed/NCBI | |
de Andrade-Junior MC, de Salles ICD, de Brito CMM, Pastore-Junior L, Righetti RF and Yamaguti WP: Skeletal muscle wasting and function impairment in intensive care patients with severe COVID-19. Front Physiol. 12:6409732021. View Article : Google Scholar : PubMed/NCBI | |
Herridge MS, Tansey CM, Matté A, Tomlinson G, Diaz-Granados N, Cooper A, Guest CB, Mazer CD, Mehta S, Stewart TE, et al: Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 364:1293–1304. 2011. View Article : Google Scholar : PubMed/NCBI | |
Odden AJ, Rohde JM, Bonham C, Kuhn L, Malani PN, Chen LM, Flanders SA and Iwashyna TJ: Functional outcomes of general medical patients with severe sepsis. BMC Infect Dis. 13:5882013. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Huang Y, Chen Y, Shen X, Pan H and Yu W: Impact of muscle mass on survival in patients with sepsis: A systematic review and meta-analysis. Ann Nutr Metab. 77:330–336. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yan W, Chen Y, Guo Y, Xia Y, Li C, Du Y, Lin C, Xu X, Qi T, Fan M, et al: Irisin promotes cardiac homing of intravenously delivered MSCs and protects against ischemic heart injury. Adv Sci (Weinh). 9:e21036972022. View Article : Google Scholar : PubMed/NCBI | |
Gnecchi M, Danieli P and Cervio E: Mesenchymal stem cell therapy for heart disease. Vascul Pharmacol. 57:48–55. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tzouvelekis A, Toonkel R, Karampitsakos T, Medapalli K, Ninou I, Aidinis V, Bouros D and Glassberg MK: Mesenchymal stem cells for the treatment of idiopathic pulmonary fibrosis. Front Med (Lausanne). 5:1422018. View Article : Google Scholar : PubMed/NCBI | |
Sinclair K, Yerkovich ST and Chambers DC: Mesenchymal stem cells and the lung. Respirology. 18:397–411. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ye T, Chen Z, Zhang J, Luo L, Gao R, Gong L, Du Y, Xie Z, Zhao B, Li Q and Wang Y: Large extracellular vesicles secreted by human iPSC-derived MSCs ameliorate tendinopathy via regulating macrophage heterogeneity. Bioact Mater. 21:194–208. 2022.PubMed/NCBI | |
He X, Ai S, Guo W, Yang Y, Wang Z, Jiang D and Xu X: Umbilical cord-derived mesenchymal stem (stromal) cells for treatment of severe sepsis: Aphase 1 clinical trial. Transl Res. 199:52–61. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cribbs SK and Martin GS: Stem cells in sepsis and acute lung injury. Am J Med Sci. 341:325–332. 2011. View Article : Google Scholar | |
Walter J, Ware LB and Matthay MA: Mesenchymal stem cells: Mechanisms of potential therapeutic benefit in ARDS and sepsis. Lancet Respir Med. 2:1016–1026. 2014. View Article : Google Scholar : PubMed/NCBI | |
Khosrojerdi A, Soudi S, Hosseini AZ, Eshghi F, Shafiee A and Hashemi SM: Immunomodulatory and therapeutic effects of mesenchymal stem cells on organ dysfunction in sepsis. Shock. 55:423–440. 2021. View Article : Google Scholar | |
Ho MSH, Mei SHJ and Stewart DJ: The immunomodulatory and therapeutic effects of mesenchymal stromal cells for acute lung injury and sepsis. J Cell Physiol. 230:2606–2617. 2015. View Article : Google Scholar : PubMed/NCBI | |
Friedenstein AJ, Petrakova KV, Kurolesova AI and Frolova GP: Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 6:230–247. 1968. View Article : Google Scholar : PubMed/NCBI | |
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans R, Keating A, Prockop D and Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8:315–317. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bianco P: 'Mesenchymal' stem cells. Annu Rev Cell Dev Biol. 30:677–704. 2014. View Article : Google Scholar | |
Rankin S: Mesenchymal stem cells. Thorax. 67:565–566. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jiang W and Xu J: Immune modulation by mesenchymal stem cells. Cell Prolif. 53:e127122020. View Article : Google Scholar : | |
Yianni V and Sharpe PT: Perivascular-derived mesenchymal stem cells. J Dent Res. 98:1066–1072. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zimmermann JA, Hettiaratchi MH and McDevitt TC: Enhanced immunosuppression of T cells by sustained presentation of bioactive interferon-γ within three-dimensional mesenchymal stem cell constructs. Stem Cells Transl Med. 6:223–237. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yarygin KN, Lupatov AY and Sukhikh GT: Modulation of immune responses by mesenchymal stromal cells. Bull Exp Biol Med. 161:561–565. 2016. View Article : Google Scholar : PubMed/NCBI | |
Glenn JD and Whartenby KA: Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy. World J Stem Cells. 6:526–539. 2014. View Article : Google Scholar : PubMed/NCBI | |
Saeedi P, Halabian R and Fooladi AAI: Antimicrobial effects of mesenchymal stem cells primed by modified LPS on bacterial clearance in sepsis. J Cell Physiol. 234:4970–4986. 2019. View Article : Google Scholar | |
Spees JL, Lee RH and Gregory CA: Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res Ther. 7:1252016. View Article : Google Scholar : PubMed/NCBI | |
Le Blanc K, Tammik C, Rosendahl K, Zetterberg E and Ringdén O: HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 31:890–896. 2003. View Article : Google Scholar : PubMed/NCBI | |
Uccelli A, Moretta L and Pistoia V: Mesenchymal stem cells in health and disease. Nat Rev Immunol. 8:726–736. 2008. View Article : Google Scholar | |
Minguell JJ, Conget P and Erices A: Biology and clinical utilization of mesenchymal progenitor cells. Braz J Med Biol Res. 33:881–887. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kim WY and Hong SB: Sepsis and acute respiratory distress syndrome: Recent update. Tuberc Respir Dis (Seoul). 79:53–57. 2016. View Article : Google Scholar : PubMed/NCBI | |
Martin GS and Bernard GR: Airway and lung in sepsis. Intensive Care Med. 27(Suppl 1): S63–S79. 2001. View Article : Google Scholar : PubMed/NCBI | |
Davis C: Risk factors for the development of acute lung injury in patients with septic shock: An observational cohort study. J Emerg Med. 36:P982009. View Article : Google Scholar | |
Schmidt EP, Yang Y, Janssen WJ, Gandjeva A, Perez MJ, Barthel L, Zemans RL, Bowman JC, Koyanagi DE, Yunt ZX, et al: The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med. 18:1217–1223. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee WL and Slutsky AS: Sepsis and endothelial permeability. N Engl J Med. 363:689–691. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lomas-Neira J, Perl M, Venet F, Chung CS and Ayala A: The role and source of tumor necrosis factor-α in hemorrhage-induced priming for septic lung injury. Shock. 37:611–620. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Taneja R, Razavi HM, Law C, Gillis C and Mehta S: Specific role of neutrophil inducible nitric oxide synthase in murine sepsis-induced lung injury in vivo. Shock. 37:539–547. 2012. View Article : Google Scholar : PubMed/NCBI | |
Grover SP and Mackman N: Tissue factor: An essential mediator of hemostasis and trigger of thrombosis. Arterioscler Thromb Vasc Biol. 38:709–725. 2018. View Article : Google Scholar : PubMed/NCBI | |
Witkowski M, Landmesser U and Rauch U: Tissue factor as a link between inflammation and coagulation. Trends Cardiovasc Med. 26:297–303. 2016. View Article : Google Scholar : PubMed/NCBI | |
Evans CE and Zhao YY: Impact of thrombosis on pulmonary endothelial injury and repair following sepsis. Am J Physiol Lung Cell Mol Physiol. 312:L441–L451. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Yang C, Wang H, Li H, Du J, Gu W and Jiang J: Therapeutic effects of bone marrow-derived mesenchymal stem cells on pulmonary impact injury complicated with endotoxemia in rats. Int Immunopharmacol. 15:246–253. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lee FY, Chen KH, Wallace CG, Sung PH, Sheu JJ, Chung SY, Chen YL, Lu HI, Ko SF, Sun CK, et al: Xenogeneic human umbilical cord-derived mesenchymal stem cells reduce mortality in rats with acute respiratory distress syndrome complicated by sepsis. Oncotarget. 8:45626–45642. 2017. View Article : Google Scholar : PubMed/NCBI | |
Asami T, Ishii M, Namkoong H, Yagi K, Tasaka S, Asakura T, Suzuki S, Kamo T, Okamori S, Kamata H, et al: Anti-inflammatory roles of mesenchymal stromal cells during acute Streptococcus pneumoniae pulmonary infection in mice. Cytotherapy. 20:302–313. 2017. View Article : Google Scholar | |
Chen HH, Chang CL, Lin KC, Sung PH, Chai HT, Zhen YY, Chen YC, Wu YC, Leu S, Tsai TH, et al: Melatonin augments apoptotic adipose-derived mesenchymal stem cell treatment against sepsis-induced acute lung injury. Am J Transl Res. 6:439–458. 2014.PubMed/NCBI | |
Li W, Chen W, Huang S, Tang X, Yao G and Sun L: Mesenchymal stem cells enhance pulmonary antimicrobial immunity and prevent following bacterial infection. Stem Cells Int. 2020:31694692020. View Article : Google Scholar : PubMed/NCBI | |
Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee JW and Matthay MA: Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells. 28:2229–2238. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rabani R, Volchuk A, Jerkic M, Ormesher L, Garces-Ramirez L, Canton J, Masterson C, Gagnon S, Tatham KC, Marshall J, et al: Mesenchymal stem cells enhance NOX2-dependent reactive oxygen species production and bacterial killing in macrophages during sepsis. Eur Respir J. 51:17020212018. View Article : Google Scholar : PubMed/NCBI | |
Yao M, Cui B, Zhang W, Ma W, Zhao G and Xing L: Exosomal miR-21 secreted by IL-1β-primed-mesenchymal stem cells induces macrophage M2 polarization and ameliorates sepsis. Life Sci. 264:1186582021. View Article : Google Scholar | |
Krasnodembskaya A, Samarani G, Song Y, Zhuo H, Su X, Lee JW, Gupta N, Petrini M and Matthay MA: Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. Am J Physiol Lung Cell Mol Physiol. 302:L1003–L1013. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tan L, Huang Y, Pan X, Quan S, Xu S, Li D, Song L, Zhang X, Chen W and Pan J: Administration of bone marrow stromal cells in sepsis attenuates sepsis-related coagulopathy. Ann Med. 48:235–245. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dos Santos CC, Amatullah H, Vaswani CM, Maron-Gutierrez T, Kim M, Mei SHJ, Szaszi K, Monteiro APT, Varkouhi AK, Herreroz R, et al: Mesenchymal stromal (stem) cell therapy modulates miR-193b-5p expression to attenuate sepsis-induced acute lung injury. Eur Respir J. 59:20042162022. View Article : Google Scholar | |
Younes N, Zhou L, Amatullah H, Mei SHJ, Herrero R, Lorente JA, Stewart DJ, Marsden P, Liles WC, Hu P and Dos Santos CC: Mesenchymal stromal/stem cells modulate response to experimental sepsis-induced lung injury via regulation of miR-27a-5p in recipient mice. Thorax. 75:556–567. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bi CF, Liu J, Yang LS and Zhang JF: Research progress on the mechanism of sepsis induced myocardial injury. J Inflamm Res. 15:4275–4290. 2022. View Article : Google Scholar : PubMed/NCBI | |
Aneman A and Vieillard-Baron A: Cardiac dysfunction in sepsis. Intensive Care Med. 42:2073–2076. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rudiger A and Singer M: Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med. 35:1599–1608. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kumar A, Thota V, Dee L, Olson J, Uretz E and Parrillo JE: Tumor necrosis factor alpha and interleukin 1beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. Resuscitation. 32:P1661996. View Article : Google Scholar | |
Zhang X, Lu C, Gao M, Cao X, Ha T, Kalbfleisch JH, Williams DL, Li C and Kao RL: Toll-like receptor 4 plays a central role in cardiac dysfunction during trauma hemorrhage shock. Shock. 42:31–37. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sato R and Nasu M: A review of sepsis-induced cardiomyopathy. J Intensive Care. 3:482015. View Article : Google Scholar : PubMed/NCBI | |
Stengl M, Bartak F, Sykora R, Chvojka J, Benes J, Krouzecky A, Novak I, Sviglerova J, Kuncova J and Matejovic M: Reduced L-type calcium current in ventricular myocytes from pigs with hyperdynamic septic shock. Crit Care Med. 38:579–587. 2010. View Article : Google Scholar | |
Kumar A, Brar R, Wang P, Dee L, Skorupa G, Khadour F, Schulz R and Parrillo JE: Role of nitric oxide and cGMP in human septic serum-induced depression of cardiac myocyte contractility. Am J Physiol. 276:R265–R276. 1999.PubMed/NCBI | |
Lv X and Wang H: Pathophysiology of sepsis-induced myocardial dysfunction. Mil Med Res. 3:302016.PubMed/NCBI | |
Wu Y, Zhou J, Bi L, Huang M, Han Y, Zhang Q, Zhu D and Zhou S: Effects of bone marrow mesenchymal stem cells on the cardiac function and immune system of mice with endotoxemia. Mol Med Rep. 13:5317–5325. 2016. View Article : Google Scholar : PubMed/NCBI | |
Weil BR, Herrmann JL, Abarbanell AM, Manukyan MC, Poynter JA and Meldrum DR: Intravenous infusion of mesenchymal stem cells is associated with improved myocardial function during endotoxemia. Shock. 36:235–241. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Huang W, Wang Y and Fan GC: Abstract 12290: Exosomal miR-223 contributes to mesenchymal stem cell-elicited cardio-protection in polymicrobial sepsis. Circulation. 1322015. | |
Giovannini I, Chiarla C, Giuliante F, Vellone M, Ardito F and Nuzzo G: Sepsis-induced cholestasis. Hepatology. 47:3612008. View Article : Google Scholar | |
Woźnica EA, Inglot M, Woźnica RK and Łysenko L: Liver dysfunction in sepsis. Adv Clin Exp Med. 27:547–551. 2018. View Article : Google Scholar | |
Gaddam RR, Fraser R, Badiei A, Chambers S, Cogger VC, Le Couteur DG and Bhatia M: Differential effects of kupffer cell inactivation on inflammation and the liver sieve following caecal-ligation and puncture-induced sepsis in mice. Shock. 47:480–490. 2017. View Article : Google Scholar | |
Wang H and Liu D: Baicalin inhibits high-mobility group box 1 release and improves survival in experimental sepsis. Shock. 41:324–330. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Yin Y and Yao Y: Advances in sepsis-associated liver dysfunction. Burns Trauma. 2:97–105. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yagi H, Soto-Gutierrez A, Kitagawa Y, Tilles AW, Tompkins RG and Yarmush ML: Bone marrow mesenchymal stromal cells attenuate organ injury induced by LPS and burn. Cell Transplant. 19:823–830. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu KH, Wu HP, Chao WR, Lo WY, Tseng PC, Lee CJ, Peng CT, Lee MS and Chao YH: Time-series expression of toll-like receptor 4 signaling in septic mice treated with mesenchymal stem cells. Shock. 45:634–640. 2016. View Article : Google Scholar | |
Miao CM, Jiang XW, He K, Li PZ, Liu ZJ, Cao D, Ou ZB, Gong JP, Liu CA and Cheng Y: Bone marrow stromal cells attenuate LPS-induced mouse acute liver injury via the prostaglandin E 2-dependent repression of the NLRP3 inflammasome in Kupffer cells. Immunol Lett. 179:102–113. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yagi H, Soto-Gutierrez A, Navarro-Alvarez N, Nahmias Y, Goldwasser Y, Kitagawa Y, Tilles AW, Tompkins RG, Parekkadan B and Yarmush ML: Reactive bone marrow stromal cells attenuate systemic inflammation via sTNFR1. Mol Ther. 18:1857–1864. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liang H, Ding X, Yu Y, Zhang H, Wang L, Kan Q, Ma S, Guan F and Sun T: Adipose-derived mesenchymal stem cells ameliorate acute liver injury in rat model of CLP induced-sepsis via sTNFR1. Exp Cell Res. 383:1114652019. View Article : Google Scholar : PubMed/NCBI | |
Umbro I, Gentile G, Tinti F, Muiesan P and Mitterhofer AP: Recent advances in pathophysiology and biomarkers of sepsis-induced acute kidney injury. J Infect. 72:131–142. 2016. View Article : Google Scholar | |
Gómez H and Kellum JA: Sepsis-induced acute kidney injury. Curr Opin Crit Care. 22:546–553. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zarjou A and Agarwal A: Sepsis and acute kidney injury. J Am Soc Nephrol. 22:999–1006. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yoshimoto K, Komaru Y, Iwagami M and Doi K: Acute kidney injury in sepsis: Evidence from Asia. Semin Nephrol. 40:489–497. 2020. View Article : Google Scholar : PubMed/NCBI | |
Manrique-Caballero CL, Del Rio-Pertuz G and Gomez H: Sepsis-associated acute kidney injury. Crit Care Clin. 37:279–301. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bellomo R, Kellum JA, Ronco C, Wald R, Martensson J, Maiden M, Bagshaw SM, Glassford NJ, Lankadeva Y, Vaara ST and Schneider A: Acute kidney injury in sepsis. Intensive Care Med. 43:816–828. 2017. View Article : Google Scholar : PubMed/NCBI | |
Luo CJ, Zhang FJ, Zhang L, Geng YQ, Li QG, Hong Q, Fu B, Zhu F, Cui SY, Feng Z, et al: Mesenchymal stem cells ameliorate sepsis-associated acute kidney injury in mice. Shock. 41:123–129. 2014. View Article : Google Scholar | |
Cóndor JM, Rodrigues CE, Sousa Moreira RD, Canale D, Volpini RA, Shimizu MH, Camara NO, Noronha Ide L and Andrade L: Treatment with human Wharton's Jelly-derived mesenchymal stem cells attenuates sepsis-induced kidney injury, liver injury, and endothelial dysfunction. Stem Cells Transl Med. 5:1048–1057. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen CH, Cheng BC, Chen KH, Shao PL, Sung PH, Chiang HJ, Yang CC, Lin KC, Sun CK, Sheu JJ, et al: Combination therapy of exendin-4 and allogenic adipose-derived mesenchymal stem cell preserved renal function in a chronic kidney disease and sepsis syndrome setting in rats. Oncotarget. 8:100002–100020. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen HH, Lin KC, Wallace CG, Chen YT, Yang CC, Leu S, Chen YC, Sun CK, Tsai TH, Chen YL, et al: Additional benefit of combined therapy with melatonin and apoptotic adipose-derived mesenchymal stem cell against sepsis-induced kidney injury. J Pineal Res. 57:16–32. 2014. View Article : Google Scholar : PubMed/NCBI | |
Polito A, Eischwald F, Maho AL, Polito A, Azabou E, Annane D, Chrétien F, Stevens RD, Carlier R and Sharshar T: Pattern of brain injury in the acute setting of human septic shock. Crit Care. 17:R2042013. View Article : Google Scholar : PubMed/NCBI | |
Catarina AV, Branchini G, Bettoni L, De Oliveira JR and Nunes FB: Sepsis-associated encephalopathy: From pathophysiology to progress in experimental studies. Mol Neurobiol. 58:2770–2779. 2021. View Article : Google Scholar : PubMed/NCBI | |
Prescott HC and Angus DC: Enhancing recovery from sepsis: A review. JAMA. 319:62–75. 2018. View Article : Google Scholar : PubMed/NCBI | |
Oh SH, Choi C, Chang DJ, Shin DA, Lee N, Jeon I, Sung JH, Lee H, Hong KS, Ko JJ and Song J: Early neuroprotective effect with lack of long-term cell replacement effect on experimental stroke after intra-arterial transplantation of adipose-derived mesenchymal stromal cells. Cytotherapy. 17:1090–1103. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jiang W, Liang G, Li X, Li Z, Gao X, Feng S, Wang X, Liu M and Liu Y: Intracarotid transplantation of autologous adipose-derived mesenchymal stem cells significantly improves neurological deficits in rats after MCAo. J Mater Sci Mater Med. 25:1357–1366. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang P, Gebhart N, Richelson E, Brott TG, Meschia JF and Zubair AC: Mechanism of mesenchymal stem cell-induced neuron recovery and anti-inflammation. Cytotherapy. 16:1336–1344. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yoo SW, Chang DY, Lee HS, Kim GH, Park JS, Ryu BY, Joe EH, Lee YD, Kim SS and Suh-Kim H: Immune following suppression mesenchymal stem cell transplantation in the ischemic brain is mediated by TGF-β. Neurobiol Dis. 58:249–257. 2013. View Article : Google Scholar : PubMed/NCBI | |
Redondo-Castro E, Cunningham C, Miller J, Martuscelli L, Aoulad-Ali S, Rothwell NJ, Kielty CM, Allan SM and Pinteaux E: Interleukin-1 primes human mesenchymal stem cells towards an anti-inflammatory and pro-trophic phenotype in vitro. Stem Cell Res Ther. 8:792017. View Article : Google Scholar : PubMed/NCBI | |
Tan L, Cheng Y, Wang H, Tong J and Qin X: Peripheral transplantation of mesenchymal stem cells at sepsis convalescence improves cognitive function of sepsis surviving mice. Oxid Med Cell Longev. 2022:68977652022. View Article : Google Scholar : PubMed/NCBI | |
Silva AYO, Amorim ÉA, Barbosa-Silva MC, Lima MN, Oliveira HA, Granja MG, Oliveira KS, Fagundes PM, Neris RLS, Campos RMP, et al: Mesenchymal stromal cells protect the blood-brain barrier, reduce astrogliosis, and prevent cognitive and behavioral alterations in surviving septic mice. Crit Care Med. 48:e290–e298. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zheng W, Bai H, Wang J, Wei R, Wen H and Ning H: Intravenous administration of adipose tissue-derived stem cells enhances nerve healing and promotes BDNF expression via the TrkB signaling in a rat stroke model. Neuropsychiatr Dis Treat. 12:1287–1293. 2016.PubMed/NCBI | |
Han C, Song L, Liu Y, Zou W, Jiang C and Liu J: Rat cortex and hippocampus-derived soluble factors for the induction of adipose-derived mesenchymal stem cells into neuron-like cells. Cell Biol Int. 38:768–776. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gutiérrez-Fernández M, Rodriguez-Frutos B, Ramos-Cejudo J, Otero-Ortega L, Fuentes B, Vallejo-Cremades MT, Sanz-Cuesta BE and Díez-Tejedor E: Comparison between xenogeneic and allogeneic adipose mesenchymal stem cells in the treatment of acute cerebral infarct: Proof of concept in rats. J Transl Med. 13:462015. View Article : Google Scholar : PubMed/NCBI | |
Ribeiro CA, Fraga JS, Grãos M, Neves NM, Reis RL, Gimble JM, Sousa N and Salgado AJ: The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations. Stem Cell Res Ther. 3:182012. View Article : Google Scholar : PubMed/NCBI | |
Mahrouf-Yorgov M, Augeul L, Da Silva CC, Jourdan M, Rigolet M, Manin S, Ferrera R, Ovize M, Henry A, Guguin A, et al: Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death Differ. 24:1224–1238. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Huang Y, He J, Zhuo Y, Chen W, Ge L, Duan D, Lu M and Hu Z: Olfactory mucosa mesenchymal stem cells ameliorate cerebral ischemic/reperfusion injury through modulation of UBIAD1 expression. Front Cell Neurosci. 14:5802062020. View Article : Google Scholar : PubMed/NCBI | |
Cao D, Qiao H, He D, Qin X, Zhang Q and Zhou Y: Mesenchymal stem cells inhibited the inflammation and oxidative stress in LPS-activated microglial cells through AMPK pathway. J Neural Transm (Vienna). 126:1589–1597. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang SS, Jia J and Wang Z: Mesenchymal stem cell-derived extracellular vesicles suppresses iNOS expression and ameliorates neural impairment in Alzheimer's disease mice. J Alzheimers Dis. 61:1005–1013. 2018. View Article : Google Scholar | |
Cai G, Cai G, Zhou H, Zhuang Z, Liu K, Pei S, Wang Y, Wang H, Wang X, Xu S, et al: Mesenchymal stem cell-derived exosome miR-542-3p suppresses inflammation and prevents cerebral infarction. Stem Cell Res Ther. 12:22021. View Article : Google Scholar : PubMed/NCBI | |
Fleischmann-Struzek C, Mellhammar L, Rose N, Cassini A, Rudd KE, Schlattmann P, Allegranzi B and Reinhart K: Incidence and mortality of hospital- and ICU-treated sepsis: Results from an updated and expanded systematic review and meta-analysis. Intensive Care Med. 46:1552–1562. 2020. View Article : Google Scholar : PubMed/NCBI | |
Aggarwal S and Pittenger MF: Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 105:1815–1822. 2005. View Article : Google Scholar | |
Li YP, Paczesny S, Lauret E, Poirault S, Bordigoni P, Mekhloufi F, Hequet O, Bertrand Y, Ou-Yang JP, Stoltz JF, et al: Human mesenchymal stem cells license adult CD34+ hemopoietic progenitor cells to differentiate into regulatory dendritic cells through activation of the Notch pathway. J Immunol. 180:1598–1608. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Zhang Y, Wang W, Liu Z, Meng J and Han Z: Mesenchymal stem cells modified with heme oxygenase-1 have enhanced paracrine function and attenuate lipopolysaccharide-induced inflammatory and oxidative damage in pulmonary microvascular endothelial cells. Cell Physiol Biochem. 49:101–122. 2018. View Article : Google Scholar : PubMed/NCBI | |
Koliaraki V, Pallangyo CK, Greten FR and Kollias G: Mesenchymal cells in colon cancer. Gastroenterology. 152:964–979. 2017. View Article : Google Scholar : PubMed/NCBI | |
Parikh SM, Yang Y, He L, Tang C, Zhan M and Dong Z: Mitochondrial function and disturbances in the septic kidney. Semin Nephrol. 35:108–119. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zheng K, Chen S and Hu X: Peroxisome proliferator-activated receptor gamma coactivator-1 alpha: A double-edged sword in prostate cancer. Curr Cancer Drug Targets. 22:541–559. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zheng D, Zhou H, Wang H, Zhu Y, Wu Y, Li Q, Li T and Liu L: Mesenchymal stem cell-derived microvesicles improve intestinal barrier function by restoring mitochondrial dynamic balance in sepsis rats. Stem Cell Res Ther. 12:2992021. View Article : Google Scholar : PubMed/NCBI | |
Phinney DG, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix CM, Stolz DB, Watkins SC, Di YP, Leikauf GD, et al: Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 6:84722015. View Article : Google Scholar : PubMed/NCBI | |
Weber D, Hiergeist A, Weber M, Dettmer K, Wolff D, Hahn J, Herr W, Gessner A and Holler E: Detrimental effect of broad-spectrum antibiotics on intestinal microbiome diversity in patients after allogeneic stem cell transplantation: Lack of commensal sparing antibiotics. Clin Infect Dis. 68:1303–1310. 2019. View Article : Google Scholar | |
Valcz G, Krenács T, Sipos F, Leiszter K, Tóth K, Balogh Z, Csizmadia A, Muzes G, Molnár B and Tulassay Z: The role of the bone marrow derived mesenchymal stem cells in colonic epithelial regeneration. Pathol Oncol Res. 17:11–16. 2011. View Article : Google Scholar | |
Hayashi Y, Tsuji S, Tsujii M, Nishida T, Ishii S, Iijima H, Nakamura T, Eguchi H, Miyoshi E, Hayashi N and Kawano S: Topical implantation of mesenchymal stem cells has beneficial effects on healing of experimental colitis in rats. J Pharmacol Exp Ther. 326:523–531. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nagashima K, Sawa S, Nitta T, Tsutsumi M, Okamura T, Penninger JM, Nakashima T and Takayanagi H: Identification of subepithelial mesenchymal cells that induce IgA and diversify gut microbiota. Nat Immunol. 18:675–682. 2017. View Article : Google Scholar : PubMed/NCBI | |
Levi M: Current understanding of disseminated intravascular coagulation. Br J Haematol. 124:567–576. 2004. View Article : Google Scholar : PubMed/NCBI | |
Levi M, de Jonge E and van der Poll T: Sepsis and disseminated intravascular coagulation. J Thromb Thrombolysis. 16:43–47. 2003. View Article : Google Scholar | |
Semeraro N, Ammollo CT, Semeraro F and Colucci M: Coagulopathy of acute sepsis. Semin Thromb Hemost. 41:650–658. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Wu S, Wang T, Ma Z and Liu K: Bone marrow-derived mesenchymal stem cells-mediated protection against organ dysfunction in disseminated intravascular coagulation is associated with peripheral immune responses. J Cell Biochem. 118:3184–3192. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Wu SM, Wang T, Liu K, Zhang G, Zhang XQ, Yu JH, Liu CZ and Fang CC: Pre-treatment with bone marrow-derived mesenchymal stem cells inhibits systemic intravascular coagulation and attenuates organ dysfunction in lipopolysaccharide-induced disseminated intravascular coagulation rat model. Chin Med J (Engl). 125:1753–1759. 2012.PubMed/NCBI | |
Baudry N, Starck J, Aussel C, Lund K, Aletti M, Duranteau J, Banzet S, Lataillade JJ, Vicaut E and Peltzer J: Effect of preconditioned mesenchymal stromal cells on early microvascular disturbance in a mouse sepsis model. Stem Cells Dev. 28:1595–1606. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ye Q, Qiu X, Wang J, Xu B, Su Y, Zheng C, Gui L, Yu L, Kuang H, Liu H, et al: MSCs-derived apoptotic extracellular vesicles promote muscle regeneration by inducing Pannexin 1 channel-dependent creatine release by myoblasts. Int J Oral Sci. 15:72023. View Article : Google Scholar : PubMed/NCBI | |
Sassoli C, Zecchi-Orlandini S and Formigli L: Trophic actions of bone marrow-derived mesenchymal stromal cells for muscle repair/regeneration. Cells. 1:832–850. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gang EJ, Bosnakovski D, Simsek T, To K and Perlingeiro RCR: Pax3 activation promotes the differentiation of mesenchymal stem cells toward the myogenic lineage. Exp Cell Res. 314:1721–1733. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda SI, Ide C and Nabeshima YI: Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science. 309:314–317. 2005. View Article : Google Scholar : PubMed/NCBI | |
Haghighipour N, Heidarian S, Shokrgozar MA and Amirizadeh N: Differential effects of cyclic uniaxial stretch on human mesenchymal stem cell into skeletal muscle cell. Cell Biol Int. 36:669–675. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ninagawa NT, Isobe E, Hirayama Y, Murakami R, Komatsu K, Nagai M, Kobayashi M, Kawabata Y and Torihashi S: Transplantated mesenchymal stem cells derived from embryonic stem cells promote muscle regeneration and accelerate functional recovery of injured skeletal muscle. Biores Open Access. 2:295–306. 2013. View Article : Google Scholar : PubMed/NCBI | |
Natsu K, Ochi M, Mochizuki Y, Hachisuka H, Yanada S and Yasunaga Y: Allogeneic bone marrow-derived mesenchymal stromal cells promote the regeneration of injured skeletal muscle without differentiation into myofibers. Tissue Eng. 10:1093–1112. 2004. View Article : Google Scholar : PubMed/NCBI | |
Winkler T, von Roth P, Matziolis G, Mehta M, Perka C and Duda GN: Dose-response relationship of mesenchymal stem cell transplantation and functional regeneration after severe skeletal muscle injury in rats. Tissue Eng Part A. 15:487–492. 2009. View Article : Google Scholar | |
Winkler T, von Roth P, Radojewski P, Urbanski A, Hahn S, Preininger B, Duda GN and Perka C: Immediate and delayed transplantation of mesenchymal stem cells improve muscle force after skeletal muscle injury in rats. J Tissue Eng Regen Med. 6(Suppl 3): s60–s67. 2012. View Article : Google Scholar : PubMed/NCBI | |
von Roth P, Duda GN, Radojewski P, Preininger B, Perka C and Winkler T: Mesenchymal stem cell therapy following muscle trauma leads to improved muscular regeneration in both male and female rats. Gend Med. 9:129–136. 2012. View Article : Google Scholar : PubMed/NCBI | |
Meregalli M, Farini A, Belicchi M, Parolini D, Cassinelli L, Razini P, Sitzia C and Torrente Y: Perspectives of stem cell therapy in Duchenne muscular dystrophy. FEBS J. 280:4251–4262. 2013. View Article : Google Scholar | |
Jiang J, Yao P, Gu Y, Xu L, Xu J and Tan H: Adult rat mesenchymal stem cells delay denervated muscle atrophy. Cell Mol Neurobiol. 32:1287–1298. 2012. View Article : Google Scholar : PubMed/NCBI | |
Merritt EK, Cannon MV, Hammers DW, Le LN, Gokhale R, Sarathy A, Song TJ, Tierney MT, Suggs LJ, Walters TJ and Farrar RP: Repair of traumatic skeletal muscle injury with bone-marrow-derived mesenchymal stem cells seeded on extracellular matrix. Tissue Eng Part A. 16:2871–2881. 2010. View Article : Google Scholar : PubMed/NCBI | |
Stana F, Vujovic M, Mayaki D, Leduc-Gaudet JP, Leblanc P, Huck L and Hussain SNA: Differential regulation of the autophagy and proteasome pathways in skeletal muscles in sepsis. Crit Care Med. 45:e971–e979. 2017. View Article : Google Scholar : PubMed/NCBI | |
Khalil R: Ubiquitin-proteasome pathway and muscle atrophy. Adv Exp Med Biol. 1088:235–248. 2018. View Article : Google Scholar : PubMed/NCBI | |
Peruchi BB, Petronilho F, Rojas HA, Constantino L, Mina F, Vuolo F, Cardoso MR, Gonçalves CL, Rezin GT, Streck EL and Dal-Pizzol F: Skeletal muscle electron transport chain dysfunction after sepsis in rats. J Surg Res. 167:e333–e338. 2011. View Article : Google Scholar : PubMed/NCBI | |
Thoma A and Lightfoot AP: NF-kB and inflammatory cytokine signalling: Role in skeletal muscle atrophy. Adv Exp Med Biol. 1088:267–279. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pelosi M, De Rossi M, Barberi L and Musarò A: IL-6 impairs myogenic differentiation by downmodulation of p90RSK/eEF2 and mTOR/p70S6K axes, without affecting AKT activity. Biomed Res Int. 2014:2060262014. View Article : Google Scholar : PubMed/NCBI | |
Zhu S, Nagashima M, Khan MAS, Yasuhara S, Kaneki M and Martyn JAJ: Lack of caspase-3 attenuates immobilization-induced muscle atrophy and loss of tension generation along with mitigation of apoptosis and inflammation. Muscle Nerve. 47:711–721. 2013. View Article : Google Scholar : PubMed/NCBI | |
Okamura LH, Cordero P, Palomino J, Parraguez VH, Torres CG and Peralta OA: Myogenic differentiation potential of mesenchymal stem cells derived from fetal bovine bone marrow. Anim Biotechnol. 29:1–11. 2018. View Article : Google Scholar | |
Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, et al: Bone marrow cells regenerate infarcted myocardium. Nature. 410:701–705. 2001. View Article : Google Scholar : PubMed/NCBI | |
Egusa H, Kobayashi M, Matsumoto T, Sasaki J, Uraguchi S and Yatani H: Application of cyclic strain for accelerated skeletal myogenic differentiation of mouse bone marrow-derived mesenchymal stromal cells with cell alignment. Tissue Eng Part A. 19:770–782. 2013. View Article : Google Scholar | |
Drost AC, Weng S, Feil G, Schäfer J, Baumann S, Kanz L, Sievert KD, Stenzl A and Möhle R: In vitro myogenic differentiation of human bone marrow-derived mesenchymal stem cells as a potential treatment for urethral sphincter muscle repair. Ann N Y Acad Sci. 1176:135–143. 2009. View Article : Google Scholar : PubMed/NCBI | |
Maeda Y, Yonemochi Y, Nakajyo Y, Hidaka H, Ikeda T and Ando Y: CXCL12 and osteopontin from bone marrow-derived mesenchymal stromal cells improve muscle regeneration. Sci Rep. 7:33052017. View Article : Google Scholar : PubMed/NCBI | |
Wakitani S, Saito T and Caplan AI: Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve. 18:1417–1426. 1995. View Article : Google Scholar : PubMed/NCBI | |
Meligy FY, Shigemura K, Behnsawy HM, Fujisawa M, Kawabata M and Shirakawa T: The efficiency of in vitro isolation and myogenic differentiation of MSCs derived from adipose connective tissue, bone marrow, and skeletal muscle tissue. In Vitro Cell Dev Biol Anim. 48:203–215. 2012. View Article : Google Scholar : PubMed/NCBI | |
Asakura A: Stem cells in adult skeletal muscle. rends Cardiovasc Med. 13:123–128. 2003. View Article : Google Scholar | |
Dumont NA, Wang YX and Rudnicki MA: Intrinsic and extrinsic mechanisms regulating satellite cell function. Development. 142:1572–1581. 2015. View Article : Google Scholar : PubMed/NCBI | |
Thomas K, Engler AJ and Meyer GA: Extracellular matrix regulation in the muscle satellite cell niche. Connect Tissue Res. 56:1–8. 2015. View Article : Google Scholar : | |
Tonkin J, Temmerman L, Sampson RD, Gallego-Colon E, Barberi L, Bilbao D, Schneider MD, Musarò A and Rosenthal N: Monocyte/macrophage-derived IGF-1 orchestrates murine skeletal muscle regeneration and modulates autocrine polarization. Mol Ther. 23:1189–1200. 2015. View Article : Google Scholar : PubMed/NCBI | |
Karp JM and Teo GSL: Mesenchymal stem cell homing: The devil is in the details. Cell Stem Cell. 4:206–216. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Yang C and Yang P: The promotional effect of mesenchymal stem cell homing on bone tissue regeneration. Curr Stem Cell Res Ther. 12:365–376. 2017. View Article : Google Scholar | |
Ringe J, Strassburg S, Neumann K, Endres M, Notter M, Burmester GR, Kaps C and Sittinger M: Towards in situ tissue repair: Human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J Cell Biochem. 101:135–146. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Li Y, Chen W, Han N, Li K, Guo R, Liu Z and Xiao Y: Enhanced recruitment and hematopoietic reconstitution of bone marrow-derived mesenchymal stem cells in bone marrow failure by the SDF-1/CXCR4. J Tissue Eng Regen Med. 14:1250–1260. 2020.PubMed/NCBI | |
Moll NM and Ransohoff RM: CXCL12 and CXCR4 in bone marrow physiology. Expert Rev Hematol. 3:315–322. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pozzobon T, Goldoni G, Viola A and Molon B: CXCR4 signaling in health and disease. Immunol Lett. 177:6–15. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mousavi A: CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett. 217:91–115. 2020. View Article : Google Scholar | |
Guo J, Zhang H, Xiao J, Wu J, Ye Y, Li Z, Zou Y and Li X: Monocyte chemotactic protein-1 promotes the myocardial homing of mesenchymal stem cells in dilated cardiomyopathy. Int J Mol Sci. 14:8164–8178. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schenk S, Mal N, Finan A, Zhang M, Kiedrowski M, Popovic Z, McCarthy PM and Penn MS: Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor. Stem Cells. 25:245–251. 2007. View Article : Google Scholar | |
Ahn SY, Park WS, Kim YE, Sung DK, Sung SI, Ahn JY and Chang YS: Vascular endothelial growth factor mediates the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicles against neonatal hyperoxic lung injury. Exp Mol Med. 50:1–12. 2018. | |
Shams S, Mohsin S, Nasir GA, Khan M and Khan SN: Mesenchymal stem cells pretreated with HGF and FGF4 can reduce liver fibrosis in mice. Stem Cells Int. 2015:7472452015. View Article : Google Scholar : PubMed/NCBI | |
Kumar S and Ponnazhagan S: Bone homing of mesenchymal stem cells by ectopic alpha 4 integrin expression. FASEB J. 21:3917–3927. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G and Mavilio F: Muscle regeneration by bone marrow-derived myogenic progenitors. Science. 279:1528–1530. 1998. View Article : Google Scholar : PubMed/NCBI | |
Winkler T, von Roth P, Schuman MR, Sieland K, Stoltenburg-Didinger G, Taupitz M, Perka C, Duda GN and Matziolis G: In vivo visualization of locally transplanted mesenchymal stem cells in the severely injured muscle in rats. Tissue Eng Part A. 14:1149–1160. 2008. View Article : Google Scholar : PubMed/NCBI | |
Le Blanc K and Mougiakakos D: Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol. 12:383–396. 2012. View Article : Google Scholar : PubMed/NCBI | |
da Justa Pinheiro CH, de Queiroz JC, Guimarães-Ferreira L, Vitzel KF, Nachbar RT, de Sousa LGO, de Souza AL Jr, Nunes MT and Curi R: Local injections of adipose-derived mesenchymal stem cells modulate inflammation and increase angiogenesis ameliorating the dystrophic phenotype in dystrophin-deficient skeletal muscle. Stem Cell Rev Rep. 8:363–374. 2012. View Article : Google Scholar | |
Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, et al: Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 15:42–49. 2009. View Article : Google Scholar | |
Chen L, Tredget EE, Wu PY and Wu Y: Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One. 3:e18862008. View Article : Google Scholar : PubMed/NCBI | |
Bencze M, Negroni E, Vallese D, Yacoub-Youssef H, Chaouch S, Wolff A, Aamiri A, Di Santo JP, Chazaud B, Butler-Browne G, et al: Proinflammatory macrophages enhance the regenerative capacity of human myoblasts by modifying their kinetics of proliferation and differentiation. Mol Ther. 20:2168–2179. 2012. View Article : Google Scholar : PubMed/NCBI | |
Waterman RS, Tomchuck SL, Henkle SL and Betancourt AM: A new mesenchymal stem cell (MSC) paradigm: Polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One. 5:e100882010. View Article : Google Scholar : PubMed/NCBI | |
de Couto G, Gallet R, Cambier L, Jaghatspanyan E, Makkar N, Dawkins JF, Berman BP and Marbán E: Exosomal MicroRNA transfer into macrophages mediates cellular postconditioning. Circulation. 136:200–214. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu R, Zhang F, Chai R, Zhou W, Hu M, Liu B, Chen X, Liu M, Xu Q, Liu N and Liu S: Exosomes derived from pro-inflammatory bone marrow-derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization. J Cell Mol Med. 23:7617–7631. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Li X, Hu J, Chen F, Qiao S, Sun X, Gao L, Xie J and Xu B: Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res. 115:1205–1216. 2019. View Article : Google Scholar : PubMed/NCBI | |
Simovic Markovic B, Gazdic M, Arsenijevic A, Jovicic N, Jeremic J, Djonov V, Arsenijevic N, Lukic ML and Volarevic V: Mesenchymal stem cells attenuate cisplatin-induced nephrotoxicity in iNOS-dependent manner. Stem Cells Int. 2017:13153782017. View Article : Google Scholar : PubMed/NCBI | |
Sassoli C, Pini A, Chellini F, Mazzanti B, Nistri S, Nosi D, Saccardi R, Quercioli F, Zecchi-Orlandini S and Formigli L: Bone marrow mesenchymal stromal cells stimulate skeletal myoblast proliferation through the paracrine release of VEGF. PLoS One. 7:e375122012. View Article : Google Scholar : PubMed/NCBI | |
Murphy MB, Moncivais K and Caplan AI: Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 45:e542013. View Article : Google Scholar : PubMed/NCBI | |
Sassoli C, Frati A, Tani A, Anderloni G, Pierucci F, Matteini F, Chellini F, Zecchi Orlandini S, Formigli L and Meacci E: Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P) exerts a stimulatory effect on skeletal myoblast proliferation. PLoS One. 9:e1086622014. View Article : Google Scholar : PubMed/NCBI | |
Nakamura Y, Miyaki S, Ishitobi H, Matsuyama S, Nakasa T, Kamei N, Akimoto T, Higashi Y and Ochi M: Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett. 589:1257–1265. 2015. View Article : Google Scholar : PubMed/NCBI | |
Leoni G, Neumann PA, Kamaly N, Quiros M, Nishio H, Jones HR, Sumagin R, Hilgarth RS, Alam A, Fredman G, et al: Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair. J Clin Invest. 125:1215–1227. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bizzarro V, Petrella A and Parente L: Annexin A1: Novel roles in skeletal muscle biology. J Cell Physiol. 227:3007–3015. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim S, Lee MJ, Choi JY, Park DH, Kwak HB, Moon S, Koh JW, Shin HK, Ryu JK, Park CS, et al: Roles of exosome-like vesicles released from inflammatory C2C12 myotubes: Regulation of myocyte differentiation and myokine expression. Cell Physiol Biochem. 48:1829–1842. 2018. View Article : Google Scholar : PubMed/NCBI | |
Choi JS, Yoon HI, Lee KS, Choi YC, Yang SH, Kim IS and Cho YW: Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration. J Control Release. 222:107–115. 2016. View Article : Google Scholar | |
Forterre A, Jalabert A, Berger E, Baudet M, Chikh K, Errazuriz E, De Larichaudy J, Chanon S, Weiss-Gayet M, Hesse AM, et al: Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: A new paradigm for myoblast-myotube cross talk? PLoS One. 9:e841532014. View Article : Google Scholar : PubMed/NCBI | |
Oswald J, Boxberger S, Jørgensen B, Feldmann S, Ehninger G, Bornhäuser M and Werner C: Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 22:377–384. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Li Y, Yang M, Zou Y, Liu H, Liang Z, Yin Y, Niu G, Yan Z and Zhang B: Efficient differentiation of bone marrow mesenchymal stem cells into endothelial cells in vitro. Eur J Vasc Endovasc Surg. 55:257–265. 2018. View Article : Google Scholar | |
Lu W, Xiu X, Zhao Y and Gui M: Improved proliferation and differentiation of bone marrow mesenchymal stem cells into vascular endothelial cells with sphingosine 1-phosphate. Transplant Proc. 47:2035–2040. 2015. View Article : Google Scholar : PubMed/NCBI | |
Grote K, Petri M, Liu C, Jehn P, Spalthoff S, Kokemüller H, Luchtefeld M, Tschernig T, Krettek C, Haasper C and Jagodzinski M: Toll-like receptor 2/6-dependent stimulation of mesenchymal stem cells promotes angiogenesis by paracrine factors. Eur Cell Mater. 26:66–79. 2013. View Article : Google Scholar : PubMed/NCBI | |
Leroux L, Descamps B, Tojais NF, Séguy B, Oses P, Moreau C, Daret D, Ivanovic Z, Boiron JM, Lamazière JM, et al: Hypoxia preconditioned mesenchymal stem cells improve vascular and skeletal muscle fiber regeneration after ischemia through a Wnt4-dependent pathway. Mol Ther. 18:1545–1552. 2010. View Article : Google Scholar : PubMed/NCBI | |
Berebichez-Fridman R and Montero-Olvera PR: Sources and clinical applications of mesenchymal stem cells: State-of-the-art review. Sultan Qaboos Univ Med J. 18:e264–e277. 2018. View Article : Google Scholar | |
Mushahary D, Spittler A, Kasper C, Weber V and Charwat V: Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A. 93:19–31. 2018. View Article : Google Scholar | |
Spath L, Rotilio V, Alessandrini M, Gambara G, De Angelis L, Mancini M, Mitsiadis TA, Vivarelli E, Naro F, Filippini A and Papaccio G: Explant-derived human dental pulp stem cells enhance differentiation and proliferation potentials. J Cell Mol Med. 14:1635–1644. 2010. View Article : Google Scholar | |
Ueda N, Atsuta I, Ayukawa Y, Yamaza T, Furuhashi A, Narimatsu I, Matsuura Y, Kondo R, Watanabe Y, Zhang X and Koyano K: Novel application method for mesenchymal stem cell therapy utilizing its attractant-responsive accumulation property. Appl Sci. 9:49082019. View Article : Google Scholar | |
Castelo-Branco MTL, Soares IDO, Lopes DV, Buongusto F, Martinusso CA, do Rosario A Jr, Souza SA, Gutfilen B, Fonseca LM, Elia C, et al: Intraperitoneal but not intravenous cryopreserved mesenchymal stromal cells home to the inflamed colon and ameliorate experimental colitis. PLoS One. 7:e333602012. View Article : Google Scholar : PubMed/NCBI | |
Gonçalves Fda C, Schneider N, Pinto FO, Meyer FS, Visioli F, Pfaffenseller B, Lopez PL, Passos EP, Cirne-Lima EO, Meurer L and Paz AH: Intravenous vs intraperitoneal mesenchymal stem cells administration: What is the best route for treating experimental colitis? World J Gastroenterol. 20:18228–18239. 2014. View Article : Google Scholar | |
Roux C, Saviane G, Pini J, Belaïd N, Dhib G, Voha C, Ibáñez L, Boutin A, Mazure NM, Wakkach A, et al: Immunosuppressive mesenchymal stromal cells derived from human-induced pluripotent stem cells induce human regulatory T cells in vitro and in vivo. Front Immunol. 8:19912018. View Article : Google Scholar : PubMed/NCBI | |
Braid LR, Wood CA, Wiese DM and Ford BN: Intramuscular administration potentiates extended dwell time of mesenchymal stromal cells compared to other routes. Cytotherapy. 20:232–244. 2018. View Article : Google Scholar | |
Rangarajan A, Hong SJ, Gifford A and Weinberg RA: Erratum to species- and cell type-specific requirements for cellular transformation [Cancer Cell 6, (2004) 171-183]. Cancer Cell. 24:394–398. 2013. View Article : Google Scholar | |
Wang Y, Han ZB, Song YP and Han ZC: Safety of mesenchymal stem cells for clinical application. Stem Cells Int. 2012:6520342012. View Article : Google Scholar : PubMed/NCBI | |
Golpanian S, DiFede DL, Khan A, Schulman IH, Landin AM, Tompkins BA, Heldman AW, Miki R, Goldstein BJ, Mushtaq M, et al: Allogeneic human mesenchymal stem cell infusions for aging frailty. J Gerontol A Biol Sci Med Sci. 72:1505–1512. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tompkins BA, DiFede DL, Khan A, Landin AM, Schulman IH, Pujol MV, Heldman AW, Miki R, Goldschmidt-Clermont PJ, Goldstein BJ, et al: Allogeneic mesenchymal stem cells ameliorate aging frailty: A phase II randomized, double-blind, placebo-controlled clinical trial. J Gerontol A Biol Sci Med Sci. 72:1513–1522. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kabat M, Bobkov I, Kumar S and Grumet M: Trends in mesenchymal stem cell clinical trials 2004-2018: Is efficacy optimal in a narrow dose range? Stem Cells Transl Med. 9:17–27. 2020. View Article : Google Scholar | |
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al: The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mankowski RT, Laitano O, Darden D, Kelly L, Munley J, Loftus TJ, Mohr AM, Efron PA and Thomas RM: Sepsis-Induced myopathy and gut microbiome dysbiosis: Mechanistic links and therapeutic targets. Shock. 57:15–23. 2022. View Article : Google Scholar : | |
Liu Y, Wang D, Li T, Yang F, Li Z, Bai X and Wang Y: The role of NLRP3 inflammasome in inflammation-related skeletal muscle atrophy. Front Immunol. 13:10357092022. View Article : Google Scholar : PubMed/NCBI | |
Liu D, Huang SY, Sun JH, Zhang HC, Cai QL, Gao C, Li L, Cao J, Xu F, Zhou Y, et al: Sepsis-induced immunosuppression: Mechanisms, diagnosis and current treatment options. Mil Med Res. 9:562022.PubMed/NCBI | |
Kramer CL: Intensive care unit-acquired weakness. Neurol Clin. 35:723–736. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fu X, Liu G, Halim A, Ju Y, Luo Q and Song AG: Mesenchymal stem cell migration and tissue repair. Cells. 8:7842019. View Article : Google Scholar : PubMed/NCBI | |
Song J, Liu J, Cui C, Hu H, Zang N, Yang M, Yang J, Zou Y, Li J, Wang L, et al: Mesenchymal stromal cells ameliorate diabetes-induced muscle atrophy through exosomes by enhancing AMPK/ULK1-mediated autophagy. J Cachexia Sarcopenia Muscle. 14:915–929. 2023. View Article : Google Scholar : PubMed/NCBI | |
Abrigo J, Rivera JC, Aravena J, Cabrera D, Simon F, Ezquer F, Ezquer M and Cabello-Verrugio C: High fat diet-induced skeletal muscle wasting is decreased by mesenchymal stem cells administration: Implications on oxidative stress, ubiquitin proteasome pathway activation, and myonuclear apoptosis. Oxid Med Cell Longev. 2016:90478212016. View Article : Google Scholar : PubMed/NCBI |