An emerging double‑edged sword role of ferroptosis in cardiovascular disease (Review)
- Authors:
- Sirun Qin
- Can Zhu
- Chenyang Chen
- Zhe Sheng
- Yu Cao
-
Affiliations: Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China, Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China - Published online on: November 11, 2024 https://doi.org/10.3892/ijmm.2024.5457
- Article Number: 16
-
Copyright: © Qin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, et al: Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation. 141:e139–e596. 2020. View Article : Google Scholar : PubMed/NCBI | |
Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, et al: Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol. 76:2982–3021. 2020. View Article : Google Scholar : PubMed/NCBI | |
Del Re DP, Amgalan D, Linkermann A, Liu Q and Kitsis RN: Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Physiol Rev. 99:1765–1817. 2019. View Article : Google Scholar : PubMed/NCBI | |
Reis AH: From Assessing Risk Factors to Understanding, Preventing, and Treating Cardiovascular Diseases: An urgent journey. Discov Med. 34:199–204. 2022. | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB and Jiang X: Role of Mitochondria in Ferroptosis. Mol Cell. 73:354–363.e3. 2019. View Article : Google Scholar : | |
Powell LW, Seckington RC and Deugnier Y: Haemochromatosis. Lancet. 388:706–716. 2016. View Article : Google Scholar : PubMed/NCBI | |
Park E and Chung SW: ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis. 10:8222019. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Wang B, Zhu X, Hu J, Sun J, Xuan J and Ge Z: Human umbilical cord blood-derived MSCs exosome attenuate myocardial injury by inhibiting ferroptosis in acute myocardial infarction mice. Cell Biol Toxicol. 37:51–64. 2021. View Article : Google Scholar | |
Li W, Li W, Leng Y, Xiong Y and Xia Z: Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress. DNA Cell Biol. 39:210–225. 2020. View Article : Google Scholar | |
Gaschler MM and Stockwell BR: Lipid peroxidation in cell death. Biochem Biophys Res Commun. 482:419–425. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al: Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell. 171:273–285. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stoyanovsky DA, Tyurina YY, Shrivastava I, Bahar I, Tyurin VA, Protchenko O, Jadhav S, Bolevich SB, Kozlov AV, Vladimirov YA, et al: Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction? Free Radic Biol Med. 133:153–161. 2019. View Article : Google Scholar : | |
Lin Z, Liu J, Kang R, Yang M and Tang D: Lipid Metabolism in Ferroptosis. Adv Biol (Weinh). 5:e21003962021. View Article : Google Scholar : PubMed/NCBI | |
Conrad M and Pratt DA: The chemical basis of ferroptosis. Nat Chem Biol. 15:1137–1147. 2019. View Article : Google Scholar : PubMed/NCBI | |
Naoe S, Tsugawa H, Takahashi M, Ikeda K and Arita M: Characterization of lipid profiles after dietary intake of polyunsaturated fatty acids using integrated untargeted and targeted lipidomics. Metabolites. 9:2412019. View Article : Google Scholar : PubMed/NCBI | |
Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 13:81–90. 2017. View Article : Google Scholar | |
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : | |
Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian D, Liu D, Zhang F, Ning S, Yao J and Tian X: Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ. 26:2284–2299. 2019. View Article : Google Scholar : PubMed/NCBI | |
Orafaie A, Mousavian M, Orafai H and Sadeghian H: An overview of lipoxygenase inhibitors with approach of in vivo studies. Prostaglandins Other Lipid Mediat. 148:1064112020. View Article : Google Scholar : PubMed/NCBI | |
Smith LM, Aitken HM and Coote ML: The Fate of the Peroxyl Radical in Autoxidation: How does polymer degradation really occur? Acc Chem Res. 51:2006–2013. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ilari S, Giancotti LA, Lauro F, Gliozzi M, Malafoglia V, Palma E, Tafani M, Russo MA, Tomino C, Fini M, et al: Natural antioxidant control of neuropathic pain-exploring the role of mitochondrial SIRT3 pathway. Antioxidants (Basel). 9:11032020. View Article : Google Scholar : PubMed/NCBI | |
Fan X, Li A, Yan Z, Geng X, Lian L, Lv H, Gao D and Zhang J: From iron metabolism to ferroptosis: Pathologic changes in coronary heart disease. Oxid Med Cell Longev. 2022:62918892022. View Article : Google Scholar : PubMed/NCBI | |
Hu H, Chen Y, Jing L, Zhai C and Shen L: The Link Between Ferroptosis and Cardiovascular Diseases: A novel target for treatment. Front Cardiovasc Med. 8:7109632021. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Yan Y, Qi C, Liu J, Li L and Wang J: The Role of Ferroptosis in Cardiovascular Disease and Its Therapeutic Significance. Front Cardiovasc Med. 8:7332292021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Xin L, Xiang M, Shang C, Wang Y, Wang Y, Cui X and Lu Y: The molecular mechanisms of ferroptosis and its role in cardiovascular disease. Biomed Pharmacother. 145:1124232022. View Article : Google Scholar | |
Yu Y, Jiang L, Wang H, Shen Z, Cheng Q, Zhang P, Wang J, Wu Q, Fang X, Duan L, et al: Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis. Blood. 136:726–739. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mancias JD, Wang X, Gygi SP, Harper JW and Kimmelman AC: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 509:105–109. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Ardehali H, Min J and Wang F: The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol. 20:7–23. 2023. View Article : Google Scholar | |
Yuan H, Li X, Zhang X, Kang R and Tang D: CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem Biophys Res Commun. 478:838–844. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim EH, Shin D, Lee J, Jung AR and Roh JL: CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer. Cancer Lett. 432:180–190. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sies H: Glutathione and its role in cellular functions. Free Radic Biol Med. 27:916–921. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wu G, Fang YZ, Yang S, Lupton JR and Turner ND: Glutathione Metabolism and Its Implications for Health. J Nutr. 134:489–492. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pompella A, Visvikis A, Paolicchi A, Tata VD and Casini AF: The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol. 66:1499–1503. 2003. View Article : Google Scholar : PubMed/NCBI | |
Paul BD, Sbodio JI and Snyder SH: Cysteine Metabolism in Neuronal Redox Homeostasis. Trends Pharmacol Sci. 39:513–524. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ursini F and Maiorino M: Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI | |
Desideri E, Ciccarone F and Ciriolo MR: Targeting glutathione metabolism: Partner in crime in anticancer therapy. Nutrients. 11:19262019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhao Y, Wang H, Zhang C, Wang M, Yang Y, Xu X and Hu Z: Histone demethylase KDM3B protects against ferroptosis by upregulating SLC7A11. FEBS Open Bio. 10:637–643. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Zhang C, Hu W and Feng Z: Tumor suppressor p53 and metabolism. J Mol Cell Biol. 11:284–292. 2019. View Article : Google Scholar : | |
Kastenhuber ER and Lowe SW: Putting p53 in Context. Cell. 170:1062–1078. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zille M, Karuppagounder SS, Chen Y, Gough PJ, Bertin J, Finger J, Milner TA, Jonas EA and Ratan RR: Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis. Stroke. 48:1033–1043. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R and Tang D: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 63:173–184. 2016. View Article : Google Scholar | |
Dodson M, Castro-Portuguez R and Zhang DD: NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 23:1011072019. View Article : Google Scholar : PubMed/NCBI | |
Kang R, Kroemer G and Tang D: The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med. 133:162–168. 2019. View Article : Google Scholar | |
Lipper CH, Stofleth JT, Bai F, Sohn YS, Roy S, Mittler R, Nechushtai R, Onuchic JN and Jennings PA: Redox-dependent gating of VDAC by mitoNEET. Proc Natl Acad Sci USA. 116:19924–19929. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rostovtseva TK, Tan W and Colombini M: On the Role of VDAC in Apoptosis: Fact and Fiction. J Bioenerg Biomembr. 37:129–142. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fang D and Maldonado EN: VDAC regulation: A mitochondrial target to stop cell proliferation. Adv Cancer Res. 138:41–69. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mazure NM: VDAC in cancer. Biochim Biophys Acta Bioenerg. 1858:665–673. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lemasters JJ: Evolution of Voltage-Dependent Anion Channel Function: From molecular sieve to governator to actuator of ferroptosis. Front Oncol. 7:3032017. View Article : Google Scholar | |
Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, Wolpaw AJ, Smukste I, Peltier JM, Boniface JJ, et al: RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 447:865–868. 2007. View Article : Google Scholar | |
DeHart DN, Fang D, Heslop K, Li L, Lemasters JJ and Maldonado EN: Opening of voltage dependent anion channels promotes reactive oxygen species generation, mitochondrial dysfunction and cell death in cancer cells. Biochem Pharmacol. 148:155–162. 2018. View Article : Google Scholar : PubMed/NCBI | |
Iurlaro R and Muñoz-Pinedo C: Cell death induced by endoplasmic reticulum stress. FEBS J. 283:2640–2652. 2016. View Article : Google Scholar | |
Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS and Stockwell BR: Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 3:e025232014. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Mi Y, Zhang X, Ma Q, Song Y, Zhang L, Wang D, Xing J, Hou B, Li H, et al: Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells. J Exp Clin Cancer Res. 38:4022019. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Guo Q, Zhang L, Zhuan Q, Meng L, Fu X and Hou Y: Dihydroartemisinin exposure impairs porcine ovarian granulosa cells by activating PERK-eIF2α-ATF4 through endoplasmic reticulum stress. Toxicol Appl Pharmacol. 403:1151592020. View Article : Google Scholar | |
Rozpedek W, Pytel D, Mucha B, Leszczynska H, Diehl JA and Majsterek I: The Role of the PERK/eIF2α/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress. Curr Mol Med. 16:533–544. 2016. View Article : Google Scholar | |
Yan L, Luo H, Li X and Li Y: d-Pinitol protects against endoplasmic reticulum stress and apoptosis in hepatic ischemia-reperfusion injury via modulation of AFT4-CHOP/GRP78 and caspase-3 signaling pathways. Int J Immunopathol Pharmacol. 35:1–15. 2021. View Article : Google Scholar | |
Chen Y, Mi Y and Zhang X: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. J Cell Physiol. 575:688–692. 2019. | |
Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693–698. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shimada K, Skouta R, Kaplan A, Yang WS, Hayano M, Dixon SJ, Brown LM, Valenzuela CA, Wolpaw AJ and Stockwell BR: Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol. 12:497–503. 2016. View Article : Google Scholar : PubMed/NCBI | |
Miriyala S, Thippakorn C, Chaiswing L, Xu Y, Noel T, Tovmasyan A, Batinic-Haberle I, Vander Kooi CW, Chi W, Latif AA, et al: Novel role of 4-hydroxy-2-nonenal in AIFm2-mediated mitochondrial stress signaling. Free Radic Biol Med. 91:68–80. 2016. View Article : Google Scholar : | |
Martinet W, Coornaert I, Puylaert P and De Meyer GRY: Macrophage death as a pharmacological target in atherosclerosis. Front Pharmacol. 10:3062019. View Article : Google Scholar : PubMed/NCBI | |
Xiao L, Luo G, Guo X, Jiang C, Zeng H, Zhou F, Li Y, Yu J and Yao P: Macrophage iron retention aggravates atherosclerosis: Evidence for the role of autocrine formation of hepcidin in plaque macrophages. Biochim Biophys Acta Mol Cell Biol Lipids. 1865:1585312020. View Article : Google Scholar | |
Kiechl S, Willeit J, Egger G, Poewe W and Oberhollenzer F: Body Iron Stores and the Risk of Carotid Atherosclerosis: Prospective results from the Bruneck study. Circulation. 96:3300–3307. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hou JW: Iron-load exacerbates the severity of atherosclerosis via inducing inflammation and enhancing the glycolysis in macrophages. Nutrition. 38:329–334. 2002. | |
Luo EF, Li HX, Qin YH, Qiao Y, Yan GL, Yao YY, Li LQ, Hou JT, Tang CC and Wang D: Role of ferroptosis in the process of diabetes-induced endothelial dysfunction. World J Diabetes. 12:124–137. 2021. View Article : Google Scholar : PubMed/NCBI | |
Park TJ, Park JH, Lee GS, Lee JY, Shin JH, Kim MW, Kim YS, Kim JY, Oh KJ, Han BS, et al: Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes. Cell Death Dis. 10:8352019. View Article : Google Scholar : PubMed/NCBI | |
Baba Y, Higa JK, Shimada BK, Horiuchi KM, Suhara T, Kobayashi M, Woo JD, Aoyagi H, Marh KS, Kitaoka H, et al: Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. Am J Physiol Heart Circ Physiol. 314:H659–H668. 2018. View Article : Google Scholar : | |
Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, Liu Y, Zheng W, Shang H, Zhang J, et al: CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med. 22:175–182. 2016. View Article : Google Scholar : PubMed/NCBI | |
Farmer EE and Mueller MJ: ROS-Mediated Lipid Peroxidation and RES-Activated Signaling. Annu Rev Plant Biol. 64:429–450. 2013. View Article : Google Scholar : PubMed/NCBI | |
Scindia Y PhD, Leeds J MD and Swaminathan S MD: Iron homeostasis in healthy kidney and its role in acute kidney injury. Semin Nephrol. 39:76–84. 2019. View Article : Google Scholar | |
Gao M, Monian P, Quadri N, Ramasamy R and Jiang X: Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 59:298–308. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X, et al: Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA. 116:2672–2680. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tang LJ, Luo XJ, Tu H, Chen H, Xiong XM, Li NS and Peng J: Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion. Naunyn Schmiedebergs Arch Pharmacol. 394:401–410. 2021. View Article : Google Scholar | |
Hess ML and Manson NH: Molecular oxygen: Friend and foe*The role of the oxygen free radical system in the calcium paradox, the oxygen paradox and ischemia/reperfusion injury. J Mol Cell Cardiol. 37:969–985. 1984. View Article : Google Scholar | |
Ghosh AP, Klocke BJ, Ballestas ME and Roth KA: CHOP Potentially Co-Operates with FOXO3a in Neuronal Cells to Regulate PUMA and BIM Expression in Response to ER Stress. PLoS One. 7:e395862012. View Article : Google Scholar : PubMed/NCBI | |
Lee YS, Lee DH, Choudry HA, Bartlett DL and Lee YJ: Ferroptosis-Induced Endoplasmic Reticulum Stress: Cross-talk between Ferroptosis and Apoptosis. Mol Cancer Res. 16:1073–1076. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sampilvanjil A, Karasawa T and Yamada N: Endoplasmic Reticulum Stress and oxidative stress in cell fate decision and human disease. Proc Natl Acad Sci USA. 160:303–318. 2020. | |
Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kühl U, Maisch B, McKenna WJ, et al: Classification of the cardiomyopathies: A position statement from the European Society Of Cardiology Working Group On Myocardial And Pericardial Diseases. Eur Heart J. 29:270–276. 2008. View Article : Google Scholar | |
Hashimoto H, Olson EN and Bassel-Duby R: Therapeutic approaches for cardiac regeneration and repair. Nat Rev Cardiol. 15:585–600. 2018. View Article : Google Scholar : PubMed/NCBI | |
Young RC, Ozols RF and Myers CE: The anthracycline antineoplastic drugs. N Engl J Med. 305:139–153. 1981. View Article : Google Scholar : PubMed/NCBI | |
Singal PK and Iliskovic N: Doxorubicin-induced cardiomyopathy. N Engl J Med. 339:900–905. 1998. View Article : Google Scholar : PubMed/NCBI | |
Tadokoro T, Ikeda M and Ide T: Mitochondrial outer membrane protein FUNDC2 promotes ferroptosis and contributes to doxorubicin-induced cardiomyopathy. Am J Physiol Heart Circ Physiol. 119:e21173961192022. | |
Sun X, Sun P, Zhen D, Xu X, Yang L, Fu D, Wei C, Niu X, Tian J and Li H: Melatonin alleviates doxorubicin-induced mitochondrial oxidative damage and ferroptosis in cardiomyocytes by regulating YAP expression. Toxicol Appl Pharmacol. 437:1159022022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yan S, Liu X, Deng F, Wang P, Yang L, Hu L, Huang K and He J: PRMT4 promotes ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4 pathway. Cell Death Differ. 29:1982–1995. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhuang S, Ma Y, Zeng Y, Lu C, Yang F, Jiang N, Ge J, Ju H, Zhong C, Wang J, et al: METTL14 promotes doxorubicin-induced cardiomyocyte ferroptosis by regulating the KCNQ1OT1-miR-7-5p-TFRC axis. Cell Biol Toxicol. 39:1015–1035. 2023. View Article : Google Scholar | |
Wang B, Wang H, Zhang M, Ji R, Wei J, Xin Y and Jiang X: Radiation-induced myocardial fibrosis: Mechanisms underlying its pathogenesis and therapeutic strategies. J Cell Mol Med. 24:7717–7729. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Wei J, Zheng Q, Meng L, Xin Y, Yin X and Jiang X: Radiation-induced heart disease: A review of classification, mechanism and prevention. Int J Biol Sci. 15:2128–2138. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kuwahara Y, Oikawa T, Ochiai Y, Roudkenar MH and Fukumoto M, Shimura T, Ohtake Y, Ohkubo Y, Mori S, Uchiyama Y and Fukumoto M: Enhancement of autophagy is a potential modality for tumors refractory to radiotherapy. Cell Death Dis. 2:e1772011. View Article : Google Scholar : PubMed/NCBI | |
Jelonek K, Walaszczyk A, Gabryś D, Pietrowska M, Kanthou C and Widłak P: Cardiac endothelial cells isolated from mouse heart-a novel model for radiobiology. Acta Biochim Pol. 58:397–404. 2011. View Article : Google Scholar | |
Taunk NK, Haffty BG, Kostis JB and Goyal S: Radiation-Induced Heart Disease: Pathologic Abnormalities and Putative Mechanisms. Front Oncol. 5:392015. View Article : Google Scholar : PubMed/NCBI | |
Klein D, Steens J, Wiesemann A, Schulz F, Kaschani F, Röck K, Yamaguchi M, Wirsdörfer F, Kaiser M, Fischer JW, et al: Mesenchymal stem cell therapy protects lungs from radiation-induced endothelial cell loss by restoring superoxide dismutase 1 expression. Antioxid Redox Signal. 26:563–582. 2017. View Article : Google Scholar : | |
Liao JK: Linking endothelial dysfunction with endothelial cell activation. Front Oncol. 123:540–541. 2013. | |
Van Der Meeren A, Squiban C, Gourmelon P, Lafont H and Gaugler MH: Differential regulation by IL-4 and IL-10 of radiation-induced IL-6 AND IL-8 production and ICAM-1 expression by human endothelial cells. Cytokine. 11:831–838. 1999. View Article : Google Scholar : PubMed/NCBI | |
Baselet B, Belmans N, Coninx E, Lowe D, Janssen A, Michaux A, Tabury K, Raj K, Quintens R, Benotmane MA, et al: Functional gene analysis reveals cell cycle changes and inflammation in endothelial cells irradiated with a single X-ray dose. Front Pharmacol. 8:2132017. View Article : Google Scholar : PubMed/NCBI | |
Mortezaee K, Goradel NH, Amini P, Shabeeb D, Musa AE, Najafi M and Farhood B: NADPH oxidase as a target for modulation of radiation response; Implications to carcinogenesis and radiotherapy. Curr Mol Pharmacol. 12:50–60. 2019. View Article : Google Scholar | |
Lei G, Zhang Y, Koppula P, Liu X, Zhang J, Lin SH, Ajani JA, Xiao Q, Liao Z, Wang H and Gan B: The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 30:146–162. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M, Superti-Furga G and Stockwell BR: Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol. 10:1604–1609. 2015. View Article : Google Scholar : PubMed/NCBI | |
Philipp J, Le Gleut R, Toerne CV, Subedi P, Azimzadeh O, Atkinson MJ and Tapio S: Radiation response of human cardiac endothelial cells reveals a central role of the cGAS-STING pathway in the development of inflammation. Proteomes. 8:302020. View Article : Google Scholar : PubMed/NCBI | |
Heidenreich PA, Hancock SL, Lee BK, Mariscal CS and Schnittger I: Asymptomatic cardiac disease following mediastinal irradiation. J Am Coll Cardiol. 42:743–749. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gong CW, Yuan MM, Qiu BQ, Wang LJ, Zou HX, Hu T, Lai SQ and Liu JC: Identification and Validation of Ferroptosis-Related Biomarkers in Septic Cardiomyopathy via Bioinformatics Analysis. Front Genet. 13:8275592022. View Article : Google Scholar : PubMed/NCBI | |
Kong C, Ni X, Wang Y, Zhang A, Zhang Y, Lin F, Li S, Lv Y, Zhu J, Yao X, et al: ICA69 aggravates ferroptosis causing septic cardiac dysfunction via STING trafficking. Cell Death Discov. 8:1872022. View Article : Google Scholar : PubMed/NCBI | |
Raman B, Bluemke DA, Lüscher TF and Neubauer S: Long COVID: Post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J. 43:1157–1172. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Xu E, Bowe B and Al-Aly Z: Long-term cardiovascular outcomes of COVID-19. Nat Med. 28:583–590. 2022. View Article : Google Scholar : PubMed/NCBI | |
Katsoularis I, Fonseca-Rodríguez O, Farrington P, Lindmark K and Fors Connolly AM: Risk of acute myocardial infarction and ischaemic stroke following COVID-19 in Sweden: A self-controlled case series and matched cohort study. Lancet. 398:599–607. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Bowe B, Maddukuri G and Al-Aly Z: Comparative evaluation of clinical manifestations and risk of death in patients admitted to hospital with covid-19 and seasonal influenza: Cohort study. BMJ. 371:m46772020. View Article : Google Scholar : PubMed/NCBI | |
Merad M, Blish CA, Sallusto F and Iwasaki A: The immunology and immunopathology of COVID-19. Science. 375:1122–1127. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Huang J, Sun Y, Stubbs D, He J, Li W, Wang F, Liu Z, Ruzicka JA, Taylor EW, et al: SARS-CoV-2 suppresses mRNA expression of selenoproteins associated with ferroptosis, endoplasmic reticulum stress and DNA synthesis. Food Chem Toxicol. 153:1122862021. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Du J, Yang S, Zheng B, Shen J, Huang J, Cao L, Huang S, Liu X, Guo L, et al: SARS-CoV-2 ORF3a sensitizes cells to ferroptosis via Keap1-NRF2 axis. Redox Biol. 63:1027522023. View Article : Google Scholar : PubMed/NCBI | |
Bai T, Li M and Liu Y: Acyl-coenzyme a synthetase long-chain family member 4 is involved in viral replication organelle formation and facilitates virus replication via ferroptosis. Free Radic Biol Med. 63:194–209. 2020. | |
Han Y, Zhu J, Yang L, Nilsson-Payant BE, Hurtado R, Lacko LA, Sun X, Gade AR, Higgins CA, Sisso WJ, et al: SARS-CoV-2 infection induces ferroptosis of sinoatrial node pacemaker cells. Circ Res. 130:963–977. 2022. View Article : Google Scholar : PubMed/NCBI | |
Habib HM, Ibrahim S, Zaim A and Ibrahim WH: The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. Biomed Pharmacother. 136:1112282021. View Article : Google Scholar : PubMed/NCBI | |
Jia G, DeMarco VG and Sowers JR: Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol. 12:144–153. 2016. View Article : Google Scholar : | |
Ritchie RH and Abel ED: Basic mechanisms of diabetic heart disease. Circ Res. 126:1501–1525. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Sun W, Zhu T, Shi S, Zhang J, Wang J, Gao F, Ou Q, Jin C, Li J, et al: Glia maturation factor-β induces ferroptosis by impairing chaperone-mediated autophagic degradation of ACSL4 in early diabetic retinopathy. Redox Biol. 52:1022922022. View Article : Google Scholar | |
Chen L, Yin Z, Qin X, Zhu X, Chen X, Ding G, Sun D, Wu NN, Fei J, Bi Y, et al: CD74 ablation rescues type 2 diabetes mellitus-induced cardiac remodeling and contractile dysfunction through pyroptosis-evoked regulation of ferroptosis. Pharmacol Res. 176:1060862022. View Article : Google Scholar : PubMed/NCBI | |
Wei Z, Shaohuan Q, Pinfang K and Chao S: Curcumin attenuates ferroptosis-induced myocardial injury in diabetic cardiomyopathy through the Nrf2 pathway. Cardiovasc Ther. 2022:31597172022. View Article : Google Scholar : PubMed/NCBI | |
Kwon MY, Park E, Lee SJ and Chung SW: Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget. 6:24393–24403. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chang LC, Chiang SK, Chen SE, Yu YL, Chou RH and Chang WC: Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis. Cancer Lett. 416:124–137. 2018. View Article : Google Scholar | |
Wang X, Chen X, Zhou W, Men H, Bao T, Sun Y, Wang Q, Tan Y, Keller BB, Tong Q, et al: Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways. Acta Pharm Sin B. 12:708–722. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Tang J, Song J, Xie M, Liu Y, Dong Z, Liu X, Li X, Zhang M, Chen Y, et al: Elabela alleviates ferroptosis, myocardial remodeling, fibrosis and heart dysfunction in hypertensive mice by modulating the IL-6/STAT3/GPX4 signaling. Free Radic Biol Med. 181:130–142. 2022. View Article : Google Scholar : PubMed/NCBI | |
Menon AV, Liu J, Tsai HP, Zeng L, Yang S, Asnani A and Kim J: Excess heme upregulates heme oxygenase 1 and promotes cardiac ferroptosis in mice with sickle cell disease. Blood. 139:936–941. 2022. View Article : Google Scholar : | |
Rozwadowska K, Raczak G, Sikorska K, Fijałkowski M, Kozłowski D and Daniłowicz-Szymanowicz L: Influence of hereditary haemochromatosis on left ventricular wall thickness: Does iron overload exacerbate cardiac hypertrophy? Folia Morphol (Warsz). 78:746–753. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sukumaran A, Chang J, Han M, Mintri S, Khaw BA and Kim J: Iron overload exacerbates age-associated cardiac hypertrophy in a mouse model of hemochromatosis. Sci Rep. 7:57562017. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Cai Z, Wang H, Han D, Cheng Q, Zhang P, Gao F, Yu Y, Song Z, Wu Q, et al: Loss of Cardiac Ferritin H Facilitates Cardiomyopathy via Slc7a11-Mediated Ferroptosis. Circ Res. 127:486–501. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zheng C, Gao Z, Chen H, Li K, Wang L, Zheng Y, Li C, Zhang H, Gong M, et al: SLC7A11/xCT prevents cardiac hypertrophy by inhibiting ferroptosis. Cardiovasc Drugs Ther. 36:437–447. 2022. View Article : Google Scholar | |
Papayannopoulos V: Methylation-dependent transcriptional repression of RUNX3 by KCNQ1OT1 regulates mouse cardiac microvascular endothelial cell viability and inflammatory response following myocardial infarction. Exp Mol Med. 53:401–426. 2019. | |
Shi P, Song C, Qi H, Ren J, Ren P, Wu J, Xie Y, Zhang M, Sun H and Cao Y: Up-regulation of IRF3 is required for docosahexaenoic acid suppressing ferroptosis of cardiac microvascular endothelial cells in cardiac hypertrophy rat. J Nutr Biochem. 104:1089722022. View Article : Google Scholar : PubMed/NCBI | |
Tang M, Huang Z, Luo X, Liu M, Wang L, Qi Z, Huang S, Zhong J, Chen JX, Li L, et al: Ferritinophagy activation and sideroflexin1-dependent mitochondria iron overload is involved in apelin-13-induced cardiomyocytes hypertrophy. Free Radical Biol Med. 134:445–457. 2019. View Article : Google Scholar | |
Chen X, Xu S, Zhao C and Liu B: Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure. Biochem Biophys Res Commun. 516:37–43. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bertoli SR, Marques VB, Rossi EM, Krause M, Carneiro MTWD, Simões MR and Dos Santos L: Chronic iron overload induces vascular dysfunction in resistance pulmonary arteries associated with right ventricular remodeling in rats. Toxicol Lett. 295:296–306. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ciarambino T, Menna G, Sansone G and Giordano M: Cardiomyopathies: An overview. Int J Mol Sci. 22:77222021. View Article : Google Scholar : PubMed/NCBI | |
Reichart D, Magnussen C, Zeller T and Blankenberg S: Dilated cardiomyopathy: From epidemiologic to genetic phenotypes. J Intern Med. 286:362–372. 2019. View Article : Google Scholar : PubMed/NCBI | |
Eldemire R, Mestroni L and Taylor MRG: Genetics of Dilated Cardiomyopathy. Annu Rev Med. 75:417–426. 2024. View Article : Google Scholar : | |
Kadhi A, Mohammed F and Nemer G: The Genetic Pathways Underlying Immunotherapy in Dilated Cardiomyopathy. Front Cardiovasc Med. 8:6132952022. View Article : Google Scholar | |
Li D, Pi W, Sun Z, Liu X and Jiang J: Ferroptosis and its role in cardiomyopathy. Biomed Pharmacother. 153:1132792022. View Article : Google Scholar : PubMed/NCBI | |
Al-Adhami A, Avtaar Singh SS, De SD, Singh R, Panjrath G, Shah A, Dalzell JR, Schroder J and Al-Attar N: Primary graft dysfunction after heart transplantation-unravelling the enigma. Curr Probl Cardiol. 47:1009412022. View Article : Google Scholar | |
Gong CW, Yuan MM and Qiu BQ: Sterile inflammation in thoracic transplantation. Molecular Cell. 78:581–601. 2021. View Article : Google Scholar | |
Li W, Feng G, Gauthier JM, Lokshina I, Higashikubo R, Evans S, Liu X, Hassan A, Tanaka S, Cicka M, et al: Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J Clin Invest. 129:2293–2304. 2019. View Article : Google Scholar : PubMed/NCBI | |
Green DR: The coming decade of cell death research: Five Riddles. Cell. 177:1094–1107. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shi L, Liu Y, Li M and Luo Z: Emerging roles of ferroptosis in the tumor immune landscape: from danger signals to anti-tumor immunity. FEBS J. 289:3655–3665. 2022. View Article : Google Scholar | |
Mallah SI, Atallah B, Moustafa F, Naguib M, El Hajj S, Bader F and Mehra MR: Evidence-based pharmacotherapy for prevention and management of cardiac allograft vasculopathy. Prog Cardiovasc Dis. 63:194–209. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jin JL, Zhang HW, Cao YX, Liu HH, Hua Q, Li YF, Zhang Y, Wu NQ, Zhu CG, Xu RX, et al: Association of small dense low-density lipoprotein with cardiovascular outcome in patients with coronary artery disease and diabetes: A prospective, observational cohort study. Cardiovasc Diabetol. 19:452020. View Article : Google Scholar : PubMed/NCBI | |
Li L, Wang H, Zhang J, Chen X, Zhang Z and Li Q: Effect of endothelial progenitor cell-derived extracellular vesicles on endothelial cell ferroptosis and atherosclerotic vascular endothelial injury. Cell Death Discov. 7:2352021. View Article : Google Scholar : PubMed/NCBI | |
McNerney ME, Lee KM, Zhou P, Molinero L, Mashayekhi M, Guzior D, Sattar H, Kuppireddi S, Wang CR, Kumar V and Alegre ML: Role of natural killer cell subsets in cardiac allograft rejection. Am J Transplant. 6:505–513. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, et al: CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 569:270–274. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kinsella A, Rao V, Fan CP, Manlhiot C, Stehlik J, Ross H and Alba AC: Post-transplant survival in adult congenital heart disease patients as compared to dilated and ischemic cardiomyopathy patients; an analysis of the thoracic ISHLT registry. Clin Transplant. 34:2020. View Article : Google Scholar : PubMed/NCBI | |
Aldouri MA, Wonke B, Hoffbrand AV, Flynn DM, Ward SE, Agnew JE and Hilson AJ: High incidence of cardiomyopathy in beta-thalassaemia patients receiving regular transfusion and iron chelation: Reversal by intensified chelation. Acta Haematol. 84:113–117. 1990. View Article : Google Scholar : PubMed/NCBI | |
Liu P and Olivieri N: Iron overload cardiomyopathies: New insights into an old disease. Cardiovasc Drug Ther. 8:101–110. 1994. View Article : Google Scholar | |
Engle MA, M Erlandson M and Smith CH: Late cardiac complications of chronic, severe, refractory anemia with hemochromatosis. Circulation. 30:698–705. 1964. View Article : Google Scholar : PubMed/NCBI | |
Quinlan GJ, Evans TW and Gutteridge JM: Iron and the redox status of the lungs. Free Radic Biol Med. 33:1306–1313. 2002. View Article : Google Scholar : PubMed/NCBI | |
Shvartsman M, Fibach E and Cabantchik ZI: Transferrin-iron routing to the cytosol and mitochondria as studied by live and real-time fluorescence. Biochem J. 429:185–193. 2010. View Article : Google Scholar : PubMed/NCBI | |
Oudit GY, Sun H, Trivieri MG, Koch SE, Dawood F, Ackerley C, Yazdanpanah M, Wilson GJ, Schwartz A, Liu PP and Backx PH: L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat Med. 9:1187–1194. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tsushima RG, Wickenden AD, Bouchard RA, Oudit GY, Liu PP and Backx PH: Modulation of iron uptake in heart by L-Type Ca2+ channel modifiers. Circ Res. 84:1302–1309. 1999. View Article : Google Scholar : PubMed/NCBI | |
Das SK, Patel VB, Basu R, Wang W, DesAulniers J, Kassiri Z and Oudit GY: Females are protected from iron-overload cardiomyopathy independent of iron metabolism: Key role of oxidative stress. J Am Heart Assoc. 6:e0034562017. View Article : Google Scholar : PubMed/NCBI | |
Brewer C, Otto-Duessel M, Wood RI and Wood JC: Sex differences and steroid modulation of cardiac iron in a mouse model of iron overload. Transl Res. 163:151–159. 2014. View Article : Google Scholar : | |
Zhang H, Zhabyeyev P, Wang S and Oudit GY: Role of iron metabolism in heart failure: From iron deficiency to iron overload. Biochim Biophys Acta Mol Basis Dis. 1865:1925–1937. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Si L, Bian J, Pan C, Guo W, Qin P, Zhu W, Xia Y, Zhang Q and Wei K: Adipose tissue macrophage-derived exosomes induce ferroptosis via glutathione synthesis inhibition by targeting SLC7A11 in obesity-induced cardiac injury. Free Radic Biol Med. 182:232–245. 2022. View Article : Google Scholar : PubMed/NCBI | |
Nguyen NT, Nguyen TT, Da Ly D, Xia JB, Qi XF, Lee IK, Cha SK and Park KS: Oxidative stress by Ca2+ overload is critical for phosphate-induced vascular calcification. Am J Physiol Heart Circ Physiol. 319:H1302–H1312. 2020. View Article : Google Scholar | |
Akahori H, Tsujino T, Naito Y, Matsumoto M, Lee-Kawabata M, Ohyanagi M, Mitsuno M, Miyamoto Y, Daimon T, Hao H, et al: Intraleaflet haemorrhage is associated with rapid progression of degenerative aortic valve stenosis. Eur Heart J. 32:888–896. 2011. View Article : Google Scholar : PubMed/NCBI | |
Laguna-Fernandez A, Carracedo M, Jeanson G, Nagy E, Eriksson P, Caligiuri G, Franco-Cereceda A and Bäck M: Iron alters valvular interstitial cell function and is associated with calcification in aortic stenosis. Eur Heart J. 37:3532–3535. 2016. View Article : Google Scholar : PubMed/NCBI | |
Morvan M, Arangalage D, Franck G, Perez F, Cattan-Levy L, Codogno I, Jacob-Lenet MP, Deschildre C, Choqueux C, Even G, et al: Relationship of iron deposition to calcium deposition in human aortic valve leaflets. J Am Coll Cardiol. 73:1043–1054. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Lin H, Wang H, Pang J and Zhou Y: Fraxetin attenuates ferroptosis in myocardial infarction via AKT/Nrf2/HO-1 signaling. Am J Transl Res. 13:10315–10327. 2021.PubMed/NCBI | |
Liberman M, Bassi E, Martinatti MK, Lario FC, Wosniak J Jr, Pomerantzeff PM and Laurindo FR: Oxidant generation predominates around calcifying foci and enhances progression of aortic valve calcification. Arterioscler Thromb Vasc Biol. 28:463–470. 2008. View Article : Google Scholar | |
Schnabel RB, Yin X, Gona P, Larson MG, Beiser AS, McManus DD, Newton-Cheh C, Lubitz SA, Magnani JW, Ellinor PT, et al: 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: A cohort study. Lancet. 386:154–156. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dai C, Kong B, Qin T, Xiao Z, Fang J, Gong Y, Zhu J, Liu Q, Fu H, Meng H, et al: Inhibition of ferroptosis reduces susceptibility to frequent excessive alcohol consumption-induced atrial fibrillation. Toxicology. 465:1530552022. View Article : Google Scholar | |
Rose RA, Sellan M, Simpson JA, Izaddoustdar F, Cifelli C, Panama BK, Davis M, Zhao D, Markhani M, Murphy GG, et al: Iron overload decreases CaV1.3-dependent L-type Ca2+ currents leading to bradycardia, altered electrical conduction, and atrial fibrillation. Circ Arrhythm Electrophysiol. 4:733–742. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fang J, Kong B, Shuai W, Xiao Z, Dai C, Qin T, Gong Y, Zhu J, Liu Q and Huang H: Ferroportin-mediated ferroptosis involved in new-onset atrial fibrillation with LPS-induced endotoxemia. Front Pharmacol. 913:1746222021. | |
Liu D, Yang M, Yao Y, He S, Wang Y, Cao Z, Chen H, Fu Y, Liu H and Zhao Q: Cardiac fibroblasts promote ferroptosis in atrial fibrillation by secreting Exo-miR-23a-3p Targeting SLC7A11. Oxid Med Cell Longev. 2022:39614952022.PubMed/NCBI | |
Russo V, Rago A, Pannone B, Di Meo F, Papa AA, Mayer MC, Spasiano A, Russo MG, Golino P, Calabrò R and Nigro G: Early electrocardiographic evaluation of atrial fibrillation risk in beta-thalassemia major patients. Int J Hematol. 93:446–451. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lee AS, Jung YJ, Thanh TN, Lee S, Kim W, Kang KP and Park SK: Paricalcitol attenuates lipopolysaccharide-induced myocardial inflammation by regulating the NF-κB signaling pathway. Int J Mol Med. 37:1023–1029. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li N, Wang W, Zhou H, Wu Q, Duan M, Liu C, Wu H, Deng W, Shen D and Tang Q: Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free Radic Biol Med. 160:303–318. 2020. View Article : Google Scholar : PubMed/NCBI | |
Calne DB and Calne JS: Normality and Disease. Can J Neurol Sci. 15:3–4. 1988. View Article : Google Scholar : PubMed/NCBI | |
Kung YA, Chiang HJ and Li ML: Fatal lymphocytic cardiac damage in coronavirus disease 2019 (COVID-19): Autopsy reveals a ferroptosis signature. Clin Transplant. 130:113–117. 1990. | |
Wang YD, Liu ZJ, Ren J and Xiang MX: Pharmacological Therapy of Abdominal Aortic Aneurysm: An Update. Curr Vasc Pharmacol. 16:114–124. 2018. View Article : Google Scholar | |
Wang K, Song Y, Li H, Song J and Wang S: Identification of differentially expressed ferroptosis-related genes in abdominal aortic aneurysm: Bioinformatics analysis. Front Cardiovasc Med. 9:9916132022. View Article : Google Scholar : PubMed/NCBI | |
Golledge J: Abdominal aortic aneurysm: Update on pathogenesis and medical treatments. Nat Rev Cardiol. 16:225–242. 2019. View Article : Google Scholar | |
Quintana RA and Taylor WR: Cellular Mechanisms of Aortic Aneurysm Formation. Circ Res. 124:607–618. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sampilvanjil A, Karasawa T, Yamada N, Komada T, Higashi T, Baatarjav C, Watanabe S, Kamata R, Ohno N and Takahashi M: Cigarette smoke extract induces ferroptosis in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 318:H508–H518. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Liu Y, Wang Z, Zhang L, Xu Y, Li Y, Zhang L, Wang G, Yang S and Xue G: Mesenchymal stem cell-derived extracellular vesicles protect against abdominal aortic aneurysm formation by inhibiting NET-induced ferroptosis. Exp Mol Med. 55:939–951. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhuang J, Zhu H, Cheng Z, Hu X, Yu X, Li J, Liu H, Tang P, Zhang Y, Xiong X and Deng H: PCSK9, a novel immune and ferroptosis related gene in abdominal aortic aneurysm neck. Sci Rep. 13:60542023. View Article : Google Scholar : PubMed/NCBI | |
Li N, Yi X, He Y, Huo B, Chen Y, Zhang Z, Wang Q, Li Y, Zhong X, Li R, et al: Targeting ferroptosis as a novel approach to alleviate aortic dissection. Int J Biol. 18:4118–4134. 2022. View Article : Google Scholar | |
Shi H, Wei J and He C: Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers. Mol Cell. 74:640–650. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Yi X, Huo B, He Y, Guo X, Zhang Z, Zhong X, Feng X, Fang ZM, Zhu XH, et al: BRD4770 functions as a novel ferroptosis inhibitor to protect against aortic dissection. Pharmacol Res. 177:1061222022. View Article : Google Scholar : PubMed/NCBI | |
Kobashigawa J, Zuckermann A, Macdonald P, Leprince P, Esmailian F, Luu M, Mancini D, Patel J, Razi R, Reichenspurner H, et al: Report from a consensus conference on primary graft dysfunction after cardiac transplantation. J Heart Lung Transplant. 33:327–340. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lund LH, Edwards LB, Kucheryavaya AY, Dipchand AI, Benden C, Christie JD, Dobbels F, Kirk R, Rahmel AO, Yusen RD, et al: The Registry of the International Society for Heart and Lung Transplantation: Thirtieth Official Adult Heart Transplant Report-2013; Focus Theme: Age. J Heart Lung Transplant. 32:951–964. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bai T, Li M, Liu Y, Qiao Z and Wang Z: Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic Biol Med. 160:92–102. 2020. View Article : Google Scholar : PubMed/NCBI | |
Neufeld EJ: Oral chelators deferasirox and deferiprone for transfusional iron overload in thalassemia major: New data, new questions. Blood. 107:3436–3441. 2006. View Article : Google Scholar : PubMed/NCBI | |
Philipp S, Cui L, Ludolph B, Kelm M, Schulz R, Cohen MV and Downey JM: Desferoxamine and ethyl-3,4-dihydroxybenzoate protect myocardium by activating NOS and generating mitochondrial ROS. Am J Physiol Heart Circ Physiol. 290:H450–H457. 2006. View Article : Google Scholar | |
Duffy SJ, Biegelsen ES, Holbrook M, Russell JD, Gokce N, Keaney JF Jr and Vita JA: Iron chelation improves endothelial function in patients with coronary artery disease. Circulation. 103:2799–2804. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wong CAC and Leitch HA: Delayed time from RBC transfusion dependence to first cardiac event in lower IPSS risk MDS patients receiving iron chelation therapy. Leuk Res. 83:1061702019. View Article : Google Scholar : PubMed/NCBI | |
Paraskevaidis IA, Iliodromitis EK, Vlahakos D, Tsiapras DP, Nikolaidis A, Marathias A, Michalis A and Kremastinos DT: Deferoxamine infusion during coronary artery bypass grafting ameliorates lipid peroxidation and protects the myocardium against reperfusion injury: Immediate and long-term significance. Eur Heart J. 26:263–270. 2005. View Article : Google Scholar | |
Tadokoro T, Ikeda M, Ide T, Deguchi H, Ikeda S, Okabe K, Ishikita A, Matsushima S, Koumura T, Yamada KI, et al: Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight. 5:e1327472020. View Article : Google Scholar : PubMed/NCBI | |
Zilka O, Shah R, Li B, Friedmann Angeli JP, Griesser M, Conrad M and Pratt DA: On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent Sci. 3:232–243. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 113:E4966–E4975. 2016. View Article : Google Scholar : PubMed/NCBI | |
Watanabe Y and Tatsuno I: Prevention of cardiovascular events with omega-3 polyunsaturated fatty acids and the mechanism involved. J Atheroscler Thromb. 27:183–198. 2020. View Article : Google Scholar : | |
Bibli SI, Hu J, Leisegang MS, Wittig J, Zukunft S, Kapasakalidi A, Fisslthaler B, Tsilimigras D, Zografos G, Filis K, et al: Shear stress regulates cystathionine γ lyase expression to preserve endothelial redox balance and reduce membrane lipid peroxidation. Redox Biol. 28:1013792020. View Article : Google Scholar | |
Chakraborty A, Li Y, Zhang C, Li Y, LeMaire SA and Shen YH: Simvastatin Ameliorates Diabetic Cardiomyopathy by Attenuating Oxidative Stress and Inflammation in Rats. Progress in Cardiovascular Diseases. 84:113–117. 1990. | |
Bai YT, Chang R, Wang H, Xiao FJ, Ge RL and Wang LS: ENPP2 protects cardiomyocytes from erastin-induced ferroptosis. Biochem Biophys Res Commun. 499:44–51. 2018. View Article : Google Scholar : PubMed/NCBI | |
Prasad A, Andrews NP, Padder FA, Husain M and Quyyumi AA: Glutathione reverses endothelial dysfunction and improves nitric oxide bioavailability. J Am Coll Cardiol. 34:507–514. 1999. View Article : Google Scholar : PubMed/NCBI | |
Imai H, Matsuoka M, Kumagai T, Sakamoto T and Koumura T: Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr Top Microbiol Immunol. 403:143–170. 2017.PubMed/NCBI | |
Hinman A, Holst CR, Latham JC, Bruegger JJ, Ulas G, McCusker KP, Amagata A, Davis D, Hoff KG, Kahn-Kirby AH, et al: Vitamin E hydroquinone is an endogenous regulator of ferroptosis via redox control of 15-lipoxygenase. PLoS One. 13:e02013692018. View Article : Google Scholar : PubMed/NCBI | |
Upston JM, Kritharides L and Stocker R: The role of vitamin E in atherosclerosis. Prog Lipid Res. 42:405–422. 2003. View Article : Google Scholar : PubMed/NCBI | |
Steinberg D: Is there a potential therapeutic role for vitamin E or other antioxidants in atherosclerosis? Curr Opin Lipidol. 11:603–607. 2000. View Article : Google Scholar : PubMed/NCBI | |
Cogny A, Paul JL, Soni T, Atger V and Moatti N: Vitamin E: Metabolism and role in atherosclerosis. Ann Biol Clin (Paris). 52:515–522. 1994. | |
Dludla PV, Dias SC, Obonye N, Johnson R, Louw J and Nkambule BB: A Systematic Review on the Protective Effect of N-Acetyl Cysteine Against Diabetes-Associated Cardiovascular Complications. Am J Cardiovasc Drugs. 18:283–298. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bartekova M, Barancik M, Ferenczyova K and Dhalla NS: Beneficial Effects of N-acetylcysteine and N-mercaptopropionylglycine on ischemia reperfusion injury in the heart. Curr Med Chem. 25:355–366. 2018. View Article : Google Scholar | |
Badgley MA, Kremer DM, Maurer HC, DelGiorno KE, Lee HJ, Purohit V, Sagalovskiy IR, Ma A, Kapilian J, Firl CEM, et al: Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science. 368:85–89. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Zhu L, Yuan W, Sun L, Xia Z, Zhang Z and Yao W: Diabetes aggravates myocardial ischaemia reperfusion injury via activating Nox2-related programmed cell death in an AMPK-dependent manner. J Cell Mol Med. 24:6670–6679. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xiao Z, Kong B, Fang J, Qin T, Dai C, Shuai W and Huang H: Ferrostatin-1 alleviates lipopolysaccharide-induced cardiac dysfunction. Bioengineered. 12:9367–9376. 2021. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Madungwe NB, Imam Aliagan AD, Tombo N and Bopassa JC: Liproxstatin-1 protects the mouse myocardium against ischemia/reperfusion injury by decreasing VDAC1 levels and restoring GPX4 levels. Biochem Biophys Res Commun. 520:606–611. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Wang H and Han D: Traditional Chinese medicine for cardiovascular disease. Proc Natl Acad Sci USA. 12:9367–9376. 2021. | |
Li W, Feng G and Gauthier JM: Translating traditional herbal formulas into modern drugs: a network-based analysis of Xiaoyao decoction. Cell Death Differ. 119:1183562020. | |
Ferrara PE, Codazza S, Cerulli S, Maccauro G, Ferriero G and Ronconi G: Physical modalities for the conservative treatment of wrist and hand's tenosynovitis: A systematic review. Semin Arthritis Rheum. 50:1280–1290. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Wang M, Zhou J, Wu D, Ye J, Sun G and Sun X: Saponins in Chinese Herbal Medicine Exerts Protection in Myocardial Ischemia-Reperfusion Injury: Possible mechanism and target analysis. Front Pharmacol. 11:5708672021. View Article : Google Scholar : PubMed/NCBI | |
Chen GQ, Benthani FA, Wu J, Liang D, Bian ZX and Jiang X: Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ. 27:242–254. 2020. View Article : Google Scholar : | |
Wang S, Liu W, Wang J and Bai X: Curculigoside inhibits ferroptosis in ulcerative colitis through the induction of GPX4. Life Sci. 259:1183562020. View Article : Google Scholar : PubMed/NCBI | |
Zhu K, Zhu X, Liu S, Yu J, Wu S and Hei M: Glycyrrhizin attenuates hypoxic-ischemic brain damage by inhibiting ferroptosis and neuroinflammation in neonatal rats via the HMGB1/GPX4 Pathway. Oxid Med Cell Longev. 2022:84385282022. View Article : Google Scholar : PubMed/NCBI | |
Fan Z, Cai L, Wang S, Wang J and Chen B: Baicalin prevents myocardial ischemia/reperfusion injury through inhibiting ACSL4 mediated ferroptosis. Front Pharmacol. 12:6289882021. View Article : Google Scholar : PubMed/NCBI | |
Zeng X, Li J and Li Z: Ginsenoside Rd mitigates myocardial ischemia-reperfusion injury via Nrf2/HO-1 signaling pathway. Int J Clin Exp Med. 8:14497–14504. 2015.PubMed/NCBI | |
Wang D, Chen T and Liu F: Betulinic acid alleviates myocardial hypoxia/reoxygenation injury via inducing Nrf2/HO-1 and inhibiting p38 and JNK pathways. Eur J Pharmacol. 838:53–59. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li T, Tan Y, Ouyang S, He J and Liu L: Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis. Gene. 808:1459682022. View Article : Google Scholar | |
Cao H, Wang P, Li N, Liu D, Ma J, Fan R and Zhou Z: Practice of Comparative Effectiveness Research to Identify Treatment Characteristics of Similar Chinese Patent Medicine for Angina Pectoris. Evid Based Complement Alternat Med. 2017:70627142017. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Fan Z, Gu L, Liu J, Cui Z, Yu B, Kou J and Li F: QiShenYiQi dripping pill alleviates myocardial ischemia-induced ferroptosis via improving mitochondrial dynamical homeostasis and biogenesis. J Ethnopharmacol. 308:1162822023. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Wu B, Zhong B, Lin L, Ding Y, Jin X, Huang Z, Lin M, Wu H and Xu D: Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)/System xc-/glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis. Bioengineered. 12:10924–10934. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Shi H, Zhang F, Xue H and Han Q: Hederagenin protects against myocardial ischemia-reperfusion injury via attenuating ALOX5-mediated ferroptosis. Naunyn-Schmiedeberg's Arch Pharmacol. 397:3411–3424. 2024. View Article : Google Scholar | |
D'Onofrio N, Servillo L and Balestrieri ML: SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection. Antioxid Redox Signal. 28:711–732. 2018. View Article : Google Scholar : | |
Kane AE and Sinclair DA: Sirtuins and NAD(+)in the development and treatment of metabolic and cardiovascular diseases. Circ Res. 123:868–885. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li D, Liu X, Pi W, Zhang Y, Yu L, Xu C, Sun Z and Jiang J: Fisetin Attenuates doxorubicin-induced cardiomyopathy in vivo and in vitro by inhibiting ferroptosis through SIRT1/Nrf2 signaling pathway activation. Front Pharmacol. 12:8084802022. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Zhu J, Wu G, Hu Z, Ying P, Bao Z, Ding Z and Tan X: 6-Gingerol alleviates ferroptosis and inflammation of diabetic cardiomyopathy via the Nrf2/HO-1 pathway. Oxid Med Cell Longev. Dec 31–2022.Epub ahead of print. View Article : Google Scholar | |
Zhou YX, Zhang H and Peng C: Puerarin: A Review of Pharmacological Effects. Phytother Res. 28:961–975. 2014. View Article : Google Scholar | |
Liu B, Zhao C, Li H, Chen X, Ding Y and Xu S: Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis. Biochem Biophys Res Commun. 497:233–240. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Zhang Y, Gao Y, Chai X, Pi R, Chan G and Hu Y: Current understanding of iron homeostasis. Gene. 106:1559S–1566S. 2017. | |
Fang X, An P, Wang H, Wang X, Shen X, Li X, Min J, Liu S and Wang F: Dietary intake of heme iron and risk of cardiovascular disease: A dose-response meta-analysis of prospective cohort studies. Nutr Metab Cardiovasc Dis. 25:24–35. 2015. View Article : Google Scholar | |
Han M, Guan L and Ren Y: Physical modalities for the conservative treatment of wrist and hand's tenosynovitis: A systematic review. Asia Pac J Clin Nutr. 29:309–321. 2020. | |
Zhao L, Shi H and Zhang F: Deficiency in Beclin1 attenuates alcohol-induced cardiac dysfunction via inhibition of ferroptosis. Front Pharmacol. 2021:1–15. 2021. | |
Bao X, Luo X, Bai X, Lv Y, Weng X, Zhang S, Leng Y, Huang J, Dai X, Wang Y, et al: Cigarette tar mediates macrophage ferroptosis in atherosclerosis through the hepcidin/FPN/SLC7A11 signaling pathway. Free Radic Biol Med. 201:76–88. 2023. View Article : Google Scholar : PubMed/NCBI | |
Violi F, Nocella C, Loffredo L, Carnevale R and Pignatelli P: Interventional study with vitamin E in cardiovascular disease and meta-analysis. Free Radic Biol Med. 178:26–41. 2022. View Article : Google Scholar | |
Tang LJ, Zhou YJ, Xiong XM, Li NS, Zhang JJ, Luo XJ and Peng J: Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion. Free Radic Biol Med. 162:339–352. 2021. View Article : Google Scholar | |
Wang C, Yuan W, Hu A, Lin J, Xia Z, Yang CF, Li Y and Zhang Z: Dexmedetomidine alleviated sepsis-induced myocardial ferroptosis and septic heart injury. Mol Med Rep. 22:175–184. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ning D, Yang X, Wang T, Jiang Q, Yu J and Wang D: Atorvastatin treatment ameliorates cardiac function and remodeling induced by isoproterenol attack through mitigation of ferroptosis. Biochem Biophys Res Commun. 574:39–47. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mishima E, Sato E, Ito J, Yamada KI, Suzuki C, Oikawa Y, Matsuhashi T, Kikuchi K, Toyohara T, Suzuki T, et al: Drugs repurposed as antiferroptosis agents suppress organ damage, including AKI, by functioning as lipid peroxyl radical scavengers. J Am Soc Nephrol. 31:280–296. 2020. View Article : Google Scholar : | |
Conlon M, Poltorack CD, Forcina GC, Armenta DA, Mallais M, Perez MA, Wells A, Kahanu A, Magtanong L, Watts JL, et al: A compendium of kinetic modulatory profiles identifies ferroptosis regulators. Nat Chem Biol. 17:665–674. 2021. View Article : Google Scholar : PubMed/NCBI | |
Oettl K, Greilberger J, Zangger K, Haslinger E, Reibnegger G and Jürgens G: Radical-scavenging and iron-chelating properties of carvedilol, an antihypertensive drug with antioxidative activity. Biochem Pharmacol. 62:241–248. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hong M, Rong J, Tao X and Xu Y: The emerging role of ferroptosis in cardiovascular diseases. Front Pharmacol. 13:8220832022. View Article : Google Scholar : PubMed/NCBI | |
Fang W, Xie S and Deng W: Ferroptosis mechanisms and regulations in cardiovascular diseases in the past, present, and future. Cell Biol Toxicol. 40:172024. View Article : Google Scholar : PubMed/NCBI |