Adrenic acid: A promising biomarker and therapeutic target (Review)
- Authors:
- Ze Wang
- Haoyang Gao
- Xiaotong Ma
- Danlin Zhu
- Linlin Zhao
- Weihua Xiao
-
Affiliations: Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China - Published online on: November 19, 2024 https://doi.org/10.3892/ijmm.2024.5461
- Article Number: 20
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Zhao J, Nishiumi S, Tagawa R, Yano Y, Inoue J, Hoshi N, Yoshida M and Kodama Y: Adrenic acid induces oxidative stress in hepatocytes. Biochem Biophys Res Commun. 532:620–625. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kopf PG, Zhang DX, Gauthier KM, Nithipatikom K, Yi XY, Falck JR and Campbell WB: Adrenic acid metabolites as endogenous endothelium-derived and zona glomerulosa-derived hyperpolarizing factors. Hypertension. 55:547–554. 2010. View Article : Google Scholar | |
Guijas C, Astudillo AM, Gil-de-Gómez L, Rubio JM, Balboa MA and Balsinde J: Phospholipid sources for adrenic acid mobilization in RAW 264.7 macrophages. Comparison with arachidonic acid. Biochim Biophys Acta. 1821:1386–1393. 2012. View Article : Google Scholar : PubMed/NCBI | |
Massey KA and Nicolaou A: Lipidomics of polyunsaturated-fatty-acid-derived oxygenated metabolites. Biochem Soc Trans. 39:1240–1246. 2011. View Article : Google Scholar : PubMed/NCBI | |
Horas H, Nababan S, Nishiumi S, Kawano Y, Kobayashi T, Yoshida M and Azuma T: Adrenic acid as an inflammation enhancer in non-alcoholic fatty liver disease. Arch Biochem Biophys. 623-624:64–75. 2017. View Article : Google Scholar | |
Delgado GE, März W, Lorkowski S, von Schacky C and Kleber ME: Omega-6 fatty acids: Opposing associations with risk-the ludwigshafen risk and cardiovascular health study. J Clin Lipidol. 11:1082–1090.e14. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jarrar MH, Baranova A, Collantes R, Ranard B, Stepanova M, Bennett C, Fang Y, Elariny H, Goodman Z, Chandhoke V and Younossi ZM: Adipokines and cytokines in non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 27:412–421. 2008. View Article : Google Scholar | |
Gavino VC, Miller JS, Dillman JM, Milo GE and Cornwell DG: Effect of exogenous adrenic acid on the proliferation and lipid metabolism of cells in tissue culture. Prog Lipid Res. 20:323–325. 1981. View Article : Google Scholar : PubMed/NCBI | |
Campbell WB, Falck JR, Okita JR, Johnson AR and Callahan KS: Synthesis of dihomoprostaglandins from adrenic acid (7,10,13,16-docosatetraenoic acid) by human endothelial cells. Biochim Biophys Acta. 837:67–76. 1985. View Article : Google Scholar : PubMed/NCBI | |
Duan JY, Lin X, Xu F, Shan SK, Guo B, Li FX, Wang Y, Zheng MH, Xu QS, Lei LM, et al: Ferroptosis and its potential role in metabolic diseases: A curse or revitalization? Front Cell Dev Biol. 9:7017882021. View Article : Google Scholar : PubMed/NCBI | |
López-Gómez C, Santiago-Fernández C, García-Serrano S, García-Escobar E, Gutiérrez-Repiso C, Rodríguez-Díaz C, Ho-Plágaro A, Martín-Reyes F, Garrido-Sánchez L, Valdés S, et al: Oleic acid protects against insulin resistance by regulating the genes related to the PI3K signaling pathway. J Clin Med. 99:26152020. View Article : Google Scholar | |
Zhao S, Fu H, Zhou T, Cai M, Huang Y, Gan Q, Zhang C, Qian C, Wang J, Zhang Z, et al: Alteration of bile acids and omega-6 PUFAs are correlated with the progression and prognosis of drug-induced liver injury. Front Immunol. 13:7723682022. View Article : Google Scholar : PubMed/NCBI | |
Caussy C, Chuang JC, Billin A, Hu T, Wang Y, Subramanian GM, Djedjos CS, Myers RP, Dennis EA and Loomba R: Plasma eicosanoids as noninvasive biomarkers of liver fibrosis in patients with nonalcoholic steatohepatitis. Therap Adv Gastroenterol. 13:17562848209239042020. View Article : Google Scholar : PubMed/NCBI | |
Medina S, Miguel-Elizaga ID, Oger C, Galano JM, Durand T, Martínez-Villanueva M, Castillo ML, Villegas-Martínez I, Ferreres F, Martínez-Hernández P and Gil-Izquierdo Á: Dihomo-isoprostanes-nonenzymatic metabolites of AdA-are higher in epileptic patients compared to healthy individuals by a new ultrahigh pressure liquid chromatography-triple quadrupole-tandem mass spectrometry method. Free Radic Biol Med. 79:154–163. 2015. View Article : Google Scholar | |
Ferré-González L, Peña-Bautista C, Baquero M and Cháfer-Pericás C: Assessment of lipid peroxidation in Alzheimer's disease differential diagnosis and prognosis. Antioxidants (Basel). 11:5512022. View Article : Google Scholar : PubMed/NCBI | |
De Las Heras-Gómez I, Medina S, Casas-Pina T, Marín-Soler L, Tomás A, Martínez-Hernández P, Oger C, Galano JM, Durand T, Jimeno L, et al: Potential applications of lipid peroxidation products-F4-neuroprostanes, F3-neuroprostanesn-6 DPA, F2-dihomo-isoprostanes and F2-isoprostanes-in the evaluation of the allograft function in renal transplantation. Free Radic Biol Med. 104:178–184. 2017. View Article : Google Scholar | |
Cao Y, Zhao R, Guo K, Ren S, Zhang Y, Lu Z, Tian L, Li T, Chen X and Wang Z: Potential metabolite biomarkers for early detection of stage-I pancreatic ductal adenocarcinoma. Front Oncol. 11:7446672022. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Lu Q and Chen F, Wang S, Niu C, Liao J, Wang H and Chen F: Serum untargeted metabolomics analysis of the mechanisms of evodiamine on type 2 diabetes mellitus model rats. Food Funct. 13:6623–6635. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Shao M, Xiang H, Zheng P, Wu T and Ji G: Integrative transcriptomics and metabolomics explore the mechanism of kaempferol on improving nonalcoholic steatohepatitis. Food Funct. 11:10058–10069. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Han J, Dong J, Fan X, Cai Y, Li J, Wang T, Zhou J and Shang J: Metabolomics characterizes the effects and mechanisms of quercetin in nonalcoholic fatty liver disease development. Int J Mol Sci. 20:12202019. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Hu T, Gao H, Zhai J, Gong J, Zhang Y, Tao L, Sun J, Li Z and Qu X: Altered metabolic profiles and biomarkers associated with astragaloside IV-mediated protection against cisplatin-induced acute kidney injury in rats: An HPLC-TOF/MS-based untargeted metabolomics study. Biochem Pharmacol. 183:1142992021. View Article : Google Scholar | |
Dai Y, Chen Y, Mo D, Jin R, Huang Y, Zhang L, Zhang C, Gao H and Yan Q: Inhibition of ACSL4 ameliorates tubular ferroptotic cell death and protects against fibrotic kidney disease. Commun Biol. 6:9072023. View Article : Google Scholar : PubMed/NCBI | |
Galano JM, Lee JCY, Gladine C, Comte B, Le Guennec JY, Oger C and Durand T: Non-enzymatic cyclic oxygenated metabolites of adrenic, docosahexaenoic, eicosapentaenoic and α-linolenic acids; bioactivities and potential use as biomarkers. Biochim Biophys Acta. 1851:446–455. 2015. View Article : Google Scholar | |
Shanab SMM, Hafez RM and Fouad AS: A review on algae and plants as potential source of arachidonic acid. J Adv Res. 11:3–13. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Illana Á, Shah V, Piñeiro-Ramos JD, Di Fiore JM, Quintás G, Raffay TM, MacFarlane PM, Martin RJ and Kuligowski J: Adrenic acid non-enzymatic peroxidation products in biofluids of moderate preterm infants. Free Radic Biol Med. 142:107–112. 2019. View Article : Google Scholar : PubMed/NCBI | |
Visser WF, van Roermund CW, Ijlst L, Waterham HR and Wanders RJA: Metabolite transport across the peroxisomal membrane. Biochem J. 401:365–375. 2007. View Article : Google Scholar : | |
Monge P, Garrido A, Rubio JM, Magrioti V, Kokotos G, Balboa MA and Balsinde J: The contribution of cytosolic group iva and calcium-independent group VIA phospholipase A2s to adrenic acid mobilization in murine macrophages. Biomolecules. 10:5422020. View Article : Google Scholar | |
VanRollins M, Horrocks L and Sprecher H: Metabolism of 7,10,13,16-docosatetraenoic acid to dihomo-thromboxane, 14-hydroxy-7,10,12-nonadecatrienoic acid and hydroxy fatty acids by human platelets. Biochim Biophys Acta. 833:272–280. 1985. View Article : Google Scholar : PubMed/NCBI | |
Yi XY, Gauthier KM, Cui L, Nithipatikom K, Falck JR and Campbell WB: Metabolism of adrenic acid to vasodilatory 1alpha,1beta-dihomo-epoxyeicosatrienoic acids by bovine coronary arteries. Am J Physiol Heart Circ Physiol. 292:H2265–H2274. 2007. View Article : Google Scholar : PubMed/NCBI | |
Singh N, Barnych B, Wagner KM, Wan D, Morisseau C and Hammock BD: Adrenic acid-derived epoxy fatty acids are naturally occurring lipids and their methyl ester prodrug reduces endoplasmic reticulum stress and inflammatory pain. ACS Omega. 6:7165–7174. 2021. View Article : Google Scholar : PubMed/NCBI | |
Osmundsen H, Bremer J and Pedersen JI: Metabolic aspects of peroxisomal beta-oxidation. Biochim Biophys Acta. 1085:141–158. 1991. View Article : Google Scholar : PubMed/NCBI | |
Hagve TA and Christophersen BO: Evidence for peroxisomal retroconversion of adrenic acid [22:4(n-6)] and docosahexaenoic acids [22:6(n-3)] in isolated liver cells. Biochim Biophys Acta. 875:165–173. 1986. View Article : Google Scholar : PubMed/NCBI | |
Mann CJ, Kaduce TL, Figard PH and Spector AA: Docosatetraenoic acid in endothelial cells: Formation, retroconversion to arachidonic acid, and effect on prostacyclin production. Arch Biochem Biophys. 244:813–823. 1986. View Article : Google Scholar : PubMed/NCBI | |
Costello KR and Schones DE: Chromatin modifications in metabolic disease: Potential mediators of long-term disease risk. Wiley Interdiscip Rev Syst Biol Med. 10:e14162018. View Article : Google Scholar : PubMed/NCBI | |
Cell Metabolism editorial team: Preventing metabolic disease: Part I. Cell Metab. 36:2232024. View Article : Google Scholar : PubMed/NCBI | |
Chew NWS, Ng CH, Tan DJH, Kong G, Lin C, Chin YH, Lim WH, Huang DQ, Quek J, Fu CE, et al: The global burden of metabolic disease: Data from 2000 to 2019. Cell Metab. 35:414–428.e3. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lee YS and Olefsky J: Chronic tissue inflammation and metabolic disease. Genes Dev. 35:307–328. 2021. View Article : Google Scholar : PubMed/NCBI | |
O'Rourke RW: Adipose tissue and the physiologic underpinnings of metabolic disease. Surg Obes Relat Dis. 14:1755–1763. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bhatti JS, Bhatti GK and Reddy PH: Mitochondrial dysfunction and oxidative stress in metabolic disorders-A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 1863:1066–1077. 2017. View Article : Google Scholar | |
Friedman SL, Neuschwander-Tetri BA, Rinella M and Sanyal AJ: Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 24:908–922. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pouwels S, Sakran N, Graham Y, Leal A, Pintar T, Yang W, Kassir R, Singhal R, Mahawar K and Ramnarain D: Non-alcoholic fatty liver disease (NAFLD): A review of pathophysiology, clinical management and effects of weight loss. BMC Endocr Disord. 22:632022. View Article : Google Scholar : PubMed/NCBI | |
Le MH, Le DM, Baez TC, Wu Y, Ito T, Lee EY, Lee K, Stave CD, Henry L, Barnett SD, et al: Global incidence of non-alcoholic fatty liver disease: A systematic review and meta-analysis of 63 studies and 1,201,807 persons. J Hepatol. 79:287–295. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ye J, Tian X, Wang Q, Zheng J, Yang Y, Xu B, Zhang S, Yuan F and Yang Z: Monkfish peptides mitigate high fat diet-induced hepatic steatosis in mice. Mar Drugs. 20:3122022. View Article : Google Scholar : PubMed/NCBI | |
Zhang CH, Zhou BG, Sheng JQ, Chen Y, Cao YQ and Chen C: Molecular mechanisms of hepatic insulin resistance in nonalcoholic fatty liver disease and potential treatment strategies. Pharmacol Res. 159:1049842020. View Article : Google Scholar : PubMed/NCBI | |
Kowdley KV, Belt P, Wilson LA, Yeh MM, Neuschwander-Tetri BA, Chalasani N, Sanyal AJ and Nelson JE; NASH Clinical Research Network: Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease. Hepatology. 55:77–85. 2012. View Article : Google Scholar | |
Chen Z, Tian R, She Z, Cai J and Li H: Corrigendum to 'Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease' [Free Radic. Biol. Med. 152(2020) 116-141]. Free Radic Biol Med. 162:1742021. View Article : Google Scholar | |
Paradies G, Paradies V, Ruggiero FM and Petrosillo G: Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J Gastroenterol. 20:14205–14218. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vatner DF, Majumdar SK, Kumashiro N, Petersen MC, Rahimi Y, Gattu AK, Bears M, Camporez JP, Cline GW, Jurczak MJ, et al: Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids. Proc Natl Acad Sci USA. 112:1143–1148. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li C, Du X, Shen Z, Wei Y, Wang Y, Han X, Jin H, Zhang C, Li M, Zhang Z, et al: The critical and diverse roles of CD4−CD8− double negative T cells in nonalcoholic fatty liver disease. Cell Mol Gastroenterol Hepatol. 13:1805–1827. 2022. View Article : Google Scholar : | |
Masarone M, Rosato V, Dallio M, Gravina AG, Aglitti A, Loguercio C, Federico A and Persico M: Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev. 2018:95476132018. View Article : Google Scholar : PubMed/NCBI | |
Mazur-Bialy AI, Kozlowska K, Pochec E, Bilski J and Brzozowski T: Myokine irisin-induced protection against oxidative stress in vitro. Involvement of heme oxygenase-1 and antioxidazing enzymes superoxide dismutase-2 and glutathione peroxidase. J Physiol Pharmacol. 69:117–125. 2018.PubMed/NCBI | |
Kania-Korwel I, Wu X, Wang K and Lehmler HJ: Identification of lipidomic markers of chronic 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) exposure in the male rat liver. Toxicology. 390:124–134. 2017. View Article : Google Scholar : PubMed/NCBI | |
Boucher MP, Lefebvre C and Chapados NA: The effects of PCB126 on intra-hepatic mechanisms associated with non alcoholic fatty liver disease. J Diabetes Metab Disord. 14:882015. View Article : Google Scholar : PubMed/NCBI | |
Lai I, Chai Y, Simmons D, Luthe G, Coleman MC, Spitz D, Haschek WM, Ludewig G and Robertson LW: Acute toxicity of 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) in male Sprague-Dawley rats: Effects on hepatic oxidative stress, glutathione and metals status. Environ Int. 36:918–923. 2010. View Article : Google Scholar | |
Gadupudi GS, Klaren WD, Olivier AK, Klingelhutz AJ and Robertson LW: PCB126-induced disruption in gluconeogenesis and fatty acid oxidation precedes fatty liver in male rats. Toxicol Sci. 149:98–110. 2016. View Article : Google Scholar : | |
Weinberg JM: Lipotoxicity. Kidney Int. 70:1560–1566. 2006. View Article : Google Scholar : PubMed/NCBI | |
Svegliati-Baroni G, Pierantonelli I, Torquato P, Marinelli R, Ferreri C, Chatgilialoglu C, Bartolini D and Galli F: Lipidomic biomarkers and mechanisms of lipotoxicity in non-alcoholic fatty liver disease. Free Radic Biol Med. 144:293–309. 2019. View Article : Google Scholar : PubMed/NCBI | |
Peiseler M, Schwabe R, Hampe J, Kubes P, Heikenwalder M and Tacke F: Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease-novel insights into cellular communication circuits. J Hepatol. 77:1136–1160. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hillhouse EE and Lesage S: A comprehensive review of the phenotype and function of antigen-specific immunoregulatory double negative T cells. J Autoimmun. 40:58–65. 2013. View Article : Google Scholar | |
Brandt D and Hedrich CM: TCRαβ+CD3+CD4−CD8− (double negative) T cells in autoimmunity. Autoimmun Rev. 17:422–430. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun G, Zhao X, Li M, Zhang C, Jin H, Li C, Liu L, Wang Y, Shi W, Tian D, et al: CD4 derived double negative T cells prevent the development and progression of nonalcoholic steatohepatitis. Nat Commun. 12:6502021. View Article : Google Scholar : PubMed/NCBI | |
Roehlen N, Crouchet E and Baumert TF: Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells. 9:8752020. View Article : Google Scholar : PubMed/NCBI | |
Zisser A, Ipsen DH and Tveden-Nyborg P: Hepatic stellate cell activation and inactivation in NASH-fibrosis-roles as putative treatment targets? Biomedicines. 9:3652021. View Article : Google Scholar : PubMed/NCBI | |
Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, Pradere JP and Schwabe RF: Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun. 4:28232013. View Article : Google Scholar : PubMed/NCBI | |
Seki E, de Minicis S, Inokuchi S, Taura K, Miyai K, van Rooijen N, Schwabe RF and Brenner DA: CCR2 promotes hepatic fibrosis in mice. Hepatology. 50:185–197. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schwabe RF, Bataller R and Brenner DA: Human hepatic stellate cells express CCR5 and RANTES to induce proliferation and migration. Am J Physiol Gastrointest Liver Physiol. 285:G949–G958. 2003. View Article : Google Scholar : PubMed/NCBI | |
Krenkel O and Tacke F: Macrophages in nonalcoholic fatty liver disease: A role model of pathogenic immunometabolism. Semin Liver Dis. 37:189–197. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yan J, Nie Y, Liu Y, Li J, Wu L, Chen Z and He B: Yiqi-bushen-tiaozhi recipe attenuated high-fat and high-fructose diet induced nonalcoholic steatohepatitis in mice via gut microbiota. Front Cell Infect Microbiol. 12:8245972022. View Article : Google Scholar : PubMed/NCBI | |
Fan CY, Pan J, Usuda N, Yeldandi AV, Rao MS and Reddy JK: Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase. Implications for peroxisome proliferator-activated receptor alpha natural ligand metabolism. J Biol Chem. 273:15639–15645. 1998. View Article : Google Scholar : PubMed/NCBI | |
Mitsuyoshi H, Yasui K, Harano Y, Endo M, Tsuji K, Minami M, Itoh Y, Okanoue T and Yoshikawa T: Analysis of hepatic genes involved in the metabolism of fatty acids and iron in nonalcoholic fatty liver disease. Hepatol Res. 39:366–373. 2009. View Article : Google Scholar | |
Warner DR, Warner JB, Hardesty JE, Song YL, King TN, Kang JX, Chen CY, Xie S, Yuan F, Prodhan MAI, et al: Decreased ω-6:ω-3 PUFA ratio attenuates ethanol-induced alterations in intestinal homeostasis, microbiota, and liver injury. J Lipid Res. 60:2034–2049. 2019. View Article : Google Scholar : PubMed/NCBI | |
de Almeida IT, Cortez-Pinto H, Fidalgo G, Rodrigues D and Camilo ME: Plasma total and free fatty acids composition in human non-alcoholic steatohepatitis. Clin Nutr. 21:219–223. 2002. View Article : Google Scholar : PubMed/NCBI | |
Muir K, Hazim A, He Y, Peyressatre M, Kim DY, Song X and Beretta L: Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma. Cancer Res. 73:4722–4731. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hua MC, Su HM, Yao TC, Kuo ML, Lai MW, Tsai MH and Huang JL: Alternation of plasma fatty acids composition and desaturase activities in children with liver steatosis. PLoS One. 12:e01822772017. View Article : Google Scholar : PubMed/NCBI | |
Ezaizi Y, Kabbany MN, Conjeevaram Selvakumar PK, Sarmini MT, Singh A, Lopez R, Nobili V and Alkhouri N: Comparison between non-alcoholic fatty liver disease screening guidelines in children and adolescents. JHEP Rep. 1:259–264. 2019. View Article : Google Scholar | |
Fan HN, Zhao ZM, Huang K, Wang XN, Dai YK and Liu CH: Serum metabolomics characteristics and fatty-acid-related mechanism of cirrhosis with histological response in chronic hepatitis B. Front Pharmacol. 14:13292662023. View Article : Google Scholar | |
Viitasalo A, Ågren J, Venäläinen T, Pihlajamäki J, Jääskeläinen J, Korkmaz A, Atalay M and Lakka TA: Association of plasma fatty acid composition with plasma irisin levels in normal weight and overweight/obese children. Pediatr Obes. 11:299–305. 2016. View Article : Google Scholar | |
Huang JP, Cheng ML, Hung CY, Wang CH, Hsieh PS, Shiao MS, Chen JK, Li DE and Hung LM: Docosapentaenoic acid and docosahexaenoic acid are positively associated with insulin sensitivity in rats fed high-fat and high-fructose diets. J Diabetes. 9:936–946. 2017. View Article : Google Scholar | |
Marco-Ramell A, Tulipani S, Palau-Rodriguez M, Gonzalez-Dominguez R, Miñarro A, Jauregui O, Sanchez-Pla A, Macias-Gonzalez M, Cardona F, Tinahones FJ and Andres-Lacueva C: Untargeted profiling of concordant/discordant phenotypes of high insulin resistance and obesity to predict the risk of developing diabetes. J Proteome Res. 17:2307–2317. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Day FR, Gustafsson S, Buchkovich ML, Na J, Bataille V, Cousminer DL, Dastani Z, Drong AW, Esko T, et al: New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nat Commun. 7:104952016. View Article : Google Scholar : PubMed/NCBI | |
Ma ZA, Zhao Z and Turk J: Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp Diabetes Res. 2012:7035382012. View Article : Google Scholar | |
Deng X, Wang J, Jiao L, Utaipan T, Tuma-Kellner S, Schmitz G, Liebisch G, Stremmel W and Chamulitrat W: iPLA2β deficiency attenuates obesity and hepatic steatosis in ob/ob mice through hepatic fatty-acyl phospholipid remodeling. Biochim Biophys Acta. 1861:449–461. 2016. View Article : Google Scholar : PubMed/NCBI | |
Su X, Mancuso DJ, Bickel PE, Jenkins CM and Gross RW: Small interfering RNA knockdown of calcium-independent phospholipases A2 beta or gamma inhibits the hormone-induced differentiation of 3T3-L1 preadipocytes. J Biol Chem. 279:21740–21748. 2004. View Article : Google Scholar : PubMed/NCBI | |
Asano T, Fujishiro M, Kushiyama A, Nakatsu Y, Yoneda M, Kamata H and Sakoda H: Role of phosphatidylinositol 3-kinase activation on insulin action and its alteration in diabetic conditions. Biol Pharm Bull. 30:1610–1616. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bandyopadhyay GK, Yu JG, Ofrecio J and Olefsky JM: Increased p85/55/50 expression and decreased phosphotidylinositol 3-kinase activity in insulin-resistant human skeletal muscle. Diabetes. 54:2351–2359. 2005. View Article : Google Scholar : PubMed/NCBI | |
Takahashi R, Horrobin DF, Watanabe Y, Kyte V and Billard V: Short-term diabetes increases triacylglycerol arachidonic acid content in the rat liver. Biochim Biophys Acta. 921:151–153. 1987. View Article : Google Scholar : PubMed/NCBI | |
Chanussot B, Asdrubal P, Huang YS and Poisson JP: Adrenic acid delta4 desaturation and fatty acid composition in the liver of marine-oil fed streptozotocin diabetic rats. Prostaglandins Leukot Essent Fatty Acids. 57:539–544. 1997. View Article : Google Scholar | |
No authors listed. Type 2 diabetes mellitus. Nat Rev Dis Primers. 1:150392015. View Article : Google Scholar : PubMed/NCBI | |
Forouhi NG, Imamura F, Sharp SJ, Koulman A, Schulze MB, Zheng J, Ye Z, Sluijs I, Guevara M, Huerta JM, et al: Association of plasma phospholipid n-3 and n-6 polyunsaturated fatty acids with type 2 diabetes: The EPIC-interact case-cohort study. PLoS Med. 13:e10020942016. View Article : Google Scholar : PubMed/NCBI | |
Sha W, Hu F, Xi Y, Chu Y and Bu S: Mechanism of ferroptosis and its role in type 2 diabetes mellitus. J Diabetes Res. 2021:99996122021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI | |
Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 113:E4966–E4975. 2016. View Article : Google Scholar : PubMed/NCBI | |
Stoyanovsky DA, Tyurina YY, Shrivastava I, Bahar I, Tyurin VA, Protchenko O, Jadhav S, Bolevich SB, Kozlov AV, Vladimirov YA, et al: Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction? Free Radic Biol Med. 133:153–161. 2019. View Article : Google Scholar : | |
Shimbara-Matsubayashi S, Kuwata H, Tanaka N, Kato M and Hara S: Analysis on the Substrate specificity of recombinant human Acyl-CoA synthetase ACSL4 variants. Biol Pharm Bull. 42:850–855. 2019. View Article : Google Scholar : PubMed/NCBI | |
Igarashi Y and Kimura T: Adrenic acid content in rat adrenal mitochondrial phosphatidylethanolamine and its relation to ACTH-mediated stimulation of cholesterol side chain cleavage reaction. J Biol Chem. 261:14118–14124. 1986. View Article : Google Scholar : PubMed/NCBI | |
Weigand I, Schreiner J, Röhrig F, Sun N, Landwehr LS, Urlaub H, Kendl S, Kiseljak-Vassiliades K, Wierman ME, Angeli JPF, et al: Active steroid hormone synthesis renders adrenocortical cells highly susceptible to type II ferroptosis induction. Cell Death Dis. 11:1922020. View Article : Google Scholar : PubMed/NCBI | |
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : | |
Ansari IUH, Longacre MJ, Stoker SW, Kendrick MA, O'Neill LM, Zitur LJ, Fernandez LA, Ntambi JM and MacDonald MJ: Characterization of Acyl-CoA synthetase isoforms in pancreatic beta cells: Gene silencing shows participation of ACSL3 and ACSL4 in insulin secretion. Arch Biochem Biophys. 618:32–43. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu A, Chang J, Lin Y, Shen Z and Bernstein PS: Long-chain and very long-chain polyunsaturated fatty acids in ocular aging and age-related macular degeneration. J Lipid Res. 51:3217–3229. 2010. View Article : Google Scholar : PubMed/NCBI | |
Torres-Cuevas I, Millán I, Asensi M, Vento M, Oger C, Galano JM, Durand T and Ortega ÁL: Analysis of lipid peroxidation by UPLC-MS/MS and retinoprotective effects of the natural polyphenol pterostilbene. Antioxidants (Basel). 10:1682021. View Article : Google Scholar : PubMed/NCBI | |
Yuan Q, Zhu S, Yue S, Han Y, Peng G, Li L, Sheng Y and Wang B: Alterations in faecal and serum metabolic profiles in patients with neovascular age-related macular degeneration. Nutrients. 15:29842023. View Article : Google Scholar : PubMed/NCBI | |
Rohm TV, Meier DT, Olefsky JM and Donath MY: Inflammation in obesity, diabetes, and related disorders. Immunity. 55:31–55. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hussey B, Steel RP, Gyimah B, Reynolds JC, Taylor IM, Lindley MR and Mastana S: DNA methylation of tumour necrosis factor (TNF) alpha gene is associated with specific blood fatty acid levels in a gender-specific manner. Mol Genet Genomic Med. 9:e16792021. View Article : Google Scholar : PubMed/NCBI | |
Cole JB and Florez JC: Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 16:377–390. 2020. View Article : Google Scholar : PubMed/NCBI | |
Szczuko M, Kaczkan M, Małgorzewicz S, Rutkowski P, Dębska-Ślizień A and Stachowska E: The C18:3n6/C22:4n6 ratio is a good lipid marker of chronic kidney disease (CKD) progression. Lipids Health Dis. 19:772020. View Article : Google Scholar : PubMed/NCBI | |
Tardy B, Bordet JC, Berruyer M, Ffrench P and Dechavanne M: Priming effect of adrenic acid [22:4(n-6)] on tissue factor activity expressed by thrombin-stimulated endothelial cells. Atherosclerosis. 95:51–58. 1992. View Article : Google Scholar : PubMed/NCBI | |
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ and Han M: Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct Target Ther. 7:1312022. View Article : Google Scholar : PubMed/NCBI | |
Grootaert MOJ and Bennett MR: Vascular smooth muscle cells in atherosclerosis: Time for a re-assessment. Cardiovasc Res. 117:2326–2339. 2021. View Article : Google Scholar : PubMed/NCBI | |
Falk E: Pathogenesis of atherosclerosis. J Am Coll Cardiol. 47:C7–C12. 2006. View Article : Google Scholar : PubMed/NCBI | |
Campbell WB and Fleming I: Epoxyeicosatrienoic acids and endothelium-dependent responses. Pflugers Arch. 459:881–895. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cagen LM and Baer PG: Adrenic acid inhibits prostaglandin syntheses. Life Sci. 26:765–770. 1980. View Article : Google Scholar : PubMed/NCBI | |
Shi F, Chowdhury R, Sofianopoulou E, Koulman A, Sun L, Steur M, Aleksandrova K, Dahm CC, Schulze MB, van der Schouw YT, et al: Association of circulating fatty acids with cardiovascular disease risk: Analysis of individual-level data in three large prospective cohorts and updated meta-analysis. Eur J Prev Cardiol. zwae3152024.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Mazidi M, Shekoohi N, Katsiki N and Banach M: Omega-6 fatty acids and the risk of cardiovascular disease: Insights from a systematic review and meta-analysis of randomized controlled trials and a Mendelian randomization study. Arch Med Sci. 18:466–479. 2021. | |
Lee JCY, AlGhawas DS, Poutanen K, Leung KS, Oger C, Galano JM, Durand T and El-Nezami H: Dietary oat bran increases some proinflammatory polyunsaturated fatty-acid oxidation products and reduces anti-inflammatory products in apolipoprotein E−/− mice. Lipids. 53:785–796. 2018. View Article : Google Scholar : PubMed/NCBI | |
Henein MY, Vancheri S, Longo G and Vancheri F: The role of inflammation in cardiovascular disease. Int J Mol Sci. 23:129062022. View Article : Google Scholar : PubMed/NCBI | |
Stojkovic S, Kaun C, Basilio J, Rauscher S, Hell L, Krychtiuk KA, Bonstingl C, de Martin R, Gröger M, Ay C, et al: Tissue factor is induced by interleukin-33 in human endothelial cells: A new link between coagulation and inflammation. Sci Rep. 6:251712016. View Article : Google Scholar : PubMed/NCBI | |
ten Cate H: Tissue factor-driven thrombin generation and inflammation in atherosclerosis. Thromb Res. 129(Suppl 2): S38–S40. 2012. View Article : Google Scholar : PubMed/NCBI | |
Badimon L and Vilahur G: Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med. 276:618–632. 2014. View Article : Google Scholar : PubMed/NCBI | |
Brambilla M, Camera M, Colnago D, Marenzi G, De Metrio M, Giesen PL, Balduini A, Veglia F, Gertow K, Biglioli P and Tremoli E: Tissue factor in patients with acute coronary syndromes: Expression in platelets, leukocytes, and platelet-leukocyte aggregates. Arterioscler Thromb Vasc Biol. 28:947–953. 2008. View Article : Google Scholar : PubMed/NCBI | |
Grover SP and Mackman N: Tissue factor in atherosclerosis and atherothrombosis. Atherosclerosis. 307:80–86. 2020. View Article : Google Scholar : PubMed/NCBI | |
Libby P: The changing landscape of atherosclerosis. Nature. 592:524–533. 2021. View Article : Google Scholar : PubMed/NCBI | |
Engler MM, Bellenger-Germain SH, Engler MB, Narce MM and Poisson JP: Dietary docosahexaenoic acid affects stearic acid desaturation in spontaneously hypertensive rats. Lipids. 35:1011–1015. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yu Z, Wang L, Wu S, Xue W, Zhao W and Li J: Potential mechanisms of the anti-hypertensive effects of RVPSL on spontaneously hypertensive rats using non-targeted serum metabolomics. Food Funct. 12:8561–8569. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li D, Yu XM, Xie HB, Zhang YH, Wang Q, Zhou XQ, Yu P and Wang LJ: Platelet phospholipid n-3 PUFA negatively associated with plasma homocysteine in middle-aged and geriatric hyperlipaemia patients. Prostaglandins Leukot Essent Fatty Acids. 76:293–297. 2007. View Article : Google Scholar : PubMed/NCBI | |
Simon JA, Fong J, Bernert JT Jr and Browner WS: Relation of smoking and alcohol consumption to serum fatty acids. Am J Epidemiol. 144:325–334. 1996. View Article : Google Scholar : PubMed/NCBI | |
Yang LG, Song ZX, Yin H, Wang YY, Shu GF, Lu HX, Wang SK and Sun GJ: Low n-6/n-3 PUFA ratio improves lipid metabolism, inflammation, oxidative stress and endothelial function in rats using plant oils as n-3 fatty acid source. Lipids. 51:49–59. 2016. View Article : Google Scholar | |
Hurtubise J, McLellan K, Durr K, Onasanya O, Nwabuko D and Ndisang JF: The different facets of dyslipidemia and hypertension in atherosclerosis. Curr Atheroscler Rep. 18:822016. View Article : Google Scholar : PubMed/NCBI | |
Talmor-Barkan Y, Bar N, Shaul AA, Shahaf N, Godneva A, Bussi Y, Lotan-Pompan M, Weinberger A, Shechter A, Chezar-Azerrad C, et al: Metabolomic and microbiome profiling reveals personalized risk factors for coronary artery disease. Nat Med. 28:295–302. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fan Y, Li Y, Chen Y, Zhao YJ, Liu LW, Li J, Wang SL, Alolga RN, Yin Y, Wang XM, et al: Comprehensive metabolomic characterization of coronary artery diseases. J Am Coll Cardiol. 68:1281–1293. 2016. View Article : Google Scholar : PubMed/NCBI | |
Smith ML, Bull CJ, Holmes MV, Davey Smith G, Sanderson E, Anderson EL and Bell JA: Distinct metabolic features of genetic liability to type 2 diabetes and coronary artery disease: A reverse Mendelian randomization study. EBioMedicine. 90:1045032023. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Tan H, Wan J, Zeng Y, Wang J, Wang H and Lu X: PPAR-γ signaling in nonalcoholic fatty liver disease: Pathogenesis and therapeutic targets. Pharmacol Ther. 245:1083912023. View Article : Google Scholar | |
Scime NV, Turner S, Miliku K, Simons E, Moraes TJ, Field CJ, Turvey SE, Subbarao P, Mandhane PJ and Azad MB: Association of human milk fatty acid composition with maternal cardiometabolic diseases: An exploratory prospective cohort study. Breastfeed Med. 19:357–367. 2024. View Article : Google Scholar : PubMed/NCBI | |
Svennerholm L: Distribution and fatty acid composition of phosphoglycerides in normal human brain. J Lipid Res. 9:570–579. 1968. View Article : Google Scholar : PubMed/NCBI | |
Wilson R and Sargent JR: Lipid and fatty acid composition of brain tissue from adrenoleukodystrophy patients. J Neurochem. 61:290–297. 1993. View Article : Google Scholar : PubMed/NCBI | |
Wijendran V, Lawrence P, Diau GY, Boehm G, Nathanielsz PW and Brenna JT: Significant utilization of dietary arachidonic acid is for brain adrenic acid in baboon neonates. J Lipid Res. 43:762–767. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rapoport SI: Translational studies on regulation of brain docosahexaenoic acid (DHA) metabolism in vivo. Prostaglandins Leukot Essent Fatty Acids. 88:79–85. 2013. View Article : Google Scholar | |
Yoshinaga K, Ishikawa H, Beppu F and Gotoh N: Incorporation of dietary arachidonic and docosatetraenoic acid into mouse brain. J Agric Food Chem. 69:2457–2461. 2021. View Article : Google Scholar : PubMed/NCBI | |
Grande de França NA, Díaz G, Lengelé L, Soriano G, Caspar-Bauguil S, Saint-Aubert L, Payoux P, Rouch L, Vellas B, de Souto Barreto P and Sourdet S: Associations between blood nutritional biomarkers and cerebral amyloid-β: Insights from the COGFRAIL cohort study. J Gerontol A Biol Sci Med Sci. 79:glad2482024. View Article : Google Scholar | |
Hammouda S, Ghzaiel I, Khamlaoui W, Hammami S, Mhenni SY, Samet S, Hammami M and Zarrouk A: Genetic variants in FADS1 and ELOVL2 increase level of arachidonic acid and the risk of Alzheimer's disease in the Tunisian population. Prostaglandins Leukot Essent Fatty Acids. 160:1021592020. View Article : Google Scholar : PubMed/NCBI | |
Durand T, De Felice C, Signorini C, Oger C, Bultel-Poncé V, Guy A, Galano JM, Leoncini S, Ciccoli L, Pecorelli A, et al: F(2)-Dihomo-isoprostanes and brain white matter damage in stage 1 Rett syndrome. Biochimie. 95:86–90. 2013. View Article : Google Scholar | |
Zhou K, Jia L, Mao Z, Si P, Sun C, Qu Z and Wang W: Integrated macrogenomics and metabolomics explore alterations and correlation between gut microbiota and serum metabolites in adult epileptic patients: A pilot study. Microorganisms. 11:26282023. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Zhou F, Ouyang L, Li Q, Rao S, Su R, Yang S, Li J, Wan X, Yan L, et al: Insight into the effect of a heavy metal mixture on neurological damage in rats through combined serum metabolomic and brain proteomic analyses. Sci Total Environ. 895:1650092023. View Article : Google Scholar : PubMed/NCBI | |
Thapar A, Cooper M and Rutter M: Neurodevelopmental disorders. Lancet Psychiatry. 4:339–346. 2017. View Article : Google Scholar | |
Sumich AL, Matsudaira T, Heasman B, Gow RV, Ibrahimovic A, Ghebremeskel K, Crawford MA and Taylor E: Fatty acid correlates of temperament in adolescent boys with attention deficit hyperactivity disorder. Prostaglandins Leukot Essent Fatty Acids. 88:431–436. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu CH, Hsu WL, Tsai CC, Chao HR, Wu CY, Chen YH, Lai YR, Chen CH and Tsai MH: 7,10,13,16-Docosatetraenoic acid impairs neurobehavioral development by increasing reactive oxidative species production in Caenorhabditis elegans. Life Sci. 319:1215002023. View Article : Google Scholar : PubMed/NCBI | |
De Felice C, Signorini C, Durand T, Oger C, Guy A, Bultel-Poncé V, Galano JM, Ciccoli L, Leoncini S, D'Esposito M, et al: F2-dihomo-isoprostanes as potential early biomarkers of lipid oxidative damage in Rett syndrome. J Lipid Res. 52:2287–2297. 2011. View Article : Google Scholar : PubMed/NCBI | |
Khan S, Barve KH and Kumar MS: Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer's disease. Curr Neuropharmacol. 18:1106–1125. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu RM: Aging, cellular senescence, and Alzheimer's disease. Int J Mol Sci. 23:19892022. View Article : Google Scholar : PubMed/NCBI | |
Kosicek M and Hecimovic S: Phospholipids and Alzheimer's disease: Alterations, mechanisms and potential biomarkers. Int J Mol Sci. 14:1310–1322. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hancock SE, Friedrich MG, Mitchell TW, Truscott RJW and Else PL: Decreases in phospholipids containing adrenic and arachidonic acids occur in the human hippocampus over the adult lifespan. Lipids. 50:861–872. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hancock SE, Friedrich MG, Mitchell TW, Truscott RJW and Else PL: Changes in phospholipid composition of the human cerebellum and motor cortex during normal ageing. Nutrients. 14:24952022. View Article : Google Scholar : PubMed/NCBI | |
Corrigan FM, Horrobin DF, Skinner ER, Besson JA and Cooper MB: Abnormal content of n-6 and n-3 long-chain unsaturated fatty acids in the phosphoglycerides and cholesterol esters of parahippocampal cortex from Alzheimer's disease patients and its relationship to acetyl CoA content. Int J Biochem Cell Biol. 30:197–207. 1998. View Article : Google Scholar : PubMed/NCBI | |
Cullen NC, Novak P, Tosun D, Kovacech B, Hanes J, Kontsekova E, Fresser M, Ropele S, Feldman HH, Schmidt R, et al: Efficacy assessment of an active tau immunotherapy in Alzheimer's disease patients with amyloid and tau pathology: A post hoc analysis of the 'ADAMANT' randomised, placebo-controlled, double-blind, multi-centre, phase 2 clinical trial. EBioMedicine. 99:1049232024. View Article : Google Scholar | |
Pascoal TA, Aguzzoli CS, Lussier FZ, Crivelli L, Suemoto CK, Fortea J, Rosa-Neto P, Zimmer ER, Ferreira PCL and Bellaver B: Insights into the use of biomarkers in clinical trials in Alzheimer's disease. EBioMedicine. 108:1053222024. View Article : Google Scholar : PubMed/NCBI | |
Skinner ER, Watt C, Besson JA and Best PV: Differences in the fatty acid composition of the grey and white matter of different regions of the brains of patients with Alzheimer's disease and control subjects. Brain. 116:717–725. 1993. View Article : Google Scholar : PubMed/NCBI | |
Miller E, Morel A, Saso L and Saluk J: Isoprostanes and neuroprostanes as biomarkers of oxidative stress in neurodegenerative diseases. Oxid Med Cell Longev. 2014:5724912014. View Article : Google Scholar : PubMed/NCBI | |
Roberts LJ II and Milne GL: Isoprostanes. J Lipid Res. 50(Suppl): S219–S223. 2009. View Article : Google Scholar : | |
Calo L, Wegrzynowicz M, Santivañez-Perez J and Grazia Spillantini M: Synaptic failure and α-synuclein. Mov Disord. 31:169–177. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ugalde CL, Lawson VA, Finkelstein DI and Hill AF: The role of lipids in α-synuclein misfolding and neurotoxicity. J Biol Chem. 294:9016–9028. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xylaki M, Boumpoureka I, Kokotou MG, Marras T, Papadimitriou G, Kloukina I, Magrioti V, Kokotos G, Vekrellis K and Emmanouilidou E: Changes in the cellular fatty acid profile drive the proteasomal degradation of α-synuclein and enhance neuronal survival. FASEB J. 34:15123–15145. 2020. View Article : Google Scholar : PubMed/NCBI | |
Malhi GS and Mann JJ: Depression. Lancet. 392:2299–2312. 2018. View Article : Google Scholar : PubMed/NCBI | |
Aguilar-Valles A, Kim J, Jung S, Woodside B and Luheshi GN: Role of brain transmigrating neutrophils in depression-like behavior during systemic infection. Mol Psychiatry. 19:599–606. 2014. View Article : Google Scholar | |
Zeng L, Lv H, Wang X, Xue R, Zhou C, Liu X and Yu H: Causal effects of fatty acids on depression: Mendelian randomization study. Front Nutr. 9:10104762022. View Article : Google Scholar : PubMed/NCBI | |
Vaz JS, Kac G, Nardi AE and Hibbeln JR: Omega-6 fatty acids and greater likelihood of suicide risk and major depression in early pregnancy. J Affect Disord. 152-154:76–82. 2014. View Article : Google Scholar | |
Chen H, Wang J, Zheng B, Xia W, Tan G, Wu H, Wang Y, Deng Z, Wang Y, Zhang J and Zhang H: Association of serum fatty acid pattern with depression in U.S. adults: Analysis of NHANES 2011-2012. Lipids Health Dis. 23:1772024. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Yan X, Li Y, Li Q, Xu Y, Huang J, Gan J and Yang W: Association between plasma polyunsaturated fatty acids and depressive among US adults. Front Nutr. 11:13423042024. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Wang L, Guo J, Zhao T, Tang H, Dong F, Wang C, Chen J and Tang M: Erythrocyte membrane fatty acid composition as a potential biomarker for depression. Int J Neuropsychopharmacol. 26:385–395. 2023. View Article : Google Scholar : PubMed/NCBI | |
Pan J, Lu Y, Wang S, Ma T, Xue X, Zhang Z, Mao Q, Guo D and Ma K: Synergistic neuroprotective effects of two natural medicinal plants against CORT-induced nerve cell injury by correcting neurotransmitter deficits and inflammation imbalance. Phytomedicine. 121:1551022023. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Wang H, Chen X, Zhang Y, Zhang H and Xie P: Gut microbiota and its metabolites in depression: From pathogenesis to treatment. EBioMedicine. 90:1045272023. View Article : Google Scholar : PubMed/NCBI | |
Shang Y, Wang M, Hao Q, Meng T, Li L, Shi J, Yang G, Zhang Z, Yang K and Wang J: Development of indole-2-carbonyl piperazine urea derivatives as selective FAAH inhibitors for efficient treatment of depression and pain. Bioorg Chem. 128:1060312022. View Article : Google Scholar : PubMed/NCBI | |
Tripathi RKP: A perspective review on fatty acid amide hydrolase (FAAH) inhibitors as potential therapeutic agents. Eur J Med Chem. 188:1119532020. View Article : Google Scholar : PubMed/NCBI | |
Oliveira-Lima OC, Carvalho-Tavares J, Rodrigues MF, Gomez MV, Oliveira ACP, Resende RR, Gomez RS, Vaz BG and Pinto MCX: Lipid dynamics in LPS-induced neuroinflammation by DESI-MS imaging. Brain Behav Immun. 79:186–194. 2019. View Article : Google Scholar : PubMed/NCBI | |
Celik O and Yildiz BO: Obesity and physical exercise. Minerva Endocrinol (Torino). 46:131–144. 2021. | |
Cassilhas RC, Tufik S and de Mello MT: Physical exercise, neuroplasticity, spatial learning and memory. Cell Mol Life Sci. 73:975–983. 2016. View Article : Google Scholar | |
Rodríguez-Cañamero S, Cobo-Cuenca AI, Carmona-Torres JM, Pozuelo-Carrascosa DP, Santacruz-Salas E, Rabanales-Sotos JA, Cuesta-Mateos T and Laredo-Aguilera JA: Impact of physical exercise in advanced-stage cancer patients: Systematic review and meta-analysis. Cancer Med. 11:3714–3727. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dong G: Swimming exercise ameliorates liver insulin resistance in type 2 diabetic mice-the role of adrenic acid. Shanghai University of Sport; 2021, View Article : Google Scholar | |
Jurado-Fasoli L, Di X, Sanchez-Delgado G, Yang W, Osuna-Prieto FJ, Ortiz-Alvarez L, Krekels E, Harms AC, Hankemeier T, Schönke M, et al: Acute and long-term exercise differently modulate plasma levels of oxylipins, endocannabinoids, and their analogues in young sedentary adults: A sub-study and secondary analyses from the ACTIBATE randomized controlled-trial. EBioMedicine. 85:1043132022. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Sun YY, Bai D and Wu XX: Mechanism of the components compatibility of Scutellariae Radix and Coptidis Rhizoma on mice with hyperlipidemia by regulating the Cyp4a family. J Ethnopharmacol. 331:1182632024. View Article : Google Scholar : PubMed/NCBI | |
Mi Y, Yi N, Xu X, Zeng F, Li N, Tan X, Gong Z, Yan K, Kuang G and Lu M: Prebiotics alleviate cartilage degradation and inflammation in post-traumatic osteoarthritic mice by modulating the gut barrier and fecal metabolomics. Food Funct. 14:4065–4077. 2023. View Article : Google Scholar : PubMed/NCBI | |
Aukema HM and Holub BJ: Effect of dietary supplementation with a fish oil concentrate on the alkenylacyl class of ethanolamine phospholipid in human platelets. J Lipid Res. 30:59–64. 1989. View Article : Google Scholar : PubMed/NCBI | |
Hernández MC, Rojas P, Carrasco F, Basfi-Fer K, Valenzuela R, Codoceo J, Inostroza J and Ruz M: Fatty acid desaturation in red blood cell membranes of patients with type 2 diabetes is improved by zinc supplementation. J Trace Elem Med Biol. 62:1265712020. View Article : Google Scholar : PubMed/NCBI | |
Arcusa R, Carillo JÁ, Cerdá B, Durand T, Gil-Izquierdo Á, Medina S, Galano JM, Zafrilla MP and Marhuenda J: Ability of a polyphenol-rich nutraceutical to reduce central nervous system lipid peroxidation by analysis of oxylipins in urine: A randomized, double-blind, placebo-controlled clinical trial. Antioxidants (Basel). 12:7212023. View Article : Google Scholar : PubMed/NCBI | |
Flaskerud K, Bukowski M, Golovko M, Johnson L, Brose S, Ali A, Cleveland B, Picklo M Sr and Raatz S: Effects of cooking techniques on fatty acid and oxylipin content of farmed rainbow trout (Oncorhynchus mykiss). Food Sci Nutr. 5:1195–1204. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhou D, Zaiger G, Ghebremeskel K, Crawford MA and Reifen R: Vitamin A deficiency reduces liver and colon docosahexaenoic acid levels in rats fed high linoleic and low alpha-linolenic acid diet. Prostaglandins Leukot Essent Fatty Acids. 71:383–389. 2004. View Article : Google Scholar : PubMed/NCBI | |
Martínez-Ramírez HR, Kramer JKG and de Lange CFM: Retention of n-3 polyunsaturated fatty acids in trimmed loin and belly is independent of timing of feeding ground flaxseed to growing-finishing female pigs. J Anim Sci. 92:238–249. 2014. View Article : Google Scholar | |
Jiao Y, Liu S, Zhou Y, Yang D, Li J and Cui Z: The effect of supplemental concentrate feeding on the morphological and functional development of the pancreas in early weaned yak calves. Animals (Basel). 12:25632022. View Article : Google Scholar : PubMed/NCBI | |
Dua TK, Dewanjee S, Khanra R, Joardar S, Barma S, Das S, Zia-Ul-Haq M and De Feo V: Cytoprotective and antioxidant effects of an edible herb, enhydra fluctuans lour. (Asteraceae), against experimentally induced lead acetate intoxication. PLoS One. 11:e01487572016. View Article : Google Scholar : PubMed/NCBI | |
Xia J, Lu L, Jin C, Wang S, Zhou J, Ni Y, Fu Z and Jin Y: Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol. 209:1–8. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mateo R, Beyer WN, Spann JW and Hoffman DJ: Relation of fatty acid composition in lead-exposed mallards to fat mobilization, lipid peroxidation and alkaline phosphatase activity. Comp Biochem Physiol C Toxicol Pharmacol. 135:451–458. 2003. View Article : Google Scholar : PubMed/NCBI | |
Aléssio ML, Léger CL, Rasolonjanahary R, Wandscheer DE, Clauser H, Enjalbert A and Kordon C: Selective effect of a diet-induced decrease in the arachidonic acid membranephospholipid content on in vitro phospholipase C and adenylate cyclase-mediated pituitary response to angiotensin II. Neuroendocrinology. 60:400–409. 1994. View Article : Google Scholar | |
Stylianopoulou F and Clayton RB: Strain-dependent gonadal effects upon adrenal cholesterol ester concentration and composition in C57BL/10J and DBA/2J mice. Endocrinology. 99:1631–1637. 1976. View Article : Google Scholar : PubMed/NCBI | |
Marhuenda J, Medina S, Martínez-Hernández P, Arina S, Zafrilla P, Mulero J, Oger C, Galano JM, Durand T, Ferreres F and Gil-Izquierdo A: Melatonin and hydroxytyrosol protect against oxidative stress related to the central nervous system after the ingestion of three types of wine by healthy volunteers. Food Funct. 8:64–74. 2017. View Article : Google Scholar | |
Parada H Jr, Wu T, Hoh E, Rock CL and Martinez ME: Red blood cell polyunsaturated fatty acids and mortality following breast cancer. Cancer Epidemiol Biomarkers Prev. 33:944–952. 2024. View Article : Google Scholar : PubMed/NCBI | |
Dayaker G, Durand T and Balas L: Total synthesis of neuroprotectin D1 analogues derived from omega-6 docosapentaenoic acid (DPA) and adrenic acid (AdA) from a common pivotal, late-stage intermediate. J Org Chem. 79:2657–2665. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bazan NG: Neuroprotectin D1 (NPD1): A DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 15:159–166. 2005. View Article : Google Scholar : PubMed/NCBI | |
Stark DT and Bazan NG: Neuroprotectin D1 induces neuronal survival and downregulation of amyloidogenic processing in Alzheimer's disease cellular models. Mol Neurobiol. 43:131–138. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dayaker G, Durand T and Balas L: A versatile and stereocontrolled total synthesis of dihydroxylated docosatrienes containing a conjugated E,E,Z-triene. Chemistry. 20:2879–2887. 2014. View Article : Google Scholar : PubMed/NCBI | |
Messamore E, Hoffman WF and Yao JK: Niacin sensitivity and the arachidonic acid pathway in schizophrenia. Schizophr Res. 122:248–256. 2010. View Article : Google Scholar : PubMed/NCBI | |
Brouwers H, Jónasdóttir HS, Kuipers ME, Kwekkeboom JC, Auger JL, Gonzalez-Torres M, López-Vicario C, Clària J, Freysdottir J, Hardardottir I, et al: Anti-inflammatory and proresolving effects of the omega-6 polyunsaturated fatty acid adrenic acid. J Immunol. 205:2840–2849. 2020. View Article : Google Scholar : PubMed/NCBI | |
Song T and Kuang S: Adipocyte dedifferentiation in health and diseases. Clin Sci (Lond). 133:2107–2119. 2019. View Article : Google Scholar : PubMed/NCBI | |
Villarroya F, Cereijo R, Gavalda-Navarro A, Villarroya J and Giralt M: Inflammation of brown/beige adipose tissues in obesity and metabolic disease. J Intern Med. 284:492–504. 2018. View Article : Google Scholar : PubMed/NCBI |