Role of Sam68 in different types of cancer (Review)
- Authors:
- Carlos Jiménez‑Cortegana
- Flora Sánchez‑Jiménez
- Luis De La Cruz‑Merino
- Víctor Sánchez‑Margalet
-
Affiliations: Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain; 4Medical Oncology Service, Virgen Macarena University Hospital, 41009 Seville, Spain - Published online on: October 22, 2024 https://doi.org/10.3892/ijmm.2024.5444
- Article Number: 3
-
Copyright: © Jiménez‑Cortegana et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Courtneidge SA and Fumagalli S: A mitotic function for Src? Trends Cell Biol. 4:345–347. 1994. View Article : Google Scholar : PubMed/NCBI | |
Frisone P, Pradella D, Di Matteo A, Belloni E, Ghigna C and Paronetto MP: SAM68: Signal transduction and RNA metabolism in human cancer. Biomed Res Int. 2015:5289542015. View Article : Google Scholar : PubMed/NCBI | |
Najib S, Martín-Romero C, González-Yanes C and Sánchez-Margalet V: Role of Sam68 as an adaptor protein in signal transduction. Cell Mol Life Sci. 62:36–43. 2005. View Article : Google Scholar | |
Pagliarini V, Jolly A, Bielli P, Di Rosa V, De la Grange P and Sette C: Sam68 binds Alu-rich introns in SMN and promotes pre-mRNA circularization. Nucleic Acids Res. 48:633–645. 2020. View Article : Google Scholar : | |
Messina V, Meikar O, Paronetto MP, Calabretta S, Geremia R, Kotaja N and Sette C: The RNA binding protein SAM68 transiently localizes in the chromatoid body of male germ cells and influences expression of select microRNAs. PLoS One. 7:e397292012. View Article : Google Scholar : PubMed/NCBI | |
Li J, Liu Y, Kim BO and He JJ: Direct participation of Sam68, the 68-kilodalton Src-associated protein in mitosis, in the CRM1-mediated Rev nuclear export pathway. J Virol. 76:8374–8382. 2002. View Article : Google Scholar : PubMed/NCBI | |
Vilariño-García T, Pérez-Pérez A, Santamaría-López E, Prados N, Fernández-Sánchez M and Sánchez-Margalet V: Sam68 mediates leptin signaling and action in human granulosa cells: Possible role in leptin resistance in PCOS. Endocr Connect. 9:479–488. 2020. View Article : Google Scholar : PubMed/NCBI | |
Adinolfi A, Di Sante G, Rivignani Vaccari L, Tredicine M, Ria F, Bonvissuto D, Corvino V, Sette C and Geloso MC: Regionally restricted modulation of Sam68 expression and Arhgef9 alternative splicing in the hippocampus of a murine model of multiple sclerosis. Front Mol Neurosci. 15:10736272022. View Article : Google Scholar | |
Wang Y, Zhang W, Wang X, Wang D, Xie J, Tang C, Xi Q, Zhong J and Deng Y: Expression of Sam68 correlates with cell proliferation and survival in epithelial ovarian cancer. Reprod Sci. 24:97–108. 2017. View Article : Google Scholar | |
Pieraccioli M, Caggiano C, Mignini L, Zhong C, Babini G, Lattanzio R, Di Stasi S, Tian B, Sette C and Bielli P: The transcriptional terminator XRN2 and the RNA-binding protein Sam68 link alternative polyadenylation to cell cycle progression in prostate cancer. Nat Struct Mol Biol. 29:1101–1112. 2022. View Article : Google Scholar : PubMed/NCBI | |
Taylor SJ, Resnick RJ and Shalloway D: Sam68 exerts separable effects on cell cycle progression and apoptosis. BMC Cell Biol. 5:52004. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Jimenez F and Sanchez-Margalet V: Role of Sam68 in post-transcriptional gene regulation. Int J Mol Sci. 14:23402–23419. 2013. View Article : Google Scholar : PubMed/NCBI | |
Richard S, Vogel G, Huot ME, Guo T, Muller WJ and Lukong KE: Sam68 haploinsufficiency delays onset of mammary tumorigenesis and metastasis. Oncogene. 27:548–556. 2008. View Article : Google Scholar | |
Irwin ME, Bohin N and Boerner JL: Src family kinases mediate epidermal growth factor receptor signaling from lipid rafts in breast cancer cells. Cancer Biol Ther. 12:718–726. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pillay I, Nakano H and Sharma SV: Radicicol inhibits tyrosine phosphorylation of the mitotic Src substrate Sam68 and retards subsequent exit from mitosis of Src-transformed cells. Cell Growth Differ. 7:1487–1499. 1996.PubMed/NCBI | |
Barlat I, Maurier F, Duchesne M, Guitard E, Tocque B and Schweighoffer F: A role for Sam68 in cell cycle progression antagonized by a spliced variant within the KH domain. J Biol Chem. 272:3129–3132. 1997. View Article : Google Scholar : PubMed/NCBI | |
Paronetto MP, Achsel T, Massiello A, Chalfant CE and Sette C: The RNA-binding protein Sam68 modulates the alternative splicing of Bcl-x. J Cell Biol. 176:929–939. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zambuzzi WF, Granjeiro JM, Parikh K, Yuvaraj S, Peppelenbosch MP and Ferreira CV: Modulation of Src activity by low molecular weight protein tyrosine phosphatase during osteoblast differentiation. Cell Physiol Biochem. 22:497–506. 2008. View Article : Google Scholar : PubMed/NCBI | |
Horn S, Meyer J, Stocking C, Ostertag W and Jücker M: An increase in the expression and total activity of endogenous p60(c-Src) in several factor-independent mutants of a human GM-CSF-dependent leukemia cell line (TF-1). Oncogene. 22:7170–7180. 2003. View Article : Google Scholar : PubMed/NCBI | |
Brignatz C, Paronetto MP, Opi S, Cappellari M, Audebert S, Feuillet V, Bismuth G, Roche S, Arold ST, Sette C and Collette Y: Alternative splicing modulates autoinhibition and SH3 accessibility in the Src kinase Fyn. Mol Cell Biol. 29:6438–48. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gorla L, Cantù M, Miccichè F, Patelli C, Mondellini P, Pierotti MA and Bongarzone I: RET oncoproteins induce tyrosine phosphorylation changes of proteins involved in RNA metabolism. Cell Signal. 18:2272–2282. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mamidipudi V, Dhillon NK, Parman T, Miller LD, Lee KC and Cartwright CA: RACK1 inhibits colonic cell growth by regulating Src activity at cell cycle checkpoints. Oncogene. 26:2914–2924. 2007. View Article : Google Scholar | |
Lukong KE, Larocque D, Tyner AL and Richard S: Tyrosine phosphorylation of sam68 by breast tumor kinase regulates intranuclear localization and cell cycle progression. J Biol Chem. 280:38639–38647. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mizuguchi Y, Specht S, Isse K, Sasatomi E, Lunz JG III, Takizawa T and Demetris AJ: Breast tumor kinase/protein tyrosine kinase 6 (Brk/PTK6) activity in normal and neoplastic biliary epithelia. J Hepatol. 63:399–407. 2015. View Article : Google Scholar : PubMed/NCBI | |
Brauer PM, Zheng Y, Wang L and Tyner AL: Cytoplasmic retention of protein tyrosine kinase 6 promotes growth of prostate tumor cells. Cell Cycle. 9:4190–4199. 2010. View Article : Google Scholar : PubMed/NCBI | |
Paronetto MP, Farini D, Sammarco I, Maturo G, Vespasiani G, Geremia R, Rossi P and Sette C: Expression of a truncated form of the c-Kit tyrosine kinase receptor and activation of Src kinase in human prostatic cancer. Am J Pathol. 164:1243–1251. 2004. View Article : Google Scholar : PubMed/NCBI | |
Locatelli A and Lange CA: Met receptors induce Sam68-dependent cell migration by activation of alternate extracellular signal-regulated kinase family members. J Biol Chem. 286:21062–21072. 2011. View Article : Google Scholar : PubMed/NCBI | |
Babic I, Jakymiw A and Fujita DJ: The RNA binding protein Sam68 is acetylated in tumor cell lines, and its acetylation correlates with enhanced RNA binding activity. Oncogene. 23:3781–3789. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Jiménez F, Pérez-Pérez A, de la Cruz-Merino L and Sánchez-Margalet V: Obesity and breast cancer: Role of leptin. Front Oncol. 9:5962019. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Margalet V and Najib S: p68 Sam is a substrate of the insulin receptor and associates with the SH2 domains of p85 PI3K. FEBS Lett. 455:307–310. 1999. View Article : Google Scholar : PubMed/NCBI | |
Pérez-Pérez A, Sánchez-Jiménez F, Vilariño-García T, de la Cruz L, Virizuela JA and Sánchez-Margalet V: Sam68 mediates the activation of insulin and leptin signalling in breast cancer cells. PLoS One. 11:e01582182016. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Jiménez F, Pérez-Pérez A, González-Yanes C, Najib S, Varone CL and Sánchez-Margalet V: Leptin receptor activation increases Sam68 tyrosine phosphorylation and expression in human trophoblastic cells. Mol Cell Endocrinol. 332:221–227. 2011. View Article : Google Scholar | |
Sánchez-Jiménez F, Pérez-Pérez A, González-Yanes C, Varone CL and Sánchez-Margalet V: Sam68 mediates leptin-stimulated growth by modulating leptin receptor signaling in human trophoblastic JEG-3 cells. Hum Reprod. 26:2306–2315. 2011. View Article : Google Scholar : PubMed/NCBI | |
Reiss K, Del Valle L, Lassak A and Trojanek J: Nuclear IRS-1 and cancer. J Cell Physiol. 227:2992–3000. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sung CK, Choi WS and Sanchez-Margalet V: Guanosine triphosphatase-activating protein-associated protein, but not src-associated protein p68 in mitosis, is a part of insulin signaling complexes. Endocrinology. 139:2392–2398. 1998. View Article : Google Scholar : PubMed/NCBI | |
Matter N, Herrlich P and König H: Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature. 420:691–695. 2002. View Article : Google Scholar : PubMed/NCBI | |
Malki I, Liepina I, Kogelnik N, Watmuff H, Robinson S, Lightfoot A, Gonchar O, Bottrill A, Fry AM and Dominguez C: Cdk1-mediated threonine phosphorylation of Sam68 modulates its RNA binding, alternative splicing activity and cellular functions. Nucleic Acids Res. 50:13045–13062. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Song C and Zhan X: The role of protein acetylation in carcinogenesis and targeted drug discovery. Front Endocrinol (Lausanne). 13:9723122022. View Article : Google Scholar : PubMed/NCBI | |
Sobulo OM, Borrow J, Tomek R, Reshmi S, Harden A, Schlegelberger B, Housman D, Doggett NA, Rowley JD and Zeleznik-Le NJ: MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16) (q23;p13.3). Proc Natl Acad Sci USA. 94:8732–8737. 1997. View Article : Google Scholar | |
Lavau C, Du C, Thirman M and Zeleznik-Le N: Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia. EMBO J. 19:4655–4664. 2000. View Article : Google Scholar : PubMed/NCBI | |
Cheung N, Chan LC, Thompson A, Cleary ML and So CW: Protein arginine-methyltransferase-dependent oncogenesis. Nat Cell Biol. 9:1208–1215. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bielli P, Busà R, Paronetto MP and Sette C: The RNA-binding protein Sam68 is a multifunctional player in human cancer. Endocr Relat Cancer. 18:R91–R102. 2011. View Article : Google Scholar : PubMed/NCBI | |
Siam A, Baker M, Amit L, Regev G, Rabner A, Najar RA, Bentata M, Dahan S, Cohen K, Araten S, et al: Regulation of alternative splicing by p300-mediated acetylation of splicing factors. RNA. 25:813–824. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bordonaro M: Hypothesis: Sam68 and Pygo2 mediate cell type-specific effects of the modulation of CBP-Wnt and p300-Wnt activities in colorectal cancer cells. J Cancer. 12:5046–5052. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nakka KK, Chaudhary N, Joshi S, Bhat J, Singh K, Chatterjee S, Malhotra R, De A, Santra MK, Dilworth FJ and Chattopadhyay S: Nuclear matrix-associated protein SMAR1 regulates alternative splicing via HDAC6-mediated deacetylation of Sam68. Proc Natl Acad Sci USA. 112:E3374–E3383. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hwang JW, Cho Y, Bae GU, Kim SN and Kim YK: Protein arginine methyltransferases: Promising targets for cancer therapy. Exp Mol Med. 53:788–808. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yu Z, Chen T, Hébert J, Li E and Richard S: A mouse PRMT1 null allele defines an essential role for arginine methylation in genome maintenance and cell proliferation. Mol Cell Biol. 29:2982–2996. 2009. View Article : Google Scholar : PubMed/NCBI | |
Robin-Lespinasse Y, Sentis S, Kolytcheff C, Rostan MC, Corbo L and Le Romancer M: hCAF1, a new regulator of PRMT1-dependent arginine methylation. J Cell Sci. 120:638–647. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vhuiyan MI, Pak ML, Park MA, Thomas D, Lakowski TM, Chalfant CE and Frankel A: PRMT2 interacts with splicing factors and regulates the alternative splicing of BCL-X. J Biochem. 162:17–25. 2017.PubMed/NCBI | |
Deng L, Meng T, Chen L, Wei W and Wang P: The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 5:112020. View Article : Google Scholar : PubMed/NCBI | |
Benoit YD, Mitchell RR, Risueño RM, Orlando L, Tanasijevic B, Boyd AL, Aslostovar L, Salci KR, Shapovalova Z, Russell J, et al: Sam68 allows selective targeting of human cancer stem cells. Cell Chem Biol. 24:833–844.e9. 2017. View Article : Google Scholar : PubMed/NCBI | |
Babic I, Cherry E and Fujita DJ: SUMO modification of Sam68 enhances its ability to repress cyclin D1 expression and inhibits its ability to induce apoptosis. Oncogene. 25:4955–4964. 2006. View Article : Google Scholar : PubMed/NCBI | |
La Rosa P, Bielli P, Compagnucci C, Cesari E, Volpe E, Farioli Vecchioli S and Sette C: Sam68 promotes self-renewal and glycolytic metabolism in mouse neural progenitor cells by modulating Aldh1a3 pre-mRNA 3'-end processing. Elife. 5:e207502016. View Article : Google Scholar : PubMed/NCBI | |
Mao P, Joshi K, Li J, Kim SH, Li P, Santana-Santos L, Luthra S, Chandran UR, Benos PV, Smith L, et al: Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci USA. 110:8644–8649. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rinkenbaugh AL and Baldwin AS: The NF-κB pathway and cancer stem cells. Cells. 5:162016. View Article : Google Scholar | |
Vazquez-Santillan K, Melendez-Zajgla J, Jimenez-Hernandez L, Martínez-Ruiz G and Maldonado V: NF-κB signaling in cancer stem cells: A promising therapeutic target? Cell Oncol (Dordr). 38:327–339. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vazquez-Santillan K, Melendez-Zajgla J, Jimenez-Hernandez LE, Gaytan-Cervantes J, Muñoz-Galindo L, Piña-Sanchez P, Martinez-Ruiz G, Torres J, Garcia-Lopez P, Gonzalez-Torres C, et al: NF-kappaB-inducing kinase regulates stem cell phenotype in breast cancer. Sci Rep. 6:373402016. View Article : Google Scholar | |
Ishiguro T, Ohata H, Sato A, Yamawaki K, Enomoto T and Okamoto K: Tumor-derived spheroids: Relevance to cancer stem cells and clinical applications. Cancer Sci. 108:283–289. 2017. View Article : Google Scholar : PubMed/NCBI | |
Manuel Iglesias J, Beloqui I, Garcia-Garcia F, Leis O, Vazquez-Martin A, Eguiara A, Cufi S, Pavon A, Menendez JA, Dopazo J and Martin AG: Mammosphere formation in breast carcinoma cell lines depends upon expression of E-cadherin. PLoS One. 8:e772812013. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Tian H, Yuan J, Wu H, Wu J and Zhu X: CONSORT: Sam68 is directly regulated by MiR-204 and promotes the Self-renewal potential of breast cancer cells by activating the Wnt/beta-catenin signaling pathway. Medicine (Baltimore). 94:e22282015. View Article : Google Scholar : PubMed/NCBI | |
Hong BS, Ryu HS, Kim N, Kim J, Lee E, Moon H, Kim KH, Jin MS, Kwon NH, Kim S, et al: Tumor suppressor miRNA-204-5p regulates growth, metastasis, and immune microenvironment remodeling in breast cancer. Cancer Res. 79:1520–1534. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li P, Wang Q and Wang H: MicroRNA-204 inhibits the proliferation, migration and invasion of human lung cancer cells by targeting PCNA-1 and inhibits tumor growth in vivo. Int J Mol Med. 43:1149–1156. 2019.PubMed/NCBI | |
Imam JS, Plyler JR, Bansal H, Prajapati S, Bansal S, Rebeles J, Chen HI, Chang YF, Panneerdoss S, Zoghi B, et al: Genomic loss of tumor suppressor miRNA-204 promotes cancer cell migration and invasion by activating AKT/mTOR/Rac1 signaling and actin reorganization. PLoS One. 7:e523972012. View Article : Google Scholar | |
Liang CY, Li ZY, Gan TQ, Fang YY, Gan BL, Chen WJ, Dang YW, Shi K, Feng ZB and Chen G: Downregulation of hsa-microRNA-204-5p and identification of its potential regulatory network in non-small cell lung cancer: RT-qPCR, bioinformatic- and meta-analyses. Respir Res. 21:602020. View Article : Google Scholar : PubMed/NCBI | |
Turdo A, Gaggianesi M, Di Franco S, Veschi V, D'Accardo C, Porcelli G, Lo Iacono M, Pillitteri I, Verona F, Militello G, et al: Effective targeting of breast cancer stem cells by combined inhibition of Sam68 and Rad51. Oncogene. 41:2196–2209. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mehner C, Hockla A, Miller E, Ran S, Radisky DC and Radisky ES: Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer. Oncotarget. 5:2736–2749. 2014. View Article : Google Scholar : PubMed/NCBI | |
London M and Gallo E: Critical role of EphA3 in cancer and current state of EphA3 drug therapeutics. Mol Biol Rep. 47:5523–5533. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lv XY, Wang J, Huang F, Wang P, Zhou JG, Wei B and Li SH: EphA3 contributes to tumor growth and angiogenesis in human gastric cancer cells. Oncol Rep. 40:2408–2416. 2018.PubMed/NCBI | |
Chen X, Zhang L, Yuan M, Kuang Z, Zou Y, Tang T, Zhang W, Hu X, Xia T, Cao T and Jia H: Sam68 Promotes the progression of human breast cancer through inducing activation of EphA3. Curr Cancer Drug Targets. 20:76–83. 2020. View Article : Google Scholar | |
Aubele M, Walch AK, Ludyga N, Braselmann H, Atkinson MJ, Luber B, Auer G, Tapio S, Cooke T and Bartlett JM: Prognostic value of protein tyrosine kinase 6 (PTK6) for long-term survival of breast cancer patients. Br J Cancer. 99:1089–1095. 2008. View Article : Google Scholar : PubMed/NCBI | |
Song L, Wang L, Li Y, Xiong H, Wu J, Li J and Li M: Sam68 up-regulation correlates with, and its down-regulation inhibits, proliferation and tumourigenicity of breast cancer cells. J Pathol. 222:227–237. 2010. View Article : Google Scholar : PubMed/NCBI | |
Paronetto MP, Cappellari M, Busà R, Pedrotti S, Vitali R, Comstock C, Hyslop T, Knudsen KE and Sette C: Alternative splicing of the cyclin D1 proto-oncogene is regulated by the RNA-binding protein Sam68. Cancer Res. 70:229–239. 2010. View Article : Google Scholar : | |
Caggiano C, Pieraccioli M, Panzeri V, Sette C and Bielli P: c-MYC empowers transcription and productive splicing of the oncogenic splicing factor Sam68 in cancer. Nucleic Acids Res. 47:6160–6171. 2019. View Article : Google Scholar : PubMed/NCBI | |
Derry JJ, Prins GS, Ray V and Tyner AL: Altered localization and activity of the intracellular tyrosine kinase BRK/Sik in prostate tumor cells. Oncogene. 22:4212–4220. 2003. View Article : Google Scholar : PubMed/NCBI | |
Busà R, Paronetto MP, Farini D, Pierantozzi E, Botti F, Angelini DF, Attisani F, Vespasiani G and Sette C: The RNA-binding protein Sam68 contributes to proliferation and survival of human prostate cancer cells. Oncogene. 26:4372–4382. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rajan P, Gaughan L, Dalgliesh C, El-Sherif A, Robson CN, Leung HY and Elliott DJ: The RNA-binding and adaptor protein Sam68 modulates signal-dependent splicing and transcriptional activity of the androgen receptor. J Pathol. 215:67–77. 2008. View Article : Google Scholar : PubMed/NCBI | |
Uddin MH, Li Y, Khan HY, Muqbil I, Aboukameel A, Sexton RE, Reddy S, Landesman Y, Kashyap T, Azmi AS and Heath EI: Nuclear export inhibitor KPT-8602 synergizes with PARP inhibitors in escalating apoptosis in castration resistant cancer cells. Int J Mol Sci. 22:66762021. View Article : Google Scholar : PubMed/NCBI | |
Mijatovic T, De Nève N, Gailly P, Mathieu V, Haibe-Kains B, Bontempi G, Lapeira J, Decaestecker C, Facchini V and Kiss R: Nucleolus and c-Myc: Potential targets of cardenolide-mediated antitumor activity. Mol Cancer Ther. 7:1285–1296. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sumithra B, Jayanthi VSPKSA, Manne HC, Gunda R, Saxena U and Das AB: Antibody-based biosensor to detect oncogenic splicing factor Sam68 for the diagnosis of lung cancer. Biotechnol Lett. 42:2501–2509. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Xu Y, Sun N, Zhang M, Xie J and Jiang Z: High Sam68 expression predicts poor prognosis in Non-small cell lung cancer. Clin Transl Oncol. 16:886–891. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lin CH, Liao CC, Wang SY, Peng CY, Yeh YC, Chen MY and Chou TY: Comparative O-GlcNAc proteomic analysis reveals a role of O-GlcNAcylated SAM68 in lung cancer aggressiveness. Cancers (Basel). 14:2432022. View Article : Google Scholar : PubMed/NCBI | |
Zhu S, Chen W, Wang J, Qi L, Pan H, Feng Z and Tian D: SAM68 promotes tumorigenesis in lung adenocarcinoma by regulating metabolic conversion via PKM alternative splicing. Theranostics. 11:3359–3375. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhou X, Hua F, Fan Y, Zu L, Wang Y, Shen W, Pan H and Zhou Q: The RNA-binding protein Sam68 is critical for non-small cell lung cancer cell proliferation by regulating Wnt/β-catenin pathway. Int J Clin Exp Pathol. 10:8281–8291. 2017. | |
Sumithra B, Saxena U and Das AB: A comprehensive study on genome-wide coexpression network of KHDRBS1/Sam68 reveals its cancer and Patient-specific association. Sci Rep. 9:110832019. View Article : Google Scholar : PubMed/NCBI | |
Masibag AN, Bergin CJ, Haebe JR, Zouggar A, Shah MS, Sandouka T, Mendes da Silva A, Desrochers FM, Fournier-Morin A and Benoit YD: Pharmacological targeting of Sam68 functions in colorectal cancer stem cells. iScience. 24:1034422021. View Article : Google Scholar : PubMed/NCBI | |
Fu K, Sun X, Wier EM, Hodgson A, Liu Y, Sears CL and Wan F: Sam68/KHDRBS1 is critical for colon tumorigenesis by regulating genotoxic stress-induced NF-κB activation. Elife. 5:e150182016. View Article : Google Scholar | |
Zhao J, Li J, Hassan W, Xu D, Wang X and Huang Z: Huang, Sam68 promotes aerobic glycolysis in colorectal cancer by regulating PKM2 alternative splicing. Ann Transl Med. 8:4592020. View Article : Google Scholar | |
Vasileva E, Shuvalov O, Petukhov A, Fedorova O, Daks A, Nader R and Barlev N: KMT Set7/9 is a new regulator of Sam68 STAR-protein. Biochem Biophys Res Commun. 525:1018–1024. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li N and Richard S: Sam68 functions as a transcriptional coactivator of the p53 tumor suppressor. Nucleic Acids Res. 44:8726–8741. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li N, Ngo CT, Aleynikova O, Beauchemin N and Richard S: The p53 status can influence the role of Sam68 in tumorigenesis. Oncotarget. 7:71651–71659. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Kang W, Zhang J, Chen C and Liu Y: Shortening of the KHDRBS1 3'UTR by alternative cleavage and polyadenylation alters miRNA-mediated regulation and promotes gastric cancer progression. Am J Transl Res. 14:6574–6585. 2022.PubMed/NCBI | |
Xiao J, Wang Q, Yang Q, Wang H, Qiang F, He S, Cai J, Yang L and Wang Y: Clinical significance and effect of Sam68 expression in gastric cancer. Oncol Lett. 15:4745–4752. 2018.PubMed/NCBI | |
Zhang JY, Du Y, Gong LP, Shao YT, Pan LJ, Feng ZY, Pan YH, Huang JT, Wen JY, Sun LP, et al: ebv-circRPMS1 promotes the progression of EBV-associated gastric carcinoma via Sam68-dependent activation of METTL3. Cancer Lett. 535:2156462022. View Article : Google Scholar : PubMed/NCBI | |
Komiyama T, Kuroshima T, Sugasawa T, Fujita SI, Ikami Y, Hirai H, Tsushima F, Michi Y, Kayamori K, Higashino F and Harada H: High expression of Sam68 contributes to metastasis by regulating vimentin expression and a motile phenotype in oral squamous cell carcinoma. Oncol Rep. 48:1832022. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Li H, Zhuang S, Zhang J, Gao F, Wang X, Chen W and Song M: Sam68 reduces Cisplatin-induced apoptosis in tongue carcinoma. J Exp Clin Cancer Res. 35:1232016. View Article : Google Scholar : PubMed/NCBI | |
Fu K, Sun X, Xia X, Hobbs RP, Guo Y, Coulombe PA and Wan F: Sam68 is required for the growth and survival of nonmelanoma skin cancer. Cancer Med. 8:6106–6113. 2019. View Article : Google Scholar : PubMed/NCBI | |
Paronetto MP, Messina V, Bianchi E, Barchi M, Vogel G, Moretti C, Palombi F, Stefanini M, Geremia R, Richard S and Sette C: Sam68 regulates translation of target mRNAs in male germ cells, necessary for mouse spermatogenesis. J Cell Biol. 185:235–249. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Li Y, Cheng J, Chen L, Xu H, Li Q and Pang T: Sam68 affects cell proliferation and apoptosis of human adult T-acute lymphoblastic leukemia cells via AKT/mTOR signal pathway. Leuk Res. 46:1–9. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao D, Tian Y, Li P, Wang L, Xiao A, Zhang M and Shi T: MicroRNA-203 inhibits the malignant progression of neuroblastoma by targeting Sam68. Mol Med Rep. 12:5554–5560. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Li Z, He B, Liu J, Li S, Zhou L, Pan C, Yu Z and Xu Z: Sam68 is a novel marker for aggressive neuroblastoma. Onco Targets Ther. 6:1751–1760. 2013.PubMed/NCBI | |
Dong L, Che H, Li M and Li X: Sam68 is overexpressed in epithelial ovarian cancer and promotes tumor cell proliferation. Med Sci Monit. 22:3248–3256. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen ZY, Cai L, Zhu J, Chen M, Chen J, Li ZH, Liu XD, Wang SG, Bie P, Jiang P, et al: Fyn requires HnRNPA2B1 and Sam68 to synergistically regulate apoptosis in pancreatic cancer. Carcinogenesis. 32:1419–1426. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Yu CP, Zhong Y, Liu TJ, Huang QD, Zhao XH, Huang H, Tu H, Jiang S, Zhang Y, et al: Sam68 expression and cytoplasmic localization is correlated with lymph node metastasis as well as prognosis in patients with Early-stage cervical cancer. Ann Oncol. 23:638–646. 2012. View Article : Google Scholar | |
Zhang Z, Yu C, Li Y, Jiang L and Zhou F: Utility of SAM68 in the progression and prognosis for bladder cancer. BMC Cancer. 15:3642015. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Li Y, Zhou J, Liu J, Qin J, Xing F, Zhang J and Cheng J: Clinical significance of Sam68 expression in endometrial carcinoma. Tumour Biol. 36:4509–4518. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liang L, Zhang J, Li M, Zhu J, Gong C, Yang L, Zhu J, Chen L and Ni R: Sam68 promotes cellular proliferation and predicts poor prognosis in esophageal squamous cell carcinoma. Tumour Biol. 36:8735–8745. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Xu X, Miao X, Zhu X, Yin H, He Y, Li C, Liu Y, Chen Y, Lu X, et al: Sam68 regulates cell proliferation and cell adhesion-mediated drug resistance (CAM-DR) via the AKT pathway in non-Hodgkin's lymphoma. Cell Prolif. 48:682–690. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wen H, Li P, Ma H, Zheng J, Yu Y and Lv G: High expression of Sam68 in sacral chordomas is associated with worse clinical outcomes. Onco Targets Ther. 10:4691–4700. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Wan C, Shi W, Xu J, Fan H, Zhang S, Lin Z, Ni R and Zhang X: The RNA-binding protein Sam68 regulates tumor cell viability and hepatic carcinogenesis by inhibiting the transcriptional activity of FOXOs. J Mol Histol. 46:485–497. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Li J, Zheng H, Yu C, Chen J, Liu Z, Li M, Zeng M, Zhou F and Song L: Expression and cytoplasmic localization of SAM68 is a significant and independent prognostic marker for renal cell carcinoma. Cancer Epidemiol Biomarkers Prev. 18:2685–2693. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Peng Y, Xiong L, Wang J, Li Z, Ning K, Deng M, Wang N, Wei W, Li Z, et al: Role of Sam68 in Sunitinib induced renal cell carcinoma apoptosis. Cancer Med. 11:3674–3686. 2022. View Article : Google Scholar : PubMed/NCBI | |
Feng J, Ren X, Fu H, Li D, Chen X, Zu X, Liu Q and Wu M: LRRC4 mediates the formation of circular RNA CD44 to inhibitGBM cell proliferation. Mol Ther Nucleic Acids. 26:473–487. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu K, Li L, Nisson PE, Gruber C, Jessee J and Cohen SN: Neoplastic transformation and tumorigenesis associated with sam68 protein deficiency in cultured murine fibroblasts. J Biol Chem. 275:40195–40201. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lukong KE and Richard S: Targeting the RNA-binding protein Sam68 as a treatment for cancer? Future Oncol. 3:539–544. 2007. View Article : Google Scholar : PubMed/NCBI | |
Galluzzi L, Buqué A, Kepp O, Zitvogel L and Kroemer G: Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell. 28:690–714. 2015. View Article : Google Scholar : PubMed/NCBI | |
Behranvand N, Nasri F, Zolfaghari Emameh R, Khani P, Hosseini A, Garssen J and Falak R: Chemotherapy: A double-edged sword in cancer treatment. Cancer Immunol Immunother. 71:507–526. 2022. View Article : Google Scholar | |
Raguz S and Yagüe E: Resistance to chemotherapy: New treatments and novel insights into an old problem. Br J Cancer. 99:387–391. 2008. View Article : Google Scholar : PubMed/NCBI | |
Brown FC, Still E, Koche RP, Yim CY, Takao S, Cifani P, Reed C, Gunasekera S, Ficarro SB, Romanienko P, et al: MEF2C phosphorylation is required for chemotherapy resistance in acute myeloid leukemia. Cancer Discov. 8:478–497. 2018. View Article : Google Scholar : PubMed/NCBI | |
Saqub H, Proetsch-Gugerbauer H, Bezrookove V, Nosrati M, Vaquero EM, de Semir D, Ice RJ, McAllister S, Soroceanu L, Kashani-Sabet M, et al: Dinaciclib, a cyclin-dependent kinase inhibitor, suppresses cholangiocarcinoma growth by targeting CDK2/5/9. Sci Rep. 10:184892020. View Article : Google Scholar : PubMed/NCBI | |
Savage G and Antman KH: Imatinib mesylate-a new oral targeted therapy. N Engl J Med. 346:683–693. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T and Yang S: Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct Target Ther. 6:2012021. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Jia R, Wang L, Yang Q, Hu X, Fu Q, Zhang X, Li W and Ren Y: The emerging roles of Rad51 in cancer and its potential as a therapeutic target. Front Oncol. 12:9355932022. View Article : Google Scholar : PubMed/NCBI | |
Huang F and Mazin AV: A small molecule inhibitor of human RAD51 potentiates breast cancer cell killing by therapeutic agents in mouse xenografts. PLoS One. 9:e1009932014. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Xu L, Zhang F and Vlashi E: Doxycycline inhibits the cancer stem cell phenotype and Epithelial-to-mesenchymal transition in breast cancer. Cell Cycle. 16:737–745. 2017. View Article : Google Scholar : | |
Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, Ueno Y, Hatch H, Majumder PK, Pan BS and Kotani H: MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther. 9:1956–1967. 2010. View Article : Google Scholar : PubMed/NCBI | |
Marzagalli M, Fontana F, Raimondi M and Limonta P: Cancer stem Cells-key players in tumor relapse. Cancers (Basel). 13:3762021. View Article : Google Scholar : PubMed/NCBI | |
Naro C, Barbagallo F, Caggiano C, De Musso M, Panzeri V, Di Agostino S, Paronetto MP and Sette C: Functional interaction between the oncogenic kinase NEK2 and Sam68 promotes a splicing program involved in migration and invasion in Triple-negative breast cancer. Front Oncol. 12:8806542022. View Article : Google Scholar : PubMed/NCBI | |
Quintana-Portillo R, Canfrán-Duque A, Issad T, Sánchez-Margalet V and González-Yanes C: Sam68 interacts with IRS1. Biochem Pharmacol. 83:78–87. 2012. View Article : Google Scholar | |
Vilariño-García T, Guadix P, Dorado-Silva M, Sánchez-Martín P, Pérez-Pérez A and Sánchez-Margalet V: Decreased expression of Sam68 is associated with insulin resistance in granulosa cells from PCOS patients. Cells. 11:28212022. View Article : Google Scholar : PubMed/NCBI | |
Najib S, Rodríguez-Baño J, Ríos MJ, Muniain MA, Goberna R and Sánchez-Margalet V: Sam68 is tyrosine phosphorylated and recruited to signalling in peripheral blood mononuclear cells from HIV infected patients. Clin Exp Immunol. 141:518–525. 2005. View Article : Google Scholar : PubMed/NCBI | |
Awe O, Sinkway JM, Chow RP, Wagener Q, Schulz EV, Yu JY, Nietert PJ, Wagner CL and Lee KH: Differential regulation of a placental SAM68 and sFLT1 gene pathway and the relevance to maternal vitamin D sufficiency. Pregnancy Hypertens. 22:196–203. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shibuya M: Involvement of Flt-1 (VEGF receptor-1) in cancer and preeclampsia. Proc Jpn Acad Ser B Phys Biol Sci. 87:167–178. 2011. View Article : Google Scholar : PubMed/NCBI |