1
|
Maksimkin AV, Senatov FS, Anisimova NY,
Kiselevskiy MV, Zalepugin DY, Chernyshova IV, Tilkunova NA and
Kaloshkin SD: Multilayer porous UHMWPE scaffolds for bone defects
replacement. Mater Sci Eng C Mater Biol Appl. 73:366–372. 2017.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Ho-Shui-Ling A, Bolander J, Rustom LE,
Johnson AW, Luyten FP and Picart C: Bone regeneration strategies:
Engineered scaffolds, bioactive molecules and stem cells current
stage and future perspectives. Biomaterials. 180:143–162. 2018.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Einhorn TA and Gerstenfeld LC: Fracture
healing: Mechanisms and interventions. Nat Rev Rheumatol. 11:45–54.
2015. View Article : Google Scholar :
|
4
|
Murata K, Ito H, Yoshitomi H, Yamamoto K,
Fukuda A, Yoshikawa J, Furu M, Ishikawa M, Shibuya H and Matsuda S:
Inhibition of miR-92a enhances fracture healing via promoting
angiogenesis in a model of stabilized fracture in young mice. J
Bone Miner Res. 29:316–326. 2014. View Article : Google Scholar
|
5
|
Axelrad TW and Einhorn TA: Bone
morphogenetic proteins in orthopaedic surgery. Cytokine Growth
Factor Rev. 20:481–488. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Aro HT, Govender S, Patel AD, Hernigou P,
Perera de Gregorio A, Popescu GI, Golden JD, Christensen J and
Valentin A: Recombinant human bone morphogenetic protein-2: a
randomized trial in open tibial fractures treated with reamed nail
fixation. J Bone Joint Surg Am. 93:801–808. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Mao W, Huang G, Chen H, Xu L, Qin S and Li
A: Research progress of the role of anthocyanins on bone
regeneration. Front Pharmacol. 12:7736602021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Levis S and Lagari VS: The role of diet in
osteoporosis prevention and management. Curr Osteoporos Rep.
10:296–302. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Jang WS, Seo CR, Jang HH, Song NJ, Kim JK,
Ahn JY, Han J, Seo WD, Lee YM and Park KW: Black rice (Oryza sativa
L.) extracts induce osteoblast differentiation and protect against
bone loss in ovariectomized rats. Food Funct. 6:265–275. 2015.
View Article : Google Scholar
|
10
|
Casati L, Pagani F, Fibiani M, Lo Scalzo R
and Sibilia V: Potential of delphinidin-3-rutinoside extracted from
Solanum melongena L. as promoter of osteoblastic MC3T3-E1 function
and antagonist of oxidative damage. Eur J Nutr. 58:1019–1032. 2019.
View Article : Google Scholar
|
11
|
Sako F, Kobayashi N, Taniguchi N and
Takakuwa E: A study on the toxicity of natural food dyes-toxicity
and enzyme inhibition in Paramecium caudatum. J Toxicol Sci.
3:127–136. 1978. View Article : Google Scholar : PubMed/NCBI
|
12
|
Della Vedova L, Ferrario G, Gado F,
Altomare A, Carini M, Morazzoni P, Aldini G and Baron G: Liquid
Chromatography-High-Resolution Mass Spectrometry (LC-HRMS)
profiling of commercial enocianina and evaluation of their
antioxidant and anti-inflammatory activity. Antioxidants (Basel).
11:11872022. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nakamura A, Ly C, Cipetić M, Sims NA,
Vieusseux J, Kartsogiannis V, Bouralexis S, Saleh H, Zhou H, Price
JT, et al: Osteoclast inhibitory lectin (OCIL) inhibits osteoblast
differentiation and function in vitro. Bone. 40:305–315. 2007.
View Article : Google Scholar
|
14
|
Qin S, Wang W, Liu Z, Hua X, Fu S, Dong F,
Li A, Liu Z, Wang P, Dai L, et al: Fibrochondrogenic
differentiation potential of tendon-derived stem/progenitor cells
from human patellar tendon. J Orthop Translat. 22:101–108. 2020.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Schindelin J, Arganda-Carreras I, Frise E,
Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S,
Schmid B, et al: Fiji: An open-source platform for biological-image
analysis. Nat Methods. 9:676–682. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
17
|
Guideline-Rodent Analgesia (Procedure
Specific). T.u.o. queensland: 2022
|
18
|
Xu L, Huang S, Hou Y, Liu Y, Ni M, Meng F,
Wang K, Rui Y, Jiang X and Li G: Sox11-modified mesenchymal stem
cells (MSCs) accelerate bone fracture healing: Sox11 regulates
differentiation and migration of MSCs. FASEB J. 29:1143–1152. 2015.
View Article : Google Scholar
|
19
|
Wang W, Qin S, He P, Mao W, Chen L, Hua X,
Zhang J, Xiong X, Liu Z, Wang P, et al: Type II collagen sponges
facilitate tendon stem/progenitor cells to adopt more chondrogenic
phenotypes and promote the regeneration of fibrocartilage-like
tissues in a rabbit partial patellectomy model. Front Cell Dev
Biol. 9:6827192021. View Article : Google Scholar : PubMed/NCBI
|
20
|
Baron R and Kneissel M: WNT signaling in
bone homeostasis and disease: From human mutations to treatments.
Nat Med. 19:179–192. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lowery JW and Rosen V: The BMP pathway and
its inhibitors in the skeleton. Physiol Rev. 98:2431–2452. 2018.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Page-McCaw A, Ewald AJ and Werb Z: Matrix
metalloproteinases and the regulation of tissue remodelling. Nat
Rev Mol Cell Biol. 8:221–233. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Reid IR and Billington EO: Drug therapy
for osteoporosis in older adults. Lancet. 399:1080–1092. 2022.
View Article : Google Scholar : PubMed/NCBI
|
24
|
GBD 2019 Fracture Collaborators: Global,
regional, and national burden of bone fractures in 204 countries
and territories, 1990-2019: A systematic analysis from the Global
Burden of Disease Study 2019. Lancet Healthy Longev. 2:e580–e592.
2021. View Article : Google Scholar : PubMed/NCBI
|
25
|
Clynes MA, Harvey NC, Curtis EM, Fuggle
NR, Dennison EM and Cooper C: The epidemiology of osteoporosis. Br
Med Bull. 133:105–117. 2020.PubMed/NCBI
|
26
|
He J, Li X, Wang Z, Bennett S, Chen K,
Xiao Z, Zhan J, Chen S, Hou Y, Chen J, et al: Therapeutic anabolic
and anticatabolic benefits of natural Chinese Medicines for the
treatment of osteoporosis. Front Pharmacol. 10:13442019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lee YM, Yoon Y, Yoon H, Park HM, Song S
and Yeum KJ: Dietary anthocyanins against obesity and inflammation.
Nutrients. 9:10892017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Samarpita S, Ganesan R and Rasool M:
Cyanidin prevents the hyperproliferative potential of
fibroblast-like synoviocytes and disease progression via targeting
IL-17A cytokine signalling in rheumatoid arthritis. Toxicol Appl
Pharmacol. 391:1149172020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Domazetovic V, Marcucci G, Iantomasi T,
Brandi ML and Vincenzini MT: Oxidative stress in bone remodeling:
Role of antioxidants. Clin Cases Miner Bone Metab. 14:209–216.
2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Saulite L, Jekabsons K, Klavins M,
Muceniece R and Riekstina U: Effects of malvidin, cyanidin and
delphinidin on human adipose mesenchymal stem cell differentiation
into adipocytes, chondrocytes and osteocytes. Phytomedicine.
53:86–95. 2019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Azuma K, Ohyama A, Ippoushi K, Ichiyanagi
T, Takeuchi A, Saito T and Fukuoka H: Structures and antioxidant
activity of anthocyanins in many accessions of eggplant and its
related species. J Agric Food Chem. 56:10154–10159. 2008.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Marsell R and Einhorn TA: The biology of
fracture healing. Injury. 42:551–555. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Paiva KBS and Granjeiro JM: Matrix
metalloproteinases in bone resorption, remodeling, and repair. Prog
Mol Biol Transl Sci. 148:203–303. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Delaissé JM, Engsig MT, Everts V, del
Carmen Ovejero M, Ferreras M, Lund L, Vu TH, Werb Z, Winding B,
Lochter A, et al: Proteinases in bone resorption: obvious and less
obvious roles. Clin Chim Acta. 291:223–234. 2000. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ortega N, Behonick D, Stickens D and Werb
Z: How proteases regulate bone morphogenesis. Ann N Y Acad Sci.
995:109–116. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhu L, Tang Y, Li XY, Keller ET, Yang J,
Cho JS, Feinberg TY and Weiss SJ: Osteoclast-mediated bone
resorption is controlled by a compensatory network of secreted and
membrane-tethered metalloproteinases. Sci Transl Med.
12:eaaw61432020. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wang X, Yu YY, Lieu S, Yang F, Lang J, Lu
C, Werb Z, Hu D, Miclau T, Marcucio R and Colnot C: MMP9 regulates
the cellular response to inflammation after skeletal injury. Bone.
52:111–119. 2013. View Article : Google Scholar
|
38
|
Kalev-Altman R, Janssen JN, Ben-Haim N,
Levy T, Shitrit-Tovli A, Milgram J, Shahar R, Sela-Donenfeld D and
Monsonego-Ornan E: The gelatinases, matrix metalloproteinases 2 and
9, play individual roles in skeleton development. Matrix Biol.
113:100–121. 2022. View Article : Google Scholar : PubMed/NCBI
|
39
|
Vu TH, Shipley JM, Bergers G, Berger JE,
Helms JA, Hanahan D, Shapiro SD, Senior RM and Werb Z:
MMP-9/gelatinase B is a key regulator of growth plate angiogenesis
and apoptosis of hypertrophic chondrocytes. Cell. 93:411–422. 1998.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Cao X: Targeting osteoclast-osteoblast
communication. Nat Med. 17:1344–1346. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kular J, Tickner J, Chim SM and Xu J: An
overview of the regulation of bone remodelling at the cellular
level. Clin Biochem. 45:863–873. 2012. View Article : Google Scholar : PubMed/NCBI
|