Claudin 1, 4, 6 and 18 isoform 2 as targets for the treatment of cancer (Review)
- Authors:
- Masuko Katoh
- Masaru Katoh
-
Affiliations: Department of Global Network, M & M Precision Medicine, Tokyo 113‑0033, Japan - Published online on: September 13, 2024 https://doi.org/10.3892/ijmm.2024.5424
- Article Number: 100
-
Copyright: © Katoh et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Tsukita S, Furuse M and Itoh M: Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol. 2:285–293. 2001. View Article : Google Scholar : PubMed/NCBI | |
Katoh M and Katoh M: CLDN23 gene, frequently down-regulated in intestinal-type gastric cancer, is a novel member of CLAUDIN gene family. Int J Mol Med. 11:683–689. 2003.PubMed/NCBI | |
Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J and Blasig IE: Structure and function of claudins. Biochim Biophys Acta. 1778:631–645. 2008. View Article : Google Scholar | |
Baltzegar DA, Reading BJ, Brune ES and Borski RJ: Phylogenetic revision of the claudin gene family. Mar Genomics. 11:17–26. 2013. View Article : Google Scholar : PubMed/NCBI | |
Günzel D, Stuiver M, Kausalya PJ, Haisch L, Krug SM, Rosenthal R, Meij IC, Hunziker W, Fromm M and Müller D: Claudin-10 exists in six alternatively spliced isoforms that exhibit distinct localization and function. J Cell Sci. 122:1507–1517. 2009. View Article : Google Scholar : PubMed/NCBI | |
Niimi T, Nagashima K, Ward JM, Minoo P, Zimonjic DB, Popescu NC and Kimura S: Claudin-18, a novel downstream target gene for the T/EBP/NKX2.1 homeodomain transcription factor, encodes lung- and stomach-specific isoforms through alternative splicing. Mol Cell Biol. 21:7380–7390. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zihni C, Mills C, Matter K and Balda MS: Tight junctions: From simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol. 17:564–580. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vecchio AJ, Rathnayake SS and Stroud RM: Structural basis for Clostridium perfringens enterotoxin targeting of claudins at tight junctions in mammalian gut. Proc Natl Acad Sci USA. 118:e20246511182021. View Article : Google Scholar : PubMed/NCBI | |
Günzel D and Yu AS: Claudins and the modulation of tight junction permeability. Physiol Rev. 93:525–569. 2013. View Article : Google Scholar : PubMed/NCBI | |
France MM and Turner JR: The mucosal barrier at a glance. J Cell Sci. 130:307–314. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stamatovic SM, Johnson AM, Sladojevic N, Keep RF and Andjelkovic AV: Endocytosis of tight junction proteins and the regulation of degradation and recycling. Ann N Y Acad Sci. 1397:54–65. 2017. View Article : Google Scholar : PubMed/NCBI | |
Horowitz A, Chanez-Paredes SD, Haest X and Turner JR: Paracellular permeability and tight junction regulation in gut health and disease. Nat Rev Gastroenterol Hepatol. 20:417–432. 2023. View Article : Google Scholar : PubMed/NCBI | |
Meoli L and Günzel D: The role of claudins in homeostasis. Nat Rev Nephrol. 19:587–603. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tanaka H, Yamamoto Y, Kashihara H, Yamazaki Y, Tani K, Fujiyoshi Y, Mineta K, Takeuchi K, Tamura A and Tsukita S: Claudin-21 has a paracellular channel role at tight junctions. Mol Cell Biol. 36:954–964. 2016. View Article : Google Scholar : PubMed/NCBI | |
Raya-Sandino A, Lozada-Soto KM, Rajagopal N, Garcia-Hernandez V, Luissint AC, Brazil JC, Cui G, Koval M, Parkos CA, Nangia S and Nusrat A: Claudin-23 reshapes epithelial tight junction architecture to regulate barrier function. Nat Commun. 14:62142023. View Article : Google Scholar : PubMed/NCBI | |
Hadj-Rabia S, Baala L, Vabres P, Hamel-Teillac D, Jacquemin E, Fabre M, Lyonnet S, De Prost Y, Munnich A, Hadchouel M and Smahi A: Claudin-1 gene mutations in neonatal sclerosing cholangitis associated with ichthyosis: A tight junction disease. Gastroenterology. 127:1386–1390. 2004. View Article : Google Scholar : PubMed/NCBI | |
Askari M, Karamzadeh R, Ansari-Pour N, Karimi-Jafari MH, Almadani N, Sadighi Gilani MA, Gourabi H, Vosough Taghi Dizaj A, Mohseni Meybodi A, Sadeghi M, et al: Identification of a missense variant in CLDN2 in obstructive azoospermia. J Hum Genet. 64:1023–1032. 2019. View Article : Google Scholar : PubMed/NCBI | |
Klar J, Piontek J, Milatz S, Tariq M, Jameel M, Breiderhoff T, Schuster J, Fatima A, Asif M, Sher M, et al: Altered paracellular cation permeability due to a rare CLDN10B variant causes anhidrosis and kidney damage. PLoS Genet. 13:e10068972017. View Article : Google Scholar : PubMed/NCBI | |
Sineni CJ, Yildirim-Baylan M, Guo S, Camarena V, Wang G, Tokgoz-Yilmaz S, Duman D, Bademci G and Tekin M: A truncating CLDN9 variant is associated with autosomal recessive nonsyndromic hearing loss. Hum Genet. 138:1071–1075. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wilcox ER, Burton QL, Naz S, Riazuddin S, Smith TN, Ploplis B, Belyatseva I, Ben-Yosef T, Liburd NA, Morell RJ, et al: Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell. 104:165–172. 2001. View Article : Google Scholar : PubMed/NCBI | |
Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodriguez-Soriano J, et al: Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science. 285:103–106. 1999. View Article : Google Scholar : PubMed/NCBI | |
Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, Vitzthum H, Suzuki Y, Luk JM, Becker C, et al: Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet. 79:949–957. 2006. View Article : Google Scholar : PubMed/NCBI | |
Riedhammer KM, Stockler S, Ploski R, Wenzel M, Adis-Dutschmann B, Ahting U, Alhaddad B, Blaschek A, Haack TB, Kopajtich R, et al: De novo stop-loss variants in CLDN11 cause hypomyelinating leukodystrophy. Brain. 144:411–419. 2021. View Article : Google Scholar : | |
Cancer Genome Atlas Research Network: Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 513:202–209. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nakayama I, Shinozaki E, Sakata S, Yamamoto N, Fujisaki J, Muramatsu Y, Hirota T, Takeuchi K, Takahashi S, Yamaguchi K and Noda T: Enrichment of CLDN18-ARHGAP fusion gene in gastric cancers in young adults. Cancer Sci. 110:1352–1363. 2019. View Article : Google Scholar : PubMed/NCBI | |
Morin PJ: Claudin proteins in human cancer: Promising new targets for diagnosis and therapy. Cancer Res. 65:9603–9606. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sahin U, Koslowski M, Dhaene K, Usener D, Brandenburg G, Seitz G, Huber C and Türeci O: Claudin-18 splice variant 2 is a pan-cancer target suitable for therapeutic antibody development. Clin Cancer Res. 14:7624–7634. 2008. View Article : Google Scholar : PubMed/NCBI | |
Turksen K and Troy TC: Junctions gone bad: Claudins and loss of the barrier in cancer. Biochim Biophys Acta. 1816:73–79. 2011.PubMed/NCBI | |
Qu H, Jin Q and Quan C: CLDN6: From traditional barrier function to emerging roles in cancers. Int J Mol Sci. 22:134162021. View Article : Google Scholar : PubMed/NCBI | |
Roehlen N, Muller M, Nehme Z, Crouchet E, Jühling F, Del Zompo F, Cherradi S, Duong FHT, Almeida N, Saviano A, et al: Treatment of HCC with claudin-1-specific antibodies suppresses carcinogenic signaling and reprograms the tumor microenvironment. J Hepatol. 78:343–355. 2023. View Article : Google Scholar | |
Katoh M and Katoh M: Precision medicine for human cancers with Notch signaling dysregulation (Review). Int J Mol Med. 45:279–297. 2020.PubMed/NCBI | |
Cao W, Xing H, Li Y, Tian W, Song Y, Jiang Z and Yu J: Claudin18.2 is a novel molecular biomarker for tumor-targeted immunotherapy. Biomark Res. 10:382022. View Article : Google Scholar : PubMed/NCBI | |
Vonniessen B, Tabariès S and Siegel PM: Antibody-mediated targeting of Claudins in cancer. Front Oncol. 14:13207662024. View Article : Google Scholar : PubMed/NCBI | |
Nakayama I, Qi C, Chen Y, Nakamura Y, Shen L and Shitara K: Claudin 18.2 as a novel therapeutic target. Nat Rev Clin Oncol. 21:354–369. 2024. View Article : Google Scholar : PubMed/NCBI | |
Miwa N, Furuse M, Tsukita S, Niikawa N, Nakamura Y and Furukawa Y: Involvement of claudin-1 in the beta-catenin/Tcf signaling pathway and its frequent upregulation in human colorectal cancers. Oncol Res. 12:469–476. 2001. View Article : Google Scholar | |
Katoh M: Multi-layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β-catenin signaling activation (Review). Int J Mol Med. 42:713–725. 2018.PubMed/NCBI | |
Zeisel MB, Dhawan P and Baumert TF: Tight junction proteins in gastrointestinal and liver disease. Gut. 68:547–561. 2019. View Article : Google Scholar | |
Bhat AA, Syed N, Therachiyil L, Nisar S, Hashem S, Macha MA, Yadav SK, Krishnankutty R, Muralitharan S, Al-Naemi H, et al: Claudin-1, a double-edged sword in cancer. Int J Mol Sci. 21:5692020. View Article : Google Scholar : PubMed/NCBI | |
Hana C, Thaw Dar NN, Galo Venegas M and Vulfovich M: Claudins in cancer: A current and future therapeutic target. Int J Mol Sci. 25:46342024. View Article : Google Scholar : PubMed/NCBI | |
Toso A, Teixiera G, Zimmermann T, Schmitter D, Meyer M, Muller M, Mailly L, Baumert T and Iacone R: 193P CLAUDIN-1 targeting antibodies in solid tumors: From ALE.C04 to CLAUDIN-1 oncology platform. Immunooncol Technol. 16(Suppl 1): S1003052022. View Article : Google Scholar | |
Toso A, Teixeira G, Zimmermann T, Gill SG, Schmitter D, Meyer M, Muller M, Mailly L, Baumert T, Manenti L and Iacone R: Abstract LB284: CLAUDIN-1 targeting antibody ALE.C04 drives single activity and restores anti-PD1 efficacy in solid tumors. Cancer Res. 83(Suppl 8): LB2842023. View Article : Google Scholar | |
Rosa K: FDA grantsfast track status to ALE.C04 for recurrent or metastatic CLDN1+ HNSCC. OncLive. 2023, https://www.onclive.com/view/fda-grants-fast-track-status-to-ale-c04-for-recurrent-or-metastatic-cldn1-hnscc. | |
Pelster M, Marron TU, Friend BD, Fan A, Yang J and Spira AI: Phase 1 study of ASP1002, a bispecific antibody targeting claudin 4 (CLDN4) and CD137, in patients with locally advanced (LA) or metastatic solid tumors that express CLDN4. J Clin Oncol. 42(Suppl 16): TPS26702024. View Article : Google Scholar | |
Ben-David U, Nudel N and Benvenisty N: Immunologic and chemical targeting of the tight-junction protein Claudin-6 eliminates tumorigenic human pluripotent stem cells. Nat Commun. 4:19922013. View Article : Google Scholar : PubMed/NCBI | |
Reinhard K, Rengstl B, Oehm P, Michel K, Billmeier A, Hayduk N, Klein O, Kuna K, Ouchan Y, Wöll S, et al: An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science. 367:446–453. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kong FE, Li GM, Tang YQ, Xi SY, Loong JHC, Li MM, Li HL, Cheng W, Zhu WJ, Mo JQ, et al: Targeting tumor lineage plasticity in hepatocellular carcinoma using an anti-CLDN6 antibody-drug conjugate. Sci Transl Med. 13:eabb62822021. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Guo C, Li Y, Liu K, Zhao Q and Ouyang L: Identification of claudin-6 as a molecular biomarker in pan-cancer through multiple omics integrative analysis. Front Cell Dev Biol. 9:7266562021. View Article : Google Scholar : PubMed/NCBI | |
Du H, Yang X, Fan J and Du X: Claudin 6: Therapeutic prospects for tumours, and mechanisms of expression and regulation (Review). Mol Med Rep. 24:6772021. View Article : Google Scholar : PubMed/NCBI | |
Tsang N, Veillard N, Horsley E, Havenith K, Janghra N, Zeitseva K, Oblette C, Kirby I, Hogg PW, Zammarchi F, et al: Abstract 3122: Preclinical development of a novel camptothecin-based antibody-drug conjugate targeting solid tumors expressing Claudin-6. Cancer Res. 84(76 Suppl): S31222024. View Article : Google Scholar | |
Türeci Ö, Kreuzberg M, Walter K, Wöll S, Schmitt R, Mitnacht-Kraus R, Nakajo I, Yamada T and Sahin U: Abstract 882: The anti-claudin 6 antibody, IMAB027, induces antibody-dependent cellular and complement-dependent cytotoxicity in claudin 6-expressing cancer cells. Cancer Res. 78(Suppl 13): S8822018. View Article : Google Scholar | |
Sahin U, Jaeger D, Marme F, Mavratzas A, Krauss J, De Greve J, Vergote I and Tureci O: First-in-human phase I/II dose-escalation study of IMAB027 in patients with recurrent advanced ovarian cancer (OVAR): Preliminary data of phase I part. J Clin Oncol. 33(15 Suppl): S55372015. View Article : Google Scholar | |
Adra N, Vaughn DJ, Einhorn LH, Hanna NH, Funt SA, Rosales M, Arozullah A and Feldman DR: A phase II study assessing the safety and efficacy of ASP1650 in male patients with relapsed refractory germ cell tumors. Invest New Drugs. 40:1087–1094. 2022. View Article : Google Scholar : PubMed/NCBI | |
McDermott MSJ, O'Brien NA, Hoffstrom B, Gong K, Lu M, Zhang J, Luo T, Liang M, Jia W, Hong JJ, et al: Preclinical efficacy of the antibody-drug conjugate CLDN6-23-ADC for the treatment of CLDN6-positive solid tumors. Clin Cancer Res. 29:2131–2143. 2023. View Article : Google Scholar : PubMed/NCBI | |
Konecny GE, Wahner Hendrickson AE, Winterhoff B, Machado A, Chander C, Davenport S, Bilic S, Miller LL, Chung A, Press MF, et al: 756P First-in-human phase I study of a novel claudin 6 (CLDN6) targeted antibody drug conjugate (ADC) TORL-1-23. Ann Oncol. 34(Suppl 2): S5172023. View Article : Google Scholar | |
Pham E, Henn A, Sable B, Wahl J, Conner K, Matthes K, Gupta S, Yabut R, Aeffner F, Wilson KL, et al: Abstract 5202: AMG 794, a Claudin 6-targeted half-life extended (HLE) bispecific T cell engager (BITE®) molecule for non-small cell lung cancer and epithelial ovarian cancer. Cancer Res. 82(Suppl 12): S52022022. View Article : Google Scholar | |
Stadler CR, Ellinghaus U, Fischer L, Bähr-Mahmud H, Rao M, Lindemann C, Chaturvedi A, Scharf C, Biermann I, Hebich B, et al: Preclinical efficacy and pharmacokinetics of an RNA-encoded T cell-engaging bispecific antibody targeting human claudin 6. Sci Transl Med. 16:eadl27202024. View Article : Google Scholar : PubMed/NCBI | |
Faber MS, Lee SH, Kim YK, Qi J, Avery KN, Nguyen DHT, Rashid R, Eivazi A, Chu SY, Diaz JE, et al: Abstract 1860: Bispecific claudin-6 x CD3 antibodies in a 2 + 1 format demonstrate selectivity and activity on human ovarian cancer cells. Cancer Res. 81(Suppl 13): S18602021. View Article : Google Scholar | |
Kamikawa T, Kimura N, Ishii S, Muraoka M, Taniguchi K, Uchikawa R, Yoshimoto M, Okuda-Miura M, Akai S, Kodama T, et al: 1172 SAIL66, a next generation of T cell engager targeting CLDN6, potentiates efficacy. J Immunother Cancer. 11(Suppl 1): S11722023. | |
Mackensen A, Haanen JBAG, Koenecke C, Alsdorf W, Wagner-Drouet E, Borchmann P, Heudobler D, Ferstl B, Klobuch S, Bokemeyer C, et al: CLDN6-specific CAR-T cells plus amplifying RNA vaccine in relapsed or refractory solid tumors: The phase 1 BNT211-01 trial. Nat Med. 29:2844–2853. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li J, Hu H, Lian H, Yang S, Liu M, He J, Cao B, Chen D, Hu Y, Zhi C, et al: NK-92MI cells engineered with anti-claudin-6 chimeric antigen receptors in immunotherapy for ovarian cancer. Int J Biol Sci. 20:1578–1601. 2024. View Article : Google Scholar : PubMed/NCBI | |
Micke P, Mattsson JSM, Edlund K, Lohr M, Jirström K, Berglund A, Botling J, Rahnenfuehrer J, Marincevic M, Pontén F, et al: Aberrantly activated claudin 6 and 18.2 as potential therapy targets in non-small-cell lung cancer. Int J Cancer. 135:2206–2214. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dottermusch M, Krüger S, Behrens HM, Halske C and Röcken C: Expression of the potential therapeutic target claudin-18.2 is frequently decreased in gastric cancer: Results from a large Caucasian cohort study. Virchows Arch. 475:563–571. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Xu Z, Hu C, Zhang S, Zi M, Yuan L and Cheng X: Targeting CLDN18.2 in cancers of the gastrointestinal tract: New drugs and new indications. Front Oncol. 13:11323192023. View Article : Google Scholar : PubMed/NCBI | |
Lyu SI, Fretter C, Simon AG, Spielmann SM, Damanakis AI, Zhao Y, Bruns CJ, Schmidt T, Popp FC, Waldschmidt D, et al: Extent and clinical significance of the therapy-relevant tight junction protein Claudin 18.2 in pancreatic ductal adenocarcinoma-real-world evidence. Transl Oncol. 47:1020442024. View Article : Google Scholar | |
Li J, Pan H, Liu T, Xu N, Zhang Y, Qin Y, Shi J, Liao D, Shen L, Luo S, et al: A multicenter, phase 1 study of AB011, a recombinant humanized anti-CLDN18.2 monoclonal antibody, as monotherapy and combined with capecitabine and oxaliplatin (CAPOX) in patients with advanced solid tumors. J Clin Oncol. 41(Suppl 4): S3912023. View Article : Google Scholar | |
Zhang M, Gong J, Wang J, Shi J, Zhu H, Wang Y, Chen Y, Wang F, Qu X, Yu J, et al: A phase I/II study of ASKB589 [anti-claudin 18.2 (CLDN18.2) monoclonal antibody] in patients with solid tumors. J Clin Oncol. 41(Suppl 4): S3972023. View Article : Google Scholar | |
Peng Z, Shen L, He Y, Chen J, Hickingbottom B and Lu J: A phase Ib/II study of ASKB589 [anti-Claudin 18.2 (CLDN18.2) monoclonal antibody] combined with CAPOX and PD-1 inhibitor as first-line treatment for locally advanced, relapsed and metastatic gastric/gastro-esophageal junction (G/GEJ) adenocarcinoma. J Clin Oncol. 42(Suppl 3): S3172024. View Article : Google Scholar | |
Jin Z, Zhang Y, Liu F, Zhang S, Gong J, Zhang M, Liang X, Wang J, Li Y, Yang X, et al: FG-M108 plus nab-paclitaxel and gemcitabine (AG) as first-line (1L) treatment for patients with Claudin-18.2 (CLDN18.2) positive locally advanced unresectable or metastatic pancreatic cancer (PC): Preliminary results from the phase 1b study. J Clin Oncol. 42(Suppl 16): S41422024. View Article : Google Scholar | |
Huang J, Zhang B, Wang Y, Wang F, Yu Z, Wu S, Zheng Y, Cao Y, Xu J, Lan D, et al: Safety and preliminary efficacy of MIL93 in patients with advanced solid tumors: The monotherapy part of a phase 1 trial. J Clin Oncol. 41(Suppl 4): S7982023. View Article : Google Scholar | |
Janjigian Y, Tolcher A, Mehta R, Cecchini M, Van Tine B, Kundranda M, Olatunji A, Patel MR, Berlin J, Rocha-Lima CMSP, et al: Abstract CT132: A Phase I/IIa clinical trial (TranStar101) to evaluate the safety, tolerability and pharmacokinetics of OSEMITAMAB administered as monotherapy or in combination with nivolumab or standard of care in patients with locally advanced or metastatic solid tumors. Cancer Res. 84(Suppl 7): CT1322024. View Article : Google Scholar | |
Zhang X, Guo Z, Zhang J, Guo W, Sun M, Xu N, Qi C, Zhu X, Zhang L, Qian X, et al: First-line osemitamab (TST001) plus nivolumab and capox for advanced g/GEJ cancer (TranStar102): Results of cohort G from a phase I/IIa study. J Clin Oncol. 42(Suppl 16): S40482024. View Article : Google Scholar | |
Sharma S, Starodub A, Xu N, Chaudhry A, Sun M, Pelster M, Fu Y, Zhang X, Huang Z, Liu W and Hsu K: Preliminary results of a phase 1/2, first-in-human, open-label, dose escalation study of ZL-1211 (anti-Claudin 18.2 mAb) in patients with unresectable or metastatic solid tumors. J Clin Oncol. 41(Suppl 16): S25372023. View Article : Google Scholar | |
Türeci O, Sahin U, Schulze-Bergkamen H, Zvirbule Z, Lordick F, Koeberle D, Thuss-Patience P, Ettrich T, Arnold D, Bassermann F, et al: A multicentre, phase IIa study of zolbetuximab as a single agent in patients with recurrent or refractory advanced adenocarcinoma of the stomach or lower oesophagus: The MONO study. Ann Oncol. 30:1487–1495. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shitara K, Lordick F, Bang YJ, Enzinger P, Ilson D, Shah MA, Van Cutsem E, Xu RH, Aprile G, Xu J, et al: Zolbetuximab plus mFOLFOX6 in patients with CLDN18.2-positive, HER2-negative, untreated, locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma (SPOTLIGHT): A multicentre, randomised, double-blind, phase 3 trial. Lancet. 401:1655–1668. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shah MA, Shitara K, Ajani JA, Bang YJ, Enzinger P, Ilson D, Lordick F, Van Cutsem E, Gallego Plazas J, Huang J, et al: Zolbetuximab plus CAPOX in CLDN18.2-positive gastric or gastroesophageal junction adenocarcinoma: The randomized, phase 3 GLOW trial. Nat Med. 29:2133–2141. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ra J: FDA denies approval for Astellas' investigational gastric cancer drug. Pharmaceutical Technology. 2014, https://www.pharmaceutical-technology.com/news/fda-denies-approval-for-astellas-investigational-gastric-cancer-drug/. | |
Conroy R: FDA acknowledges zolbetuximab BLA resubmission for CLDN18.2+ gastric cancer. CancerNetwork. 2024, https://www.cancernetwork.com/view/fda-acknowledges-zolb-etuximab-bla-resubmission-for-cldn18-2-gastric-cancer/. | |
Bishnoi S, Cao D, Mendis SR, Coward J, Zhao J, Xie H and Zheng L: An open-label, multicenter, phase I study of ATG-022 in patients with advanced/metastatic solid tumors (CLINCH). J Clin Oncol. 42(Suppl 16): S30322024. View Article : Google Scholar | |
Xu RH, Ruan DY, Zhang DS, Liu FR, Luo SX, Zhuang ZX, Wang ZN, Liu FN, Zhang YQ, Yang JW, et al: A phase 1 trial of claudin 18.2-specific antibody-drug conjugate CMG901 in patients with advanced gastric/gastroesophageal junction cancer. J Clin Oncol. 41(Suppl 36): S4344202023. View Article : Google Scholar | |
Raufi AG, Goyal L, Smyth E, Szekeres P, Petrone M, Hobson R, Thress K, Origuchi M, Nehra J, Brown JS, et al: CLARITY-PanTumor01: A phase 2 trial of the claudin 18.2-specific antibody-drug conjugate AZD0901 (CMG901) in patients with CLDN18.2-expressing advanced solid tumors. J Clin Oncol. 42(Suppl 16): TPS31632024. View Article : Google Scholar | |
Wang Y, Gong J, Lin R, Zhao S, Wang J, Wang Q, Zhang Y, Su D, Zhang J, Dong Q, et al: First-in-human dose escalation and expansion study of SYSA1801, an antibody-drug conjugate targeting claudin 18.2 in patients with resistant/refractory solid tumors. J Clin Oncol. 41(Suppl 16): S30162023. View Article : Google Scholar | |
Yu X, Zhang J, Tazbirkova A, Yang J, Yue J, Sun Y, Pan Y, Sun M, Qin Y, Shen L, et al: Safety and efficacy of IBI343 (anti-claudin18.2 antibody-drug conjugate) in patients with advanced pancreatic ductal adenocarcinoma or biliary tract cancer: Preliminary results from a phase 1 study. J Clin Oncol. 42(Suppl 16): S30372024. View Article : Google Scholar | |
Huang W, Li Y, Liu Z, Rodon L, Correia S, Li Y and Li R: Preclinical activity for TPX-4589 (LM-302), an antibody-drug conjugate targeting tight junction protein CLDN18.2 in solid tumors. Eur J Cancer. 174(Suppl 1): S41–S42. 2022. View Article : Google Scholar | |
Bai C, Xue J, Zheng Y, Sun M, Ying J, Zhou F, Yu Y, Sun Y, Xing L, Zhang Y, et al: A phase 1/2 study of LM-302, an anti-claudin 18.2 (CLDN18.2) antibody-drug conjugate in patients with advanced gastric/gastroesophageal junction cancer. J Clin Oncol. 42(Suppl 16): S30282024. View Article : Google Scholar | |
Spisek R: 2P SOT102, a novel CLDN18.2-targeting antibody-drug conjugate for gastric and pancreatic cancer with a wide range of the tumor target expression. ESMO Open. 8(1 Suppl 2): S1011962023. View Article : Google Scholar | |
Rosa K: CMG901 elicits responses in CLDN18.2-expressing gastric/GEJ cancer. OncLive. 2023, https://www.onclive.com/view/cmg901-elicits-responses-in-cldn18-2-expressing-gastric-gej-cancer/. | |
Wahner A: IBI343 receives FDA fast track designation for advanced/metastatic PDAC. OncLive. 2024, https://www.onclive.com/view/ibi343-receives-fda-fast-track-designation-for-advanced-metastatic-pdac/. | |
Gaspar M, Natoli M, Castan L, Rahmy S, Kelton C, Mulgrew K, Korade M, Huhn O, Rees DG, Sigurdardottir A, et al: 1169 AZD5863: A specific, potent, affinity-optimized claudin 18.2 and CD3 binding T cell-engager that elicits low cytokine release and is capable of bystander killing. J Immunother Cancer. 11(Suppl 1): S11692023. | |
Gao J, Wang Z, Jiang W, Zhang Y, Meng Z, Niu Y, Sheng Z, Chen C, Liu X, Chen X, et al: CLDN18.2 and 4-1BB bispecific antibody givastomig exerts antitumor activity through CLDN18.2-expressing tumor-directed T-cell activation. J Immunother Cancer. 11:e0067042023. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Fu J, Henderson M, Lee F, Jurcak N, Henn A, Wahl J, Shao Y, Wang J, Lyman M, et al: CLDN18.2 BiTE engages effector and regulatory T cells for antitumor immune response in preclinical models of pancreatic cancer. Gastroenterology. 165:1219–1232. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zheng L, Ruihong D, Jieer Y, Xu Q, Guo Z, Hu C, Sun Y, Niu Z, Hao J, Zhang M, et al: Safety and preliminary efficacy results of IBI389, an anti-CLDN18.2/CD3 bispecific antibody, in patients with solid tumors and gastric or gastro-esophageal tumors: A phase 1 dose escalation and expansion study. J Clin Oncol. 42(Suppl 16): S25192024. View Article : Google Scholar | |
Wang J, Dong T, Gong X, Li D, Sun J, Luo Y and Wu H: Safety and pharmacokinetic assessment of the FIC CLDN18.2/4-1BB bispecific antibody in rhesus monkeys. Int J Toxicol. 43:291–300. 2024. View Article : Google Scholar | |
Guo Y, Wu L, Li Y, Wen J, Xue J, Wang Z, Li P, Zhao W, Liu J, Rao X, et al: First-in-human phase I/II safety and preliminary efficacy of PM1032, a bispecific antibody targeting CLDN18.2 and 4-1BB, in patients with advanced solid tumors. J Clin Oncol. 42(Suppl 16): S26622024. View Article : Google Scholar | |
Overman MJ, Melhem R, Blum-Murphy MA, Ramos C, Petrosyan L, Li J, Perer JK, Zou H, Wang M and Wright HM: A phase I, first-in-human, open-label, dose escalation and expansion study of PT886 in adult patients with advanced gastric, gastroesophageal junction, and pancreatic adenocarcinomas. J Clin Oncol. 41(Suppl 4): TPS7652023. View Article : Google Scholar | |
Yk W, Gong J, Sun Y, Zhang J, Ni S, Hou J, Chen X, Wang Y, Yu Q, Qu X, et al: Interim results of a first-in-human phase 1 study of Q-1802, a CLDN18.2/PD-L1 bsABs, in patients with relapsed or refractory solid tumors. J Clin Oncol. 41(Suppl 4): S3822023. View Article : Google Scholar | |
Wang Y, Gong J, Sun Y, Yang S, Zhang M, Cui J, Lv J, Su H, Wang J, Lu J, et al: 132P A phase I clinical trial of QLS31905 in advanced solid tumors. Immunooncol Technol. 20(Suppl): S1006042023. View Article : Google Scholar | |
Klein C, Brinkmann U, Reichert JM and Kontermann RE: The present and future of bispecific antibodies for cancer therapy. Nat Rev Drug Discov. 23:301–319. 2024. View Article : Google Scholar : PubMed/NCBI | |
Goebeler ME, Stuhler G and Bargou R: Bispecific and multispecific antibodies in oncology: Opportunities and challenges. Nat Rev Clin Oncol. 21:539–560. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tucker N: FDA grants orphan drug designation to TJ-CD4B for gastric cancer. Targeted Oncology. 2022, https://www.targetedonc.com/view/fda-grants-orphan-drug-designation-to-tj-cd4b-for-gastric-cancer/. | |
Jiang H, Shi Z, Wang P, Wang C, Yang L, Du G, Zhang H, Shi B, Jia J, Li Q, et al: Claudin18.2-specific chimeric antigen receptor engineered T cells for the treatment of gastric cancer. J Natl Cancer Inst. 111:409–418. 2019. View Article : Google Scholar | |
Qi C, Liu C, Gong J, Liu D, Wang X, Zhang P, Qin Y, Ge S, Zhang M, Peng Z, et al: Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial final results. Nat Med. 30:2224–2234. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhen DB, Thota R, del Corral C, Geng D, Yang T, Wang C, Amato G, Akram M, Miller DS, Bubuteishvili-Pacaud L and Gibson M: A phase 1, open-label, dose escalation and expansion, multicenter study of claudin 18.2-targeted chimeric antigen receptor T-cells in patients with unresectable, locally advanced, or metastatic gastric, gastroesophageal junction, esophageal, or pancreatic adenocarcinoma. J Clin Oncol. 41(Suppl 4): TSP4802023. View Article : Google Scholar | |
Luo T, Lu Z, Zheng R, Zhou J, Wang S, Hao R and Sun M: Outstanding safety and efficacy data of IMC002, an autologous CLDN18.2-targeting CAR-T, in CLDN18.2+ advanced solid tumors. J Clin Oncol. 42(Suppl 16): e160122024. View Article : Google Scholar | |
Britton Z, Breen S, Carrasco R, Clark B, Broggi MAS, Lapointe JM, Giraldo N, Rao Attili BMN, Hatke A, Grigoriadou C, et al: 235 Preclinical evaluation and anti-tumor activity of AZD6422, a CLDN18.2 targeting armored CAR-T for gastric, esophageal and pancreatic cancers. J Immunother Cancer. 11(Suppl 1): A1–A1731. 2023. | |
Xu H, Li W, Lv H, Gu D, Wei X and Dai H: Tandem CAR-T cells targeting CLDN18.2 and NKG2DL for treatment of gastric cancer. J Clin Oncol. 40(Suppl 16): S40302022. View Article : Google Scholar | |
Paul S, Konig MF, Pardoll DM, Bettegowda C, Papadopoulos N, Wright KM, Gabelli SB, Ho M, van Elsas A and Zhou S: Cancer therapy with antibodies. Nat Rev Cancer. 24:399–426. 2024. View Article : Google Scholar : PubMed/NCBI | |
Fu Z, Li S, Han S, Shi C and Zhang Y: Antibody drug conjugate: the 'biological missile' for targeted cancer therapy. Signal Transduct Target Ther. 7:932022. View Article : Google Scholar | |
Fuentes-Antrás J, Genta S, Vijenthira A and Siu LL: Antibody-drug conjugates: In search of partners of choice. Trends Cancer. 9:339–354. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kalinsky K, Diamond JR, Vahdat LT, Tolaney SM, Juric D, O'Shaughnessy J, Moroose RL, Mayer IA, Abramson VG, Goldenberg DM, et al: Sacituzumab govitecan in previously treated hormone receptor-positive/HER2-negative metastatic breast cancer: Final results from a phase I/II, single-arm, basket trial. Ann Oncol. 31:1709–1718. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg J, Sridhar SS, Zhang J, Smith D, Ruether D, Flaig TW, Baranda J, Lang J, Plimack ER, Sangha R, et al: EV-101: A phase I study of single-agent enfortumab vedotin in patients with nectin-4-positive solid tumors, including metastatic urothelial carcinoma. J Clin Oncol. 38:1041–1049. 2020. View Article : Google Scholar : PubMed/NCBI | |
Park K, Haura EB, Leighl NB, Mitchell P, Shu CA, Girard N, Viteri S, Han JY, Kim SW, Lee CK, et al: Amivantamab in EGFR exon 20 insertion-mutated non-small-cell lung cancer progressing on platinum chemotherapy: Initial results from the CHRYSALIS phase I study. J Clin Oncol. 39:3391–3402. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fayette J, Clatot F, Brana I, Saada E, van Herpen CML, Mazard T, Perez CA, Tabernero J, Le Tourneau C, Hollebecque A, et al: Petosemtamab (MCLA-158) with pembrolizumab as first-line (1L) treatment of recurrent/metastatic (r/m) head and neck squamous cell carcinoma (HNSCC): Phase 2 study. J Clin Oncol. 42(Suppl 16): S60142024. View Article : Google Scholar | |
Schram AM, Goto K, Kim DW, Martin-Romano P, Ou SHI, O'Kane GM, O'Reilly EM, Umemoto K, Duruisseaux M, Neuzillet C, et al: Efficacy and safety of zenocutuzumab, a HER2 x HER3 bispecific antibody, across advanced NRG1 fusion (NRG1+) cancers. J Clin Oncol. 40(Suppl 16): S1052022. View Article : Google Scholar | |
Kim MA, Lee HS, Lee HE, Jeon YK, Yang HK and Kim WH: EGFR in gastric carcinomas: Prognostic significance of protein overexpression and high gene copy number. Histopathology. 52:738–746. 2008. View Article : Google Scholar : PubMed/NCBI | |
Van Cutsem E, Bang YJ, Feng-Yi F, Xu JM, Lee KW, Jiao SC, Chong JL, López-Sanchez RI, Price T, Gladkov O, et al: HER2 screening data from ToGA: Targeting HER2 in gastric and gastroesophageal junction cancer. Gastric Cancer. 18:476–484. 2015. View Article : Google Scholar : | |
Ahn S, Lee J, Hong M, Kim ST, Park SH, Choi MG, Lee JH, Sohn TS, Bae JM, Kim S, et al: FGFR2 in gastric cancer: Protein overexpression predicts gene amplification and high H-index predicts poor survival. Mod Pathol. 29:1095–1103. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yashiro M, Kuroda K, Masuda G, Okuno T, Miki Y, Yamamoto Y, Sera T, Sugimoto A, Kushiyama S, Nishimura S, et al: Clinical difference between fibroblast growth factor receptor 2 subclass, type IIIb and type IIIc, in gastric cancer. Sci Rep. 11:46982021. View Article : Google Scholar : PubMed/NCBI | |
Lee HE, Kim MA, Lee HS, Jung EJ, Yang HK, Lee BL, Bang YJ and Kim WH: MET in gastric carcinomas: Comparison between protein expression and gene copy number and impact on clinical outcome. Br J Cancer. 107:325–333. 2012. View Article : Google Scholar : PubMed/NCBI | |
Katoh M, Loriot Y, Brandi G, Tavolari S, Wainberg ZA and Katoh M: FGFR-targeted therapeutics: Clinical activity, mechanisms of resistance and new directions. Nat Rev Clin Oncol. 21:312–329. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Yang Z, Zhu X, Li J, Gao Y, Zhang Y, Tong Z, Fu Q, Bao X, Li B, et al: Phase I trial of hypoxia-responsive CEA CAR-T cell therapy in patients with heavily pretreated solid tumor via intraperitoneal or intravenous transfusion. J Clin Oncol. 42(Suppl 16): S35142024. View Article : Google Scholar | |
Feng K, Guo Y, Dai H, Wang Y, Li X, Jia H and Han W: Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer. Sci China Life Sci. 59:468–479. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Fu Q, Cao W, Wang H, Xu X, Huang J, Zou A, Zhu J, Wan H, Yao Y, et al: Phase I study of C-CAR031, a GPC3-specific TGFβRIIDN armored autologous CAR-T, in patients with advanced hepatocellular carcinoma (HCC). J Clin Oncol. 42(Suppl 16): S40192024. View Article : Google Scholar | |
Qi C, Liu C, Li J, Gong J, Wang X, Wang Z, Lu X, He T, Ding Y, Wu F, et al: Phase I study of GUCY2C CAR-T therapy IM96 in patients with metastatic colorectal cancer. J Clin Oncol. 42(Suppl 16): S25182024. View Article : Google Scholar | |
Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, et al: Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 377:2531–2544. 2017. View Article : Google Scholar : PubMed/NCBI | |
Martin T, Usmani SZ, Berdeja JG, Agha M, Cohen AD, Hari P, Avigan D, Deol A, Htut M, Lesokhin A, et al: Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J Clin Oncol. 41:1265–1274. 2023. View Article : Google Scholar | |
Majzner RG and Mackall CL: Tumor antigen escape from CAR T-cell therapy. Cancer Discov. 8:1219–1226. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shah NN and Fry TJ: Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol. 16:372–385. 2019.PubMed/NCBI | |
Larson RC and Maus MV: Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat Rev Cancer. 21:145–161. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hou AJ, Chen LC and Chen YY: Navigating CAR-T cells through the solid-tumour microenvironment. Nat Rev Drug Discov. 20:531–550. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tauriello DVF, Sancho E and Batlle E: Overcoming TGFβ-mediated immune evasion in cancer. Nat Rev Cancer. 22:25–44. 2022. View Article : Google Scholar | |
Katoh M and Katoh M: WNT signaling and cancer stemness. Essays Biochem. 66:319–331. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gumber D and Wang LD: Improving CAR-T immunotherapy: Overcoming the challenges of T cell exhaustion. EBioMedicine. 77:1039412022. View Article : Google Scholar : PubMed/NCBI | |
Chan JD, Scheffler CM, Munoz I, Sek K, Lee JN, Huang YK, Yap KM, Saw NYL, Li J, Chen AXY, et al: FOXO1 enhances CAR T cell stemness, metabolic fitness and efficacy. Nature. 629:201–210. 2024. View Article : Google Scholar : PubMed/NCBI | |
Doan AE, Mueller KP, Chen AY, Rouin GT, Chen Y, Daniel B, Lattin J, Markovska M, Mozarsky B, Arias-Umana J, et al: FOXO1 is a master regulator of memory programming in CAR T cells. Nature. 629:211–218. 2024. View Article : Google Scholar : PubMed/NCBI |