Circular RNAs in coronary heart disease: From molecular mechanism to promising clinical application (Review)
- Authors:
- Zengguang Fan
- Xingxing Yuan
- Ye Yuan
-
Affiliations: Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China, Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150006, P.R. China, Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China - Published online on: October 31, 2024 https://doi.org/10.3892/ijmm.2024.5452
- Article Number: 11
-
Copyright: © Fan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Katta N, Loethen T, Lavie CJ and Alpert MA: Obesity and coronary heart disease: Epidemiology, Pathology, and coronary artery imaging. Curr Probl Cardiol. 46:1006552021. View Article : Google Scholar | |
Pothineni NVK, Subramany S, Kuriakose K, Shirazi LF, Romeo F, Shah PK and Mehta JL: Infections, atherosclerosis, and coronary heart disease. Eur Heart J. 38:3195–3201. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dong Y, Chen H, Gao J, Liu Y, Li J and Wang J: Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol. 136:27–41. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hodel F, Xu ZM, Thorball CW, de La Harpe R, Letang-Mathieu P, Brenner N, Butt J, Bender N, Waterboer T, Marques-Vidal PM, et al: Associations of genetic and infectious risk factors with coronary heart disease. Elife. 12:e797422023. View Article : Google Scholar : PubMed/NCBI | |
Sygitowicz G and Sitkiewicz D: Involvement of circRNAs in the Development of Heart Failure. Int J Mol Sci. 23:141292022. View Article : Google Scholar : PubMed/NCBI | |
Ma XK, Zhai SN and Yang L: Approaches and challenges in genome-wide circular RNA identification and quantification. Trends Genet. 39:897–907. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hwang HJ and Kim YK: Molecular mechanisms of circular RNA translation. Exp Mol Med. 56:1272–1280. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Li L, Hu H, Wu J, Chen H, Feng K and Ma L: Circ-HIPK2 accelerates cell apoptosis and autophagy in myocardial oxidative injury by sponging miR-485-5p and Targeting ATG101. J Cardiovasc Pharmacol. 76:427–436. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dinh P, Tran C, Dinh T, Ali A and Pan S: Hsa_circRNA_0000284 acts as a ceRNA to participate in coronary heart disease progression by sponging miRNA-338-3p via regulating the expression of ETS1. J Biomol Struct Dyn. 42:5114–5127. 2024. View Article : Google Scholar | |
Ye B, Liang X, Zhao Y, Cai X, Wang Z, Lin S, Wang W, Shan P, Huang W and Huang Z: Hsa_circ_0007478 aggravates NLRP3 inflammasome activation and lipid metabolism imbalance in ox-LDL-stimulated macrophage via miR-765/EFNA3 axis. Chem Biol Interact. 368:1101952022. View Article : Google Scholar : PubMed/NCBI | |
Hou C, Gu L, Guo Y, Zhou Y, Hua L, Chen J, He S, Zhang S, Jia Q, Zhao C, et al: Association between circular RNA expression content and severity of coronary atherosclerosis in human coronary artery. J Clin Lab Anal. 34:e235522020. View Article : Google Scholar : PubMed/NCBI | |
Akan G, Nyawawa E, Nyangasa B, Turkcan MK, Mbugi E, Janabi M and Atalar F: Severity of coronary artery disease is associated with diminished circANRIL expression: A possible blood based transcriptional biomarker in East Africa. J Cell Mol Med. 28:e180932024. View Article : Google Scholar : | |
Cao Q, Guo Z, Du S, Ling H and Song C: Circular RNAs in the pathogenesis of atherosclerosis. Life Sci. 255:1178372020. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Chen X, Mo C, Li L, Nong S and Gui C: The role of circRNAs in the regulation of myocardial angiogenesis in coronary heart disease. Microvasc Res. 142:1043622022. View Article : Google Scholar : PubMed/NCBI | |
Chen CK, Cheng R, Demeter J, Chen J, Weingarten-Gabbay S, Jiang L, Snyder MP, Weissman JS, Segal E, Jackson PK and Chang HY: Structured elements drive extensive circular RNA translation. Mol Cell. 81:4300–4318.e13. 2021. View Article : Google Scholar : PubMed/NCBI | |
Busa VF and Leung AKL: Thrown for a (stem) loop: How RNA structure impacts circular RNA regulation and function. Methods. 196:56–67. 2021. View Article : Google Scholar : PubMed/NCBI | |
Aufiero S, van den Hoogenhof MMG, Reckman YJ, Beqqali A, van der Made I, Kluin J, Khan MAF, Pinto YM and Creemers EE: Cardiac circRNAs arise mainly from constitutive exons rather than alternatively spliced exons. RNA. 24:815–827. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G, et al: Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 7:112152016. View Article : Google Scholar : PubMed/NCBI | |
Jiang S, Fu R, Shi J, Wu H, Mai J, Hua X, Chen H, Liu J, Lu M and Li N: CircRNA-Mediated regulation of angiogenesis: A new chapter in cancer biology. Front Oncol. 11:5537062021. View Article : Google Scholar : PubMed/NCBI | |
Ding C and Zhou Y: Insights into circular RNAs: Biogenesis, function and their regulatory roles in cardiovascular disease. J Cell Mol Med. 27:1299–1314. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL and Yang L: Complementary sequence-mediated exon circularization. Cell. 159:134–147. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zang J, Lu D and Xu A: The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function. J Neurosci Res. 98:87–97. 2020. View Article : Google Scholar | |
Montañés-Agudo P, van der Made I, Aufiero S, Tijsen AJ, Pinto YM and Creemers EE: Quaking regulates circular RNA production in cardiomyocytes. J Cell Sci. 136:sc2611202023. View Article : Google Scholar | |
Pamudurti NR, Patop IL, Krishnamoorthy A, Bartok O, Maya R, Lerner N, Ashwall-Fluss R, Konakondla JVV, Beatus T and Kadener S: circMbl functions in cis and in trans to regulate gene expression and physiology in a tissue-specific fashion. Cell Rep. 39:1107402022. View Article : Google Scholar : PubMed/NCBI | |
Kelly S, Greenman C, Cook PR and Papantonis A: Exon skipping is correlated with exon circularization. J Mol Biol. 427:2414–2417. 2015. View Article : Google Scholar : PubMed/NCBI | |
Monat C, Quiroga C, Laroche-Johnston F and Cousineau B: The Ll.LtrB intron from Lactococcus lactis excises as circles in vivo: insights into the group II intron circularization pathway. RNA. 21:1286–1293. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI | |
Werfel S, Nothjunge S, Schwarzmayr T, Strom TM, Meitinger T and Engelhardt S: Characterization of circular RNAs in human, mouse and rat hearts. J Mol Cell Cardiol. 98:103–107. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liang D, Tatomer DC, Luo Z, Wu H, Yang L, Chen LL, Cherry S and Wilusz JE: The Output of Protein-Coding Genes Shifts to Circular RNAs When the Pre-mRNA Processing Machinery Is Limiting. Mol Cell. 68:940–954.e3. 2017. View Article : Google Scholar : PubMed/NCBI | |
García-Lerena JA, González-Blanco G, Saucedo-Cárdenas O and Valdés J: Promoter-Bound Full-Length Intronic Circular RNAs-RNA Polymerase II Complexes Regulate Gene Expression in the Human Parasite Entamoeba histolytica. Noncoding RNA. 8:122022.PubMed/NCBI | |
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar : | |
Gao Y, Wang J and Zhao F: CIRI: An efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 16:42015. View Article : Google Scholar : PubMed/NCBI | |
Chen LL: The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 21:475–490. 2020. View Article : Google Scholar : PubMed/NCBI | |
Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA and Goodall GJ: The RNA binding protein quaking regulates formation of circRNAs. Cell. 160:1125–1134. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen I, Chen CY and Chuang TJ: Biogenesis, identification, and function of exonic circular RNAs. Wiley Interdiscip Rev RNA. 6:563–579. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vromman M, Anckaert J, Bortoluzzi S, Buratin A, Chen CY, Chu Q, Chuang TJ, Dehghannasiri R, Dieterich C, Dong X, et al: Large-scale benchmarking of circRNA detection tools reveals large differences in sensitivity but not in precision. Nat Methods. 20:1159–1169. 2023. View Article : Google Scholar : PubMed/NCBI | |
Haque S and Harries LW: Circular RNAs (circRNAs) in Health and Disease. Genes (Basel). 8:3532017. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Sun W, Han J, Cheng S, Yu P, Shen L, Fan M, Tong H, Zhang H, Chen J and Chen X: The circular RNA hsa_ circ_0007623 acts as a sponge of microRNA-297 and promotes cardiac repair. Biochem Biophys Res Commun. 523:993–1000. 2020. View Article : Google Scholar : PubMed/NCBI | |
Szabo L, Morey R, Palpant NJ, Wang PL, Afari N, Jiang C, Parast MM, Murry CE, Laurent LC and Salzman J: Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol. 16:1262015. View Article : Google Scholar : PubMed/NCBI | |
Siede D, Rapti K, Gorska AA, Katus HA, Altmüller J, Boeckel JN, Meder B, Maack C, Völkers M, Müller OJ, et al: Identification of circular RNAs with host gene-independent expression in human model systems for cardiac differentiation and disease. J Mol Cell Cardiol. 109:48–56. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Guo X, Wen Y, Huang S, Yuan X, Tang L and Sun H: N6-Methyladenosine Modification Opens a New Chapter in Circular RNA Biology. Front Cell Dev Biol. 9:7092992021. View Article : Google Scholar : PubMed/NCBI | |
Xu T, He B, Sun H, Xiong M, Nie J, Wang S and Pan Y: Novel insights into the interaction between N6-methyladenosine modification and circular RNA. Mol Ther Nucleic Acids. 27:824–837. 2022. View Article : Google Scholar : PubMed/NCBI | |
Du WW, Yang W, Chen Y, Wu ZK, Foster FS, Yang Z, Li X and Yang BB: Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J. 38:1402–1412. 2017. | |
Tao M, Zheng M, Xu Y, Ma S, Zhang W and Ju S: CircRNAs and their regulatory roles in cancers. Mol Med. 27:942021. View Article : Google Scholar : PubMed/NCBI | |
Graham JR, Hendershott MC, Terragni J and Cooper GM: mRNA degradation plays a significant role in the program of gene expression regulated by phosphatidylinositol 3-kinase signaling. Mol Cell Biol. 30:5295–5305. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nisar S, Bhat AA, Singh M, Karedath T, Rizwan A, Hashem S, Bagga P, Reddy R, Jamal F, Uddin S, et al: Insights Into the Role of CircRNAs: Biogenesis, characterization, functional, and clinical impact in human malignancies. Front Cell Dev Biol. 9:6172812021. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Yu S, Ding L, Ma L, Chen H, Zhou H, Zou Y, Yu M, Lin J and Cui Q: The Dual Role of Circular RNAs as miRNA Sponges in breast cancer and colon cancer. Biomedicines. 9:15902021. View Article : Google Scholar : PubMed/NCBI | |
Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang A, Zheng H, Wu Z, Chen M and Huang Y: Circular RNA-protein interactions: Functions, mechanisms, and identification. Theranostics. 10:3503–3517. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Li X, Zheng H, Si X, Li B, Wei G, Li C, Chen Y, Chen Y, Liao W, et al: Loss of Super-Enhancer-Regulated circRNA Nfix Induces Cardiac Regeneration After Myocardial Infarction in Adult Mice. Circulation. 139:2857–2876. 2019. View Article : Google Scholar : PubMed/NCBI | |
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ma B, Wang S, Wu W, Shan P, Chen Y, Meng J, Xing L, Yun J, Hao L, Wang X, et al: Mechanisms of circRNA/lncRNA-miRNA interactions and applications in disease and drug research. Biomed Pharmacother. 162:1146722023. View Article : Google Scholar : PubMed/NCBI | |
Misir S, Wu N and Yang BB: Specific expression and functions of circular RNAs. Cell Death Differ. 29:481–491. 2022. View Article : Google Scholar : PubMed/NCBI | |
Das A, Sinha T, Shyamal S and Panda AC: Emerging Role of Circular RNA-Protein Interactions. Noncoding RNA. 7:482021.PubMed/NCBI | |
Jiang MP, Xu WX, Hou JC, Xu Q, Wang DD and Tang JH: The Emerging Role of the Interactions between Circular RNAs and RNA-binding Proteins in Common Human Cancers. J Cancer. 12:5206–5219. 2021. View Article : Google Scholar : PubMed/NCBI | |
Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z and Yang BB: Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ. 24:357–370. 2017. View Article : Google Scholar : | |
Zeng Y, Du WW, Wu Y, Yang Z, Awan FM, Li X, Yang W, Zhang C, Yang Q, Yee A, et al: A Circular RNA Binds To and Activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics. 7:3842–3855. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, Song W, Li X, Li L, Du Z, et al: A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 19:2182018. View Article : Google Scholar : PubMed/NCBI | |
Conte A and Pierantoni GM: Update on the Regulation of HIPK1, HIPK2 and HIPK3 Protein Kinases by microRNAs. Microrna. 7:178–186. 2018. View Article : Google Scholar : PubMed/NCBI | |
Abe N, Matsumoto K, Nishihara M, Nakano Y, Shibata A, Maruyama H, Shuto S, Matsuda A, Yoshida M, Ito Y and Abe H: Rolling circle translation of circular RNA in living human cells. Sci Rep. 5:164352015. View Article : Google Scholar : PubMed/NCBI | |
Ye F, Gao G, Zou Y, Zheng S, Zhang L, Ou X, Xie X and Tang H: circFBXW7 Inhibits Malignant Progression by Sponging miR-197-3p and Encoding a 185-aa Protein in Triple-Negative Breast Cancer. Mol Ther Nucleic Acids. 18:88–98. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res. 27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Wu X, Gokulnath P, Li G and Xiao J: The Functions and Mechanisms of Translatable Circular RNAs. J Pharmacol Exp Ther. 384:52–60. 2023. View Article : Google Scholar | |
Li X, Zhao Z, Jian D, Li W, Tang H and Li M: Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus. Diab Vasc Dis Res. 14:510–515. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guo N, Zhou H, Zhang Q, Fu Y, Jia Q, Gan X, Wang Y, He S, Li C, Tao Z, et al: Exploration and bioinformatic prediction for profile of mRNA bound to circular RNA BTBD7_hsa_ circ_0000563 in coronary artery disease. BMC Cardiovasc Disord. 24:712024. View Article : Google Scholar | |
Chen JX, Hua L, Zhao CH, Jia QW, Zhang J, Yuan JX, Zhang YJ, Jin JL, Gu MF, Mao ZY, et al: Quantitative proteomics reveals the regulatory networks of circular RNA BTBD7_hsa_ circ_0000563 in human coronary artery. J Clin Lab Anal. 34:e234952020. View Article : Google Scholar | |
Wang L, Shen C, Wang Y, Zou T, Zhu H, Lu X, Li L, Yang B, Chen J, Chen S, et al: Identification of circular RNA Hsa_ circ_0001879 and Hsa_circ_0004104 as novel biomarkers for coronary artery disease. Atherosclerosis. 286:88–96. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Chen R, Lin S, Xie X, Ye H, Zheng F, Lin J, Huang Q, Huang S, Ruan Q, et al: Association of circular RNAs and environmental risk factors with coronary heart disease. BMC Cardiovasc Disord. 19:2232019. View Article : Google Scholar : PubMed/NCBI | |
Wu WP, Pan YH, Cai MY, Cen JM, Chen C, Zheng L, Liu X and Xiong XD: Plasma-Derived Exosomal Circular RNA hsa_ circ_0005540 as a Novel Diagnostic Biomarker for Coronary Artery Disease. Dis Markers. 2020:31786422020. View Article : Google Scholar | |
Yu F, Tie Y, Zhang Y, Wang Z, Yu L, Zhong L and Zhang C: Circular RNA expression profiles and bioinformatic analysis in coronary heart disease. Epigenomics. 12:439–454. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dinh P, Peng J, Tran T, Wu D, Tran C, Dinh T and Pan S: Identification of hsa_circ_0001445 of a novel circRNA-miRNA-mRNA regulatory network as potential biomarker for coronary heart disease. Front Cardiovasc Med. 10:11042232023. View Article : Google Scholar : PubMed/NCBI | |
Yin L, Tang Y and Jiang M: Research on the circular RNA bioinformatics in patients with acute myocardial infarction. J Clin Lab Anal. 35:e236212021. View Article : Google Scholar : | |
Pan RY, Liu P, Zhou HT, Sun WX, Song J, Shu J, Cui GJ, Yang ZJ and Jia EZ: Circular RNAs promote TRPM3 expression by inhibiting hsa-miR-130a-3p in coronary artery disease patients. Oncotarget. 8:60280–60290. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yijian L, Weihan S, Lin Y, Heng Z, Yu W, Lin S, Shuo M, Mengyang L and Jianxun W: CircNCX1 modulates cardiomyocyte proliferation through promoting ubiquitination of BRG1. Cell Signal. 120:1111932024. View Article : Google Scholar : PubMed/NCBI | |
Kishore R, Garikipati VNS and Gonzalez C: Role of Circular RNAs in Cardiovascular Disease. J Cardiovasc Pharmacol. 76:128–137. 2020. View Article : Google Scholar : PubMed/NCBI | |
Maguire EM and Xiao Q: Noncoding RNAs in vascular smooth muscle cell function and neointimal hyperplasia. FEBS J. 287:5260–5283. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ma W, Wei S, Zhang B and Li W: Molecular Mechanisms of Cardiomyocyte Death in Drug-Induced Cardiotoxicity. Front Cell Dev Biol. 8:4342020. View Article : Google Scholar : PubMed/NCBI | |
Dorn GW II: Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovasc Res. 81:465–473. 2009. View Article : Google Scholar : | |
Nah J, Zablocki D and Sadoshima J: The roles of the inhibitory autophagy regulator Rubicon in the heart: A new therapeutic target to prevent cardiac cell death. Exp Mol Med. 53:528–536. 2021. View Article : Google Scholar : PubMed/NCBI | |
Martens MD, Karch J and Gordon JW: The molecular mosaic of regulated cell death in the cardiovascular system. Biochim Biophys Acta Mol Basis Dis. 1868:1662972022. View Article : Google Scholar | |
Xiang Q, Yi X, Zhu XH, Wei X and Jiang DS: Regulated cell death in myocardial ischemia-reperfusion injury. Trends Endocrinol Metab. 35:219–234. 2024. View Article : Google Scholar | |
Parrotta EI, Lucchino V, Scaramuzzino L, Scalise S and Cuda G: Modeling cardiac disease mechanisms using induced pluripotent stem cell-derived cardiomyocytes: progress, promises and challenges. Int J Mol Sci. 21:43542020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu S, Ding L, Wang D, Li Q and Li D: Circ_0030235 knockdown protects H9c2 cells against OGD/R-induced injury via regulation of miR-526b. PeerJ. 9:e114822021. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhang T, Zhang W, Zou C, Zhang Q, Ma X and Zhu Y: Circular RNA-DENND4C in H9c2 cells relieves OGD/R-induced injury by down regulation of microRNA-320. Cell Cycle. 19:3074–3085. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ding W, Ding L, Lu Y, Sun W, Wang Y, Wang J, Gao Y and Li M: Circular RNA-circLRP6 protects cardiomyocyte from hypoxia-induced apoptosis by facilitating hnRNPM-mediated expression of FGF-9. FEBS J. 291:1246–1263. 2024. View Article : Google Scholar | |
Ko T and Nomura S: Manipulating cardiomyocyte plasticity for heart regeneration. Front Cell Dev Biol. 10:9292562022. View Article : Google Scholar : PubMed/NCBI | |
Theofilis P, Sagris M, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis C and Tousoulis D: Inflammatory mechanisms contributing to endothelial dysfunction. Biomedicines. 9:7812021. View Article : Google Scholar : PubMed/NCBI | |
Shaito A, Aramouni K, Assaf R, Parenti A, Orekhov A, Yazbi AE, Pintus G and Eid AH: Oxidative stress-induced endothelial dysfunction in cardiovascular diseases. Front Biosci (Landmark Ed). 27:1052022. View Article : Google Scholar : PubMed/NCBI | |
Gallo G and Savoia C: New insights into endothelial dysfunction in cardiometabolic diseases: Potential mechanisms and clinical implications. Int J Mol Sci. 25:29732024. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Song C, He J and Li M: Research progress in endothelial cell injury and repair. Front Pharmacol. 13:9972722022. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, Luo S, Li Z, Liu P, Han J, et al: Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: From mechanism to pharmacotherapies. Pharmacol Rev. 73:924–967. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Wang M, Ye J, Sun G and Sun X: Mechanism overview and target mining of atherosclerosis: Endothelial cell injury in atherosclerosis is regulated by glycolysis (Review). Int J Mol Med. 47:65–76. 2021. View Article : Google Scholar | |
Zha D, Wang S, Monaghan-Nichols P, Qian Y, Sampath V and Fu M: Mechanisms of endothelial cell membrane repair: Progress and Perspectives. Cells. 12:26482023. View Article : Google Scholar : PubMed/NCBI | |
Marzoog BA: Endothelial cell autophagy in the context of disease development. Anat Cell Biol. 56:16–24. 2023. View Article : Google Scholar : | |
Wang LP, Han RM, Wu B, Luo MY, Deng YH, Wang W, Huang C, Xie X and Luo J: Mst1 silencing alleviates hypertensive myocardial injury associated with the augmentation of microvascular endothelial cell autophagy. Int J Mol Med. 50:1462022. View Article : Google Scholar : PubMed/NCBI | |
Sobrevia L, Aiello EA and Contreras P: Mechanisms of endothelial dysfunction and cardiovascular system adaptation. Curr Vasc Pharmacol. 20:201–204. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tong X, Dang X, Liu D, Wang N, Li M, Han J, Zhao J, Wang Y, Huang M, Yang Y, et al: Exosome-derived circ_0001785 delays atherogenesis through the ceRNA network mechanism of miR-513a-5p/TGFBR3. J Nanobiotechnology. 21:3622023. View Article : Google Scholar : PubMed/NCBI | |
Yu F, Zhang Y, Wang Z, Gong W and Zhang C: Hsa_ circ_0030042 regulates abnormal autophagy and protects atherosclerotic plaque stability by targeting eIF4A3. Theranostics. 11:5404–5417. 2021. View Article : Google Scholar : | |
Gao W, Li C, Yuan J, Zhang Y, Liu G, Zhang J, Shi H, Liu H and Ge J: Circ-MBOAT2 Regulates Angiogenesis via the miR-495/ NOTCH1 axis and associates with myocardial perfusion in patients with coronary chronic total occlusion. Int J Mol Sci. 25:7932024. View Article : Google Scholar | |
Wong D, Turner AW and Miller CL: Genetic insights into smooth muscle cell contributions to coronary artery disease. Arterioscler Thromb Vasc Biol. 39:1006–1017. 2019. View Article : Google Scholar : PubMed/NCBI | |
Low EL, Baker AH and Bradshaw AC: TGFβ, smooth muscle cells and coronary artery disease: A review. Cell Signal. 53:90–101. 2019. View Article : Google Scholar : | |
Cao G, Xuan X, Hu J, Zhang R, Jin H and Dong H: How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Commun Signal. 20:1802022. View Article : Google Scholar : PubMed/NCBI | |
Milutinović A, Šuput D and Zorc-Pleskovič R: Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: An updated review. Bosn J Basic Med Sci. 20:21–30. 2020. | |
Schnack L, Sohrabi Y, Lagache SMM, Kahles F, Bruemmer D, Waltenberger J and Findeisen HM: Mechanisms of trained innate immunity in oxLDL primed human coronary smooth muscle cells. Front Immunol. 10:132019. View Article : Google Scholar : PubMed/NCBI | |
Lacolley P, Regnault V, Segers P and Laurent S: Vascular smooth muscle cells and arterial stiffening: Relevance in development, aging, and disease. Physiol Rev. 97:1555–1617. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Liu Z, Deng J, Liu L, Li Y, Weng S, Guo C, Zhou Z, Zhang L, Wang X, et al: Smooth muscle cell fate decisions decipher a high-resolution heterogeneity within atherosclerosis molecular subtypes. J Transl Med. 20:5682022. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Wang H, Guo C, Yu F, Zhang Y, Qiao L, Zhang H and Zhang C: Role of hsa_circ_0000280 in regulating vascular smooth muscle cell function and attenuating neointimal hyperplasia via ELAVL1. Cell Mol Life Sci. 80:32022. View Article : Google Scholar : PubMed/NCBI | |
Dai H, Zhao N and Zheng Y: CircLDLR modulates the proliferation and apoptosis of vascular smooth muscle cells in coronary artery disease through miR-26-5p/KDM6A Axis. J Cardiovasc Pharmacol. 80:132–139. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zeng Z, Xia L, Fan S, Zheng J, Qin J, Fan X, Liu Y, Tao J, Liu Y, Li K, et al: Circular RNA CircMAP3K5 Acts as a MicroRNA-22-3p Sponge to Promote Resolution of Intimal Hyperplasia Via TET2-Mediated smooth muscle cell differentiation. Circulation. 143:354–371. 2021. View Article : Google Scholar | |
Mao YY, Wang JQ, Guo XX, Bi Y and Wang CX: Circ-SATB2 upregulates STIM1 expression and regulates vascular smooth muscle cell proliferation and differentiation through miR-939. Biochem Biophys Res Commun. 505:119–125. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Li H, Zheng Z and Li Y: Hsa_circ_0031891 targets miR-579-3p to enhance HMGB1 expression and regulate PDGF-BB-induced human aortic vascular smooth muscle cell proliferation, migration, and dedifferentiation. Naunyn Schmiedebergs Arch Pharmacol. 397:1093–1104. 2024. View Article : Google Scholar | |
Zhong W, Wang L and Xiong L: Circ_0006251 mediates the proliferation and apoptosis of vascular smooth muscle cells in CAD via enhancing TET3 and PPM1B expression. Cell Mol Biol (Noisy-le-grand). 69:34–39. 2023. View Article : Google Scholar : PubMed/NCBI | |
Medina-Leyte DJ, Zepeda-García O, Domínguez-Pérez M, González-Garrido A, Villarreal-Molina T and Jacobo-Albavera L: Endothelial dysfunction, inflammation and coronary artery disease: Potential biomarkers and promising therapeutical approaches. Int J Mol Sci. 22:38502021. View Article : Google Scholar : PubMed/NCBI | |
Bazoukis G, Stavrakis S and Armoundas AA: Vagus nerve stimulation and inflammation in cardiovascular disease: A State-of-the-Art Review. J Am Heart Assoc. 12:e0305392023. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharya P, Kanagasooriyan R and Subramanian M: Tackling inflammation in atherosclerosis: Are we there yet and what lies beyond? Curr Opin Pharmacol. 66:1022832022. View Article : Google Scholar : PubMed/NCBI | |
Prati F, Marco V, Paoletti G and Albertucci M: Coronary inflammation: Why searching, how to identify and treat it. Eur Heart J Suppl. 22(Suppl E): E121–E124. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S and Liu C: Macrophages in cardiovascular diseases: Molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 9:1302024. View Article : Google Scholar : PubMed/NCBI | |
Matter MA, Paneni F, Libby P, Frantz S, Stähli BE, Templin C, Mengozzi A, Wang YJ, Kündig TM, Räber L, et al: Inflammation in acute myocardial infarction: The good, the bad and the ugly. Eur Heart J. 45:89–103. 2024. View Article : Google Scholar : | |
Li Y and Wang B: Circular RNA circCHFR downregulation protects against oxidized low-density lipoprotein-induced endothelial injury via regulation of microRNA-15b-5p/growth arrest and DNA damage inducible gamma. Bioengineered. 13:4481–4492. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ji P, Song X and Lv Z: Knockdown of circ_0004104 alleviates oxidized low-density lipoprotein-induced vascular endothelial cell injury by regulating miR-100/TNFAIP8 Axis. J Cardiovasc Pharmacol. 78:269–279. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rafiq M, Dandare A, Javed A, Liaquat A, Raja AA, Awan HM, Khan MJ and Naeem A: Competing Endogenous RNA Regulatory Networks of hsa_circ_0126672 in pathophysiology of coronary heart disease. Genes (Basel). 14:5502023. View Article : Google Scholar : PubMed/NCBI | |
Dandare A, Rafiq M, Liaquat A, Raja AA and Khan MJ: Identification of hsa_circ_0092576 regulatory network in the pathogenesis of coronary heart disease. Genes Dis. 10:26–28. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Yao X and Chen L: Expanding roles of circRNAs in cardiovascular diseases. Noncoding RNA Res. 9:429–436. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Bao J, Hu J, Liu L and Xu DY: Circular RNA in cardiovascular disease: Expression, mechanisms and clinical prospects. J Cell Mol Med. 25:1817–1824. 2021. View Article : Google Scholar : | |
Vilades D, Martínez-Camblor P, Ferrero-Gregori A, Bär C, Lu D, Xiao K, Vea À, Nasarre L, Sanchez Vega J, Leta R, et al: Plasma circular RNA hsa_circ_0001445 and coronary artery disease: Performance as a biomarker. FASEB J. 34:4403–4414. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sonnenschein K, Wilczek AL, de Gonzalo-Calvo D, Pfanne A, Derda AA, Zwadlo C, Bavendiek U, Bauersachs J, Fiedler J and Thum T: Serum circular RNAs act as blood-based biomarkers for hypertrophic obstructive cardiomyopathy. Sci Rep. 9:203502019. View Article : Google Scholar | |
Bahn JH, Zhang Q, Li F, Chan TM, Lin X, Kim Y, Wong DT and Xiao X: The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem. 61:221–230. 2015. View Article : Google Scholar : | |
Wang S, Zhang K, Tan S, Xin J, Yuan Q, Xu H, Xu X, Liang Q, Christiani DC, Wang M, et al: Circular RNAs in body fluids as cancer biomarkers: The new frontier of liquid biopsies. Mol Cancer. 20:132021. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Sun L, Huang MT, Quan Y, Jiang T, Miao Z and Zhang Q: Regulatory circular RNAs in viral diseases: applications in diagnosis and therapy. RNA Biol. 20:847–858. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li MZ, Zhang JN, Ren F, Yin DL, Zhao XH and Liu K: Diagnostic value of circRNA in coronary heart disease: A meta-analysis. Biomark Med. 17:667–677. 2023. View Article : Google Scholar : PubMed/NCBI | |
Fu Y, He S, Li C, Gan X, Wang Y, Zhou Y, Jiang R, Zhang Q, Pan Y, Zhou H, et al: Detailed profiling of m6A modified circRNAs and synergistic effects of circRNA and environmental risk factors for coronary artery disease. Eur J Pharmacol. 951:1757612023. View Article : Google Scholar : PubMed/NCBI | |
He S, Fu Y, Li C, Wang Y, Zhou H, Jiang R, Zhang Q, Jia Q, Chen X and Jia EZ: Interaction between the expression of hsa_circRPRD1A and hsa_circHERPUD2 and classical coronary risk factors promotes the development of coronary artery disease. BMC Med Genomics. 16:1312023. View Article : Google Scholar : PubMed/NCBI | |
Zhong Q, Jin S, Zhang Z, Qian H, Xie Y, Yan P, He W and Zhang L: Identification and verification of circRNA biomarkers for coronary artery disease based on WGCNA and the LASSO algorithm. BMC Cardiovasc Disord. 24:3052024. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Cui J, Li L, Zhu T and Guo Z: Identification of Plasma Exosomes hsa_circ_0001360 and hsa_circ_0000038 as key biomarkers of coronary heart disease. Cardiol Res Pract. 2024:55571432024. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Li X, Gao C, Jian D, Hao P, Rao L and Li M: Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease. Sci Rep. 7:399182017. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Zeng Z, Sun Y, Cai Y, Xu X, Li H and Wu S: Association study of hsa_circ_0001946, hsa-miR-7-5p and PARP1 in coronary atherosclerotic heart disease. Int J Cardiol. 328:1–7. 2021. View Article : Google Scholar | |
Tong X, Zhao X, Dang X, Kou Y and Kou J: circRNA, a novel diagnostic biomarker for coronary heart disease. Front Cardiovasc Med. 10:10706162023. View Article : Google Scholar : PubMed/NCBI | |
Ji WF, Chen JX, He S, Zhou YQ, Hua L, Hou C, Zhang S, Gan XK, Wang YJ, Zhou HX, et al: Characteristics of circular RNAs expression of peripheral blood mononuclear cells in humans with coronary artery disease. Physiol Genomics. 53:349–357. 2021. View Article : Google Scholar : PubMed/NCBI | |
Miao L, Yin RX, Zhang QH, Liao PJ, Wang Y, Nie RJ and Li H: A novel circRNA-miRNA-mRNA network identifies circ-YOD1 as a biomarker for coronary artery disease. Sci Rep. 9:183142019. View Article : Google Scholar : PubMed/NCBI | |
Ward Z, Schmeier S, Pearson J, Cameron VA, Frampton CM, Troughton RW, Doughty RN, Richards AM and Pilbrow AP: Identifying candidate circulating RNA markers for coronary artery disease by deep RNA-Sequencing in human plasma. Cells. 11:31912022. View Article : Google Scholar : PubMed/NCBI | |
Dergunova LV, Vinogradina MA, Filippenkov IB, Limborska SA and Dergunov AD: Circular RNAs variously participate in coronary atherogenesis. Curr Issues Mol Biol. 45:6682–6700. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Xu GE, Spanos M, Li G, Lei Z, Sluijter JPG and Xiao J: Circular RNAs in cardiovascular diseases: Regulation and therapeutic applications. Research (Wash D C). 6:00382023.PubMed/NCBI | |
Goina CA, Goina DM, Farcas SS and Andreescu NI: The role of circular RNA for early diagnosis and improved management of patients with cardiovascular diseases. Int J Mol Sci. 25:29862024. View Article : Google Scholar : PubMed/NCBI | |
Long Q, Lv B, Jiang S and Lin J: The landscape of circular RNAs in cardiovascular diseases. Int J Mol Sci. 24:45712023. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Xu J, Wu Y, Liang B, Yan M, Sun C, Wang D, Hu X, Liu L, Hu W, et al: The potential role and mechanism of circRNA/miRNA axis in cholesterol synthesis. Int J Biol Sci. 19:2879–2896. 2023. View Article : Google Scholar : PubMed/NCBI | |
Neu CT, Gutschner T and Haemmerle M: Post-Transcriptional expression control in platelet biogenesis and function. Int J Mol Sci. 21:76142020. View Article : Google Scholar : PubMed/NCBI | |
Yu R, Yu Q, Li Z, Li J, Yang J, Hu Y, Zheng N, Li X, Song Y, Li J, et al: Transcriptome-wide map of N6-methyladenosine (m6A) profiling in coronary artery disease (CAD) with clopidogrel resistance. Clin Epigenetics. 15:1942023. View Article : Google Scholar : PubMed/NCBI | |
Zou Y, Wang Y, Yao Y, Wu Y, Lv C and Yin T: Platelet-derived circFAM13B associated with anti-platelet responsiveness of ticagrelor in patients with acute coronary syndrome. Thromb J. 22:532024. View Article : Google Scholar : PubMed/NCBI |