Role of the m6A demethylase ALKBH5 in gastrointestinal tract cancer (Review)
- Authors:
- Lumiao Zhang
- Mengjia Jing
- Qianben Song
- Yiming Ouyang
- Yingzhi Pang
- Xilin Ye
- Yu Fu
- Wei Yan
-
Affiliations: Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China, Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China - Published online on: November 25, 2024 https://doi.org/10.3892/ijmm.2024.5463
- Article Number: 22
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B, Wirecki TK, de Crécy-Lagard V, Ross R, Limbach PA, Kotter A, et al: MODOMICS: A database of RNA modification pathways. 2017 Update. Nucleic Acids Res. 46:D303–D307. 2018. View Article : Google Scholar : | |
Lewis CJT, Pan T and Kalsotra A: RNA modifications and structures cooperate to guide RNA-protein interactions. Nat Rev Mol Cell Biol. 18:202–210. 2017. View Article : Google Scholar : PubMed/NCBI | |
Desrosiers R, Friderici K and Rottman F: Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA. 71:3971–3975. 1974. View Article : Google Scholar : PubMed/NCBI | |
Adams JM and Cory S: Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature. 255:28–33. 1975. View Article : Google Scholar : PubMed/NCBI | |
Wei W, Ji X, Guo X and Ji S: Regulatory Role of N6 -methyladenosine (m6A) methylation in rna processing and human diseases. J Cell Biochem. 118:2534–2543. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ivanova I, Much C, Di Giacomo M, Azzi C, Morgan M, Moreira PN, Monahan J, Carrieri C, Enright AJ and O'Carroll D: The RNA m6A reader YTHDF2 is essential for the posttranscriptional regulation of the maternal transcriptome and oocyte competence. Mol Cell. 67:1059–1067.e4. 2017. View Article : Google Scholar | |
Xiang Y, Laurent B, Hsu CH, Nachtergaele S, Lu Z, Sheng W, Xu C, Chen H, Ouyang J, Wang S, et al: RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature. 543:573–576. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Xie L, Wang M, Xiong Q, Guo Y, Liang Y, Li J, Sheng R, Deng P, Wang Y, et al: Mettl3-mediated m6A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nat Commun. 9:47722018. View Article : Google Scholar | |
Christiansen J, Kolte AM, Hansen TVO and Nielsen FC: IGF2 mRNA-binding protein 2: Biological function and putative role in type 2 diabetes. J Mol Endocrinol. 43:187–195. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Li L, Li J, Zhao B, Huang G, Li X, Xie Z and Zhou Z: The emerging role of m6A modification in regulating the immune system and autoimmune diseases. Front Cell Dev Biol. 9:7556912021. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Chai P, Xie M, Ge S, Ruan J, Fan X and Jia R: Histone lactylation drives oncogenesis by facilitating m6A reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 22:852021. View Article : Google Scholar | |
Zhao BS, Roundtree IA and He C: Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 18:31–42. 2017. View Article : Google Scholar | |
Hastings MH: m(6)A mRNA methylation: A new circadian pacesetter. Cell. 155:740–741. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L and Pan T: N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 45:6051–6063. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, et al: N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 505:117–120. 2014. View Article : Google Scholar | |
Alarcón CR, Lee H, Goodarzi H, Halberg N and Tavazoie SF: N6-methyladenosine marks primary microRNAs for processing. Nature. 519:482–485. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chang M, Cui X, Sun Q, Wang Y, Liu J, Sun Z, Ren J, Sun Y, Han L and Li W: Lnc-PLCB1 is stabilized by METTL14 induced m6A modification and inhibits Helicobacter pylori mediated gastric cancer by destabilizing DDX21. Cancer Lett. 588:2167462024. View Article : Google Scholar : PubMed/NCBI | |
Wu P, Fang X, Liu Y, Tang Y, Wang W, Li X and Fan Y: N6-methyladenosine modification of circCUX1 confers radioresistance of hypopharyngeal squamous cell carcinoma through caspase1 pathway. Cell Death Dis. 12:2982021. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C and Chen Y: The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 6:742021. View Article : Google Scholar : PubMed/NCBI | |
Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, et al: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24:177–189. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, et al: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 10:93–95. 2014. View Article : Google Scholar : | |
Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y, Tu BP and Conrad NK: The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell. 169:824–835.e14. 2017. View Article : Google Scholar | |
Chen H, Gu L, Orellana EA, Wang Y, Guo J, Liu Q, Wang L, Shen Z, Wu H, Gregory RI, et al: METTL4 is an snRNA m6Am methyltransferase that regulates RNA splicing. Cell Res. 30:544–547. 2020. View Article : Google Scholar : PubMed/NCBI | |
Peng H, Chen B, Wei W, Guo S, Han H, Yang C, Ma J, Wang L, Peng S, Kuang M and Lin S: N6-methyladenosine (m6A) in 18S rRNA promotes fatty acid metabolism and oncogenic transformation. Nat Metab. 4:1041–1054. 2022. View Article : Google Scholar : PubMed/NCBI | |
Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M and Jaffrey SR: m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 537:369–373. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wen J, Lv R, Ma H, Shen H, He C, Wang J, Jiao F, Liu H, Yang P, Tan L, et al: Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol Cell. 69:1028–1038.e6. 2018. View Article : Google Scholar | |
Ren W, Lu J, Huang M, Gao L, Li D, Wang GG and Song J: Structure and regulation of ZCCHC4 in m6A-methylation of 28S rRNA. Nat Commun. 10:50422019. View Article : Google Scholar | |
Zhang X, Li MJ, Xia L and Zhang H: The biological function of m6A methyltransferase KIAA1429 and its role in human disease. PeerJ. 10:e143342022. View Article : Google Scholar : PubMed/NCBI | |
Liao S, Sun H and Xu C: YTH domain: A family of N6-methyladenosine (m6A) readers. Genomics Proteomics Bioinformatics. 16:99–107. 2018. View Article : Google Scholar : PubMed/NCBI | |
Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie S and Tavazoie SF: hnrnpa2b1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell. 162:1299–1308. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL, et al: Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 20:285–295. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG and He C: N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 7:885–887. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bartosovic M, Molares HC, Gregorova P, Hrossova D, Kudla G and Vanacova S: N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucleic Acids Res. 45:11356–11370. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, et al: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 49:18–29. 2013. View Article : Google Scholar : | |
Aik W, Scotti JS, Choi H, Gong L, Demetriades M, Schofield CJ and McDonough MA: Structure of human RNA N6-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res. 42:4741–4754. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou B and Han Z: Crystallization and preliminary X-ray diffraction of the RNA demethylase ALKBH5. Acta Crystallogr Sect F Struct Biol Cryst Commun. 69:1231–1234. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zou S, Toh JDW, Wong KHQ, Gao YG, Hong W and Woon ECY: N(6)-Methyladenosine: A conformational marker that regulates the substrate specificity of human demethylases FTO and ALKBH5. Sci Rep. 6:256772016. View Article : Google Scholar : PubMed/NCBI | |
Jia G, Yang CG, Yang S, Jian X, Yi C, Zhou Z and He C: Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett. 582:3313–3319. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wei LH, Wang Y, Xiao Y, Liu J, Zhang W, Yan N, Amu G, Tang X, Zhang L and Jia G: Structural insights into FTO's catalytic mechanism for the demethylation of multiple RNA substrates. Proc Natl Acad Sci USA. 116:2919–2924. 2019. View Article : Google Scholar : PubMed/NCBI | |
Feng C, Liu Y, Wang G, Deng Z, Zhang Q, Wu W, Tong Y, Cheng C and Chen Z: Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition. J Biol Chem. 289:11571–11583. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Zhang L, Zheng G, Fu Y, Ji Q, Liu F, Chen H and He C: Crystal structure of the RNA demethylase ALKBH5 from zebrafish. FEBS Lett. 588:892–898. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu C, Liu K, Tempel W, Demetriades M, Aik W, Schofield CJ and Min J: Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation. J Biol Chem. 289:17299–17311. 2014. View Article : Google Scholar : PubMed/NCBI | |
Purslow JA, Nguyen TT, Egner TK, Dotas RR, Khatiwada B and Venditti V: Active site breathing of human Alkbh5 revealed by solution NMR and accelerated molecular dynamics. Biophys J. 115:1895–1905. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ougland R, Rognes T, Klungland A and Larsen E: Non-homologous functions of the AlkB homologs. J Mol Cell Biol. 7:494–504. 2015. View Article : Google Scholar : PubMed/NCBI | |
Clifton IJ, McDonough MA, Ehrismann D, Kershaw NJ, Granatino N and Schofield CJ: Structural studies on 2-oxoglutarate oxygenases and related double-stranded beta-helix fold proteins. J Inorg Biochem. 100:644–669. 2006. View Article : Google Scholar : PubMed/NCBI | |
Aik W, McDonough MA, Thalhammer A, Chowdhury R and Schofield CJ: Role of the jelly-roll fold in substrate binding by 2-oxoglutarate oxygenases. Curr Opin Struct Biol. 22:691–700. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sundheim O, Talstad VA, Vågbø CB, Slupphaug G and Krokan HE: AlkB demethylases flip out in different ways. DNA Repair (Amst). 7:1916–1923. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yu B, Edstrom WC, Benach J, Hamuro Y, Weber PC, Gibney BR and Hunt JF: Crystal structures of catalytic complexes of the oxidative DNA/RNA repair enzyme AlkB. Nature. 439:879–884. 2006. View Article : Google Scholar : PubMed/NCBI | |
Galganski L, Urbanek MO and Krzyzosiak WJ: Nuclear speckles: Molecular organization, biological function and role in disease. Nucleic Acids Res. 45:10350–10368. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tang C, Klukovich R, Peng H, Wang Z, Yu T, Zhang Y, Zheng H, Klungland A and Yan W: ALKBH5-dependent m6A demethylation controls splicing and stability of long 3′-UTR mRNAs in male germ cells. Proc Natl Acad Sci USA. 115:E325–E333. 2018. View Article : Google Scholar | |
Tsujikawa K, Koike K, Kitae K, Shinkawa A, Arima H, Suzuki T, Tsuchiya M, Makino Y, Furukawa T, Konishi N and Yamamoto H: Expression and sub-cellular localization of human ABH family molecules. J Cell Mol Med. 11:1105–1116. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Mei C, Ma X, Du J, Wang J and Zan L: m6A methylases regulate myoblast proliferation, apoptosis and differentiation. Animals (Basel). 12:7732022. View Article : Google Scholar | |
Lv Z, Xu T, Li R, Zheng D, Li Y, Li W, Yang Y and Hao Y: Downregulation of m6A methyltransferase in the hippocampus of tyrobp −/− Mice and implications for learning and memory deficits. Front Neurosci. 16:7392012022. View Article : Google Scholar | |
Ye G, Li J, Yu W, Xie Z, Zheng G, Liu W, Wang S, Cao Q, Lin J, Su Z, et al: ALKBH5 facilitates CYP1B1 mRNA degradation via m6A demethylation to alleviate MSC senescence and osteoarthritis progression. Exp Mol Med. 55:1743–1756. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu Q, Ning J, Jiang T, Kang A, Li L, Pang Y, Zhang B, Huang X, Wang Q, et al: The proteasome-dependent degradation of ALKBH5 regulates ECM deposition in PM2.5 exposure-induced pulmonary fibrosis of mice. J Hazard Mater. 432:1286552022. View Article : Google Scholar | |
Liu C, Chen H, Tao X, Li C, Li A and Wu W: ALKBH5 protects against stroke by reducing endoplasmic reticulum stress-dependent inflammation injury via the STAT5/PERK/EIF2α/CHOP signaling pathway in an m6A-YTHDF1-dependent manner. Exp Neurol. 372:1146292024. View Article : Google Scholar | |
Deng LJ, Fang XY, Wu J, Li QR, Mao YM, Leng RX, Fan YG and Ye DQ: ALKBH5 expression could affect the function of t cells in systemic lupus erythematosus patients: A case-control study. Curr Pharm Des. 28:2270–2278. 2022. View Article : Google Scholar : PubMed/NCBI | |
Qu M, Zuo L, Zhang M, Cheng P, Guo Z, Yang J, Li C and Wu J: High glucose induces tau hyperphosphorylation in hippocampal neurons via inhibition of ALKBH5-mediated Dgkh m6A demethylation: A potential mechanism for diabetic cognitive dysfunction. Cell Death Dis. 14:3852023. View Article : Google Scholar | |
Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, Chen Y, Sulman EP, Xie K, Bögler O, et al: m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 31:591–606.e6. 2017. View Article : Google Scholar | |
Jin S, Li M, Chang H, Wang R, Zhang Z, Zhang J, He Y and Ma H: The m6A demethylase ALKBH5 promotes tumor progression by inhibiting RIG-I expression and interferon alpha production through the IKKε/TBK1/IRF3 pathway in head and neck squamous cell carcinoma. Mol Cancer. 21:972022. View Article : Google Scholar | |
Zhai J, Chen H, Wong CC, Peng Y, Gou H, Zhang J, Pan Y, Chen D, Lin Y, Wang S, et al: ALKBH5 drives immune suppression via targeting AXIN2 to promote colorectal cancer and is a target for boosting immunotherapy. Gastroenterology. 165:445–462. 2023. View Article : Google Scholar : PubMed/NCBI | |
Nie S, Zhang L, Liu J, Wan Y, Jiang Y, Yang J, Sun R, Ma X, Sun G, Meng H, et al: ALKBH5-HOXA10 loop-mediated JAK2 m6A demethylation and cisplatin resistance in epithelial ovarian cancer. J Exp Clin Cancer Res. 40:2842021. View Article : Google Scholar : PubMed/NCBI | |
Liang L, Zhu Y, Li J, Zeng J and Wu L: ALKBH5-mediated m6A modification of circCCDC134 facilitates cervical cancer metastasis by enhancing HIF1A transcription. J Exp Clin Cancer Res. 41:2612022. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Li Y, Wang P, Han G, Zhang T, Chang J, Yin R, Shan Y, Wen J, Xie X, et al: Leukemogenic chromatin alterations promote AML leukemia stem cells via a KDM4C-ALKBH5-AXL signaling axis. Cell Stem Cell. 27:81–97.e8. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Lyu H, Jiang G, Chen D, Ruan S, Liu S, Zhou L, Yang M, Zeng S, He Z, et al: ALKBH5-mediated m6A demethylation of GLUT4 mRNA promotes glycolysis and resistance to HER2-targeted therapy in breast cancer. Cancer Res. 82:39742022. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Zhao S, Liu H, Liu Y, Zhang Z, Zhou Z, Wang P, Qi S and Xie J: ALKBH5 facilitates the progression of skin cutaneous melanoma via mediating ABCA1 demethylation and modulating autophagy in an m6A-dependent manner. Int J Biol Sci. 20:1729–1743. 2024. View Article : Google Scholar : | |
Chen Y, Zhao Y, Chen J, Peng C, Zhang Y, Tong R, Cheng Q, Yang B, Feng X, Lu Y, et al: ALKBH5 suppresses malignancy of hepatocellular carcinoma via m6A-guided epigenetic inhibition of LYPD1. Mol Cancer. 19:1232020. View Article : Google Scholar | |
Jin D, Guo J, Wu Y, Yang L, Wang X, Du J, Dai J, Chen W, Gong K, Miao S, et al: m6A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC. Mol Cancer. 19:402020. View Article : Google Scholar | |
Shen D, Lin J, Xie Y, Zhuang Z, Xu G, Peng S, Tang G, Bai L, Zhu M, Zhang Y, et al: RNA demethylase ALKBH5 promotes colorectal cancer progression by posttranscriptional activation of RAB5A in an m6A-YTHDF2-dependent manner. Clin Transl Med. 13:e12792023. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Gong C, Li Z, Liu J, Chen Y, Huang Y, Luo Q, Wang S, Hou Y, Yang S and Xiao Y: Demethylase ALKBH5 suppresses invasion of gastric cancer via PKMYT1 m6A modification. Mol Cancer. 21:342022. View Article : Google Scholar : PubMed/NCBI | |
Dong F, Qin X, Wang B, Li Q, Hu J, Cheng X, Guo D, Cheng F, Fang C, Tan Y, et al: ALKBH5 facilitates hypoxia-induced paraspeckle assembly and IL8 secretion to generate an immunosuppressive tumor microenvironment. Cancer Res. 81:5876–5888. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Feng M, Hao X, Gao Z, Wu Z, Wang Y, Du L and Wang C: m6A methylation regulates hypoxia-induced pancreatic cancer glycolytic metabolism through ALKBH5-HDAC4-HIF1α positive feedback loop. Oncogene. 42:2047–2060. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Huang Q, Liao Z, Zhang H, Liu Y, Liu F, Chen X, Zhang B, Chen Y and Zhu P: ALKBH5 prevents hepatocellular carcinoma progression by post-transcriptional inhibition of PAQR4 in an m6A dependent manner. Exp Hematol Oncol. 12:12023. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Wu X, Gu Y, Shi R, Yu T, Pan Y, Zhang J, Jing X, Ma P and Shu Y: LINC00659 cooperated with ALKBH5 to accelerate gastric cancer progression by stabilising JAK1 mRNA in an m6 A-YTHDF2-dependent manner. Clin Transl Med. 13:e12052023. View Article : Google Scholar | |
Tang B, Yang Y, Kang M, Wang Y, Wang Y, Bi Y, He S and Shimamoto F: m6A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling. Mol Cancer. 19:32020. View Article : Google Scholar | |
Jiang Y, Wan Y, Gong M, Zhou S, Qiu J and Cheng W: RNA demethylase ALKBH5 promotes ovarian carcinogenesis in a simulated tumour microenvironment through stimulating NF-κB pathway. J Cell Mol Med. 24:6137–6148. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu X, Wang Y, Lai S, Wang Z, Yang Y, Liu W, Wang H and Tang B: The m6A demethylase ALKBH5-mediated upregulation of DDIT4-AS1 maintains pancreatic cancer stemness and suppresses chemosensitivity by activating the mTOR pathway. Mol Cancer. 21:1742022. View Article : Google Scholar | |
Chen C, Zhai E, Liu Y, Qian Y, Zhao R, Ma Y, Liu J, Huang Z, Chen J and Cai S: ALKBH5-mediated CHAC1 depletion promotes malignant progression and decreases cisplatin-induced oxidative stress in gastric cancer. Cancer Cell Int. 23:2932023. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Li K, Jiang W, Hu Y, Xiao W, Huang Y, Feng Y, Pan Q and Wan R: RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Mol Cancer. 19:912020. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Li M and Wang L: LncRNA CASC11 promotes hepatocellular carcinoma progression via upregulation of UBE2T in a m6A-dependent manner. Front Oncol. 11:7726712021. View Article : Google Scholar | |
Lagergren J and Lagergren P: Oesophageal cancer. BMJ. 341:c62802010. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nagtegaal ID, Odze RD, Klimstra D, Paradis V, Rugge M, Schirmacher P, Washington KM, Carneiro F and Cree IA; WHO Classification of Tumours Editorial Board: The 2019 WHO classification of tumours of the digestive system. Histopathology. 76:182–188. 2020. View Article : Google Scholar : | |
Zhang J, Guo S, Piao HY, Wang Y, Wu Y, Meng XY, Yang D, Zheng ZC and Zhao Y: ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1. J Physiol Biochem. 75:379–389. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Wang Y, Zhang Z, Zhu C, Wang C, Yu F and Zhao E: Long non-coding RNA NRON promotes tumor proliferation by regulating ALKBH5 and nanog in gastric cancer. J Cancer. 12:6861–6872. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Yun J, Tang W, Familiari G, Relucenti M, Wu J, Li X, Chen H and Chen R: Therapeutic m6A eraser ALKBH5 mRNA-loaded exosome-liposome hybrid nanoparticles inhibit progression of colorectal cancer in preclinical tumor models. ACS Nano. 17:11838–11854. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ye M, Hu C, Chen T, Yu P, Chen J, Lu F, Xu L, Zhong Y, Yan L, Kan J, et al: FABP5 suppresses colorectal cancer progression via mTOR-mediated autophagy by decreasing FASN expression. Int J Biol Sci. 19:3115–3127. 2023. View Article : Google Scholar : PubMed/NCBI | |
You Y, Wen D, Zeng L, Lu J, Xiao X, Chen Y, Song H and Liu Z: ALKBH5/MAP3K8 axis regulates PD-L1+ macrophage infiltration and promotes hepatocellular carcinoma progression. Int J Biol Sci. 18:5001–5018. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lin C, Wang Y, Dong Y, Lai S, Wang L, Weng S and Zhang X: N6-methyladenosine-mediated SH3BP5-AS1 upregulation promotes GEM chemoresistance in pancreatic cancer by activating the Wnt signaling pathway. Biol Direct. 17:332022. View Article : Google Scholar : PubMed/NCBI | |
He Y, Yue H, Cheng Y, Ding Z, Xu Z, Lv C, Wang Z, Wang J, Yin C, Hao H and Chen C: ALKBH5-mediated m6A demethylation of KCNK15-AS1 inhibits pancreatic cancer progression via regulating KCNK15 and PTEN/AKT signaling. Cell Death Dis. 12:11212021. View Article : Google Scholar | |
Xiao D, Fang TX, Lei Y, Xiao SJ, Xia JW, Lin TY, Li YL, Zhai JX, Li XY, Huang SH, et al: m6A demethylase ALKBH5 suppression contributes to esophageal squamous cell carcinoma progression. Aging (Albany NY). 13:21497–21512. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Li S, Zhang K, Zhao R, Cui J, Zhou W, Liu Y, Zhang L and Cheng Y: N6-methyladenosine demethylase ALKBH5 suppresses malignancy of esophageal cancer by regulating microRNA biogenesis and RAI1 expression. Oncogene. 40:5600–5612. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xue J, Xiao P, Yu X and Zhang X: A positive feedback loop between AlkB homolog 5 and miR-193a-3p promotes growth and metastasis in esophageal squamous cell carcinoma. Hum Cell. 34:502–514. 2021. View Article : Google Scholar | |
Qiao Z, Li Y, Cheng Y, Li S and Liu S: SHMT2 regulates esophageal cancer cell progression and immune Escape by mediating m6A modification of c-myc. Cell Biosci. 13:2032023. View Article : Google Scholar : PubMed/NCBI | |
Nagaki Y, Motoyama S, Yamaguchi T, Hoshizaki M, Sato Y, Sato T, Koizumi Y, Wakita A, Kawakita Y, Imai K, et al: m6 A demethylase ALKBH5 promotes proliferation of esophageal squamous cell carcinoma associated with poor prognosis. Genes Cells. 25:547–561. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Zhang H, Yang D, Min Q, Wang Y, Zhang W and Zhan Q: The m6A-induced lncRNA CASC8 promotes proliferation and chemoresistance via upregulation of hnRNPL in esophageal squamous cell carcinoma. Int J Biol Sci. 18:4824–4836. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu N, Dai Q, Zheng G, He C, Parisien M and Pan T: N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 518:560–564. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tay Y, Rinn J and Pandolfi PP: The multilayered complexity of ceRNA crosstalk and competition. Nature. 505:344–352. 2014. View Article : Google Scholar : PubMed/NCBI | |
Smyth EC, Nilsson M, Grabsch HI, van Grieken NC and Lordick F: Gastric cancer. Lancet. 396:635–648. 2020. View Article : Google Scholar : PubMed/NCBI | |
López MJ, Carbajal J, Alfaro AL, Saravia LG, Zanabria D, Araujo JM, Quispe L, Zevallos A, Buleje JL, Cho CE, et al: Characteristics of gastric cancer around the world. Crit Rev Oncol Hematol. 181:1038412023. View Article : Google Scholar | |
Ji T, Gao X, Li D, Huai S, Chi Y, An X, Ji W, Yang S and Li J: Identification and validation of signature for prognosis and immune microenvironment in gastric cancer based on m6A demethylase ALKBH5. Front Oncol. 12:10794022023. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Huang Y, Jiang M, Tang Y, Wang Q, Bai L, Yu C, Yang X, Ding K, Wang W, et al: The demethylase ALKBH5 mediates ZKSCAN3 expression through the m6A modification to activate VEGFA transcription and thus participates in MNNG-induced gastric cancer progression. J Hazard Mater. 473:1346902024. View Article : Google Scholar | |
Xu X, Zhou E, Zheng J, Zhang C, Zou Y, Lin J and Yu J: Prognostic and predictive value of m6a 'eraser' related gene signature in gastric cancer. Front Oncol. 11:6318032021. View Article : Google Scholar | |
Fang D, Ou X, Sun K, Zhou X, Li Y, Shi P, Zhao Z, He Y, Peng J and Xu J: m6A modification-mediated lncRNA TP53TG1 inhibits gastric cancer progression by regulating CIP2A stability. Cancer Sci. 113:4135–4150. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Zhu X, Hao Y, Su TT and Shi W: ALKBH5-mediated m6A modification of circFOXP1 promotes gastric cancer progression by regulating SOX4 expression and sponging miR-338-3p. Commun Biol. 7:5652024. View Article : Google Scholar : PubMed/NCBI | |
Suo D, Gao X, Chen Q, Zeng T, Zhan J, Li G, Zheng Y, Zhu S, Yun J, Guan XY and Li Y: HSPA4 upregulation induces immune evasion via ALKBH5/CD58 axis in gastric cancer. J Exp Clin Cancer Res. 43:1062024. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Nie J, Xu K, Liu Y, Tong W, Li A, Zuo W, Liu Z and Yang F: YY1 is regulated by ALKBH5-mediated m6A modification and promotes autophagy and cancer progression through targeting ATG4B. Aging (Albany NY). 15:9590–9613. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM and Wallace MB: Colorectal cancer. Lancet. 394:1467–1480. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Wang L, Zhao L, Wang Q, Yang C, Zhang M, Wang B, Jiang K, Ye Y, Wang S and Shen Z: N6-methyladenosine demethylase ALKBH5 suppresses colorectal cancer progression potentially by decreasing PHF20 mRNA methylation. Clin Transl Med. 12:e9402022. View Article : Google Scholar : PubMed/NCBI | |
Luo J, Yu H, Yuan Z, Ye T and Hu B: ALKBH5 decreases SLC7A11 expression by erasing m6A modification and promotes the ferroptosis of colorectal cancer cells. Clin Transl Oncol. 25:2265–2276. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ji J, Liu S, Liang Y and Zheng G: Comprehensive analysis of m6A regulators and relationship with tumor microenvironment, immunotherapy strategies in colorectal adenocarcinoma. BMC Genom Data. 24:442023. View Article : Google Scholar : PubMed/NCBI | |
Ji L, Chen S, Gu L and Zhang X: Exploration of potential Roles of m6A regulators in colorectal cancer prognosis. Front Oncol. 10:7682020. View Article : Google Scholar : PubMed/NCBI | |
Ge J, Liu SL, Zheng JX, Shi Y, Shao Y, Duan YJ, Huang R, Yang LJ and Yang T: RNA demethylase ALKBH5 suppresses tumorigenesis via inhibiting proliferation and invasion and promoting CD8+ T cell infiltration in colorectal cancer. Transl Oncol. 34:1016832023. View Article : Google Scholar : | |
Wu X, Dai M, Li J, Cai J, Zuo Z, Ni S, Zhang Q and Zhou Z: m(6) A demethylase ALKBH5 inhibits cell proliferation and the metastasis of colorectal cancer by regulating the FOXO3/miR-21/SPRY2 axis. Am J Transl Res. 13:11209–11222. 2021. | |
Yan G, An Y, Xu B, Wang N, Sun X and Sun M: Potential impact of ALKBH5 and YTHDF1 on tumor immunity in colon adenocarcinoma. Front Oncol. 11:6704902021. View Article : Google Scholar : PubMed/NCBI | |
Ye M, Chen J, Lu F, Zhao M, Wu S, Hu C, Yu P, Kan J, Bai J, Tian Y and Tang Q: Down-regulated FTO and ALKBH5 co-operatively activates FOXO signaling through m6A methylation modification in HK2 mRNA mediated by IGF2BP2 to enhance glycolysis in colorectal cancer. Cell Biosci. 13:1482023. View Article : Google Scholar : PubMed/NCBI | |
Shao Y, Liu Z, Song X, Sun R, Zhou Y, Zhang D, Sun H, Huang J, Wu C, Gu W, et al: ALKBH5/YTHDF2-mediated m6A modification of circAFF2 enhances radiosensitivity of colorectal cancer by inhibiting Cullin neddylation. Clin Transl Med. 13:e13182023. View Article : Google Scholar : PubMed/NCBI | |
Liu N, Jiang X, Zhang G, Long S, Li J, Jiang M, Jia G, Sun R, Zhang L and Zhang Y: LncRNA CARMN m6A demethylation by ALKBH5 inhibits mutant p53-driven tumour progression through miR-5683/FGF2. Clin Transl Med. 14:e17772024. View Article : Google Scholar : PubMed/NCBI | |
Feng L, Li M, Ma J, Wang W, Wang S, Mao Z and Zhang Y: ALKBH5 regulates arginase 1 expression in MDSCs and their immunosuppressive activity in tumor-bearing host. Noncoding RNA Res. 9:913–920. 2024. View Article : Google Scholar : PubMed/NCBI | |
Guo T, Liu DF, Peng SH and Xu AM: ALKBH5 promotes colon cancer progression by decreasing methylation of the lncRNA NEAT1. Am J Transl Res. 12:4542–4549. 2020.PubMed/NCBI | |
Yue S, Li J, Lee SY, Lee HJ, Shao T, Song B, Cheng L, Masterson TA, Liu X, Ratliff TL and Cheng JX: Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 19:393–406. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lewis CA, Brault C, Peck B, Bensaad K, Griffiths B, Mitter R, Chakravarty P, East P, Dankworth B, Alibhai D, et al: SREBP maintains lipid biosynthesis and viability of cancer cells under lipid- and oxygen-deprived conditions and defines a gene signature associated with poor survival in glioblastoma multiforme. Oncogene. 34:5128–5140. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil GS, et al: Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 17:1498–1503. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Xiao L, Sugiura H, Huang X, Ali A, Kuro-o M, Deberardinis RJ and Boothman DA: Metabolic reprogramming during TGFβ1-induced epithelial-to-mesenchymal transition. Oncogene. 34:3908–3916. 2015. View Article : Google Scholar | |
Howe LR, Chang SH, Tolle KC, Dillon R, Young LJ, Cardiff RD, Newman RA, Yang P, Thaler HT, Muller WJ, et al: HER2/neu-induced mammary tumorigenesis and angiogenesis are reduced in cyclooxygenase-2 knockout mice. Cancer Res. 65:10113–10119. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ma C, Kesarwala AH, Eggert T, Medina-Echeverz J, Kleiner DE, Jin P, Stroncek DF, Terabe M, Kapoor V, ElGindi M, et al: NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature. 531:253–257. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun M, Yue Y, Wang X, Feng H, Qin Y, Chen M, Wang Y and Yan S: ALKBH5-mediated upregulation of CPT1A promotes macrophage fatty acid metabolism and M2 macrophage polarization, facilitating malignant progression of colorectal cancer. Exp Cell Res. 437:1139942024. View Article : Google Scholar : PubMed/NCBI | |
Li S, Du M, Xu K, Ben S, Zhu T, Guo M, Xin J, Zhu L, Gu D, Zhang Z and Wang M: Genetic modulation of BET1L confers colorectal cancer susceptibility by reducing miRNA binding and m6A modification. Cancer Res. 83:2142–2154. 2023. View Article : Google Scholar : PubMed/NCBI | |
El-Serag HB and Rudolph KL: Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology. 132:2557–2576. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chang Q, Zhou X, Mao H, Feng J, Wu X, Zhang Z and Hu Z: ALKBH5 promotes hepatocellular carcinoma cell proliferation, migration and invasion by regulating TTI1 expression. Biomol Biomed. 24:1216–1230. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Liu Y, Wang W, Liu F, Wang W, Su C, Zhu H, Liao Z, Zhang B and Chen X: ALKBH5-mediated m6A modification of lincRNA LINC02551 enhances the stability of DDX24 to promote hepatocellular carcinoma growth and metastasis. Cell Death Dis. 13:9262022. View Article : Google Scholar | |
Sarin SK, Kumar M, Eslam M, George J, Al Mahtab M, Akbar SMF, Jia J, Tian Q, Aggarwal R, Muljono DH, et al: Liver diseases in the Asia-Pacific region: A lancet gastroenterology & hepatology commission. Lancet Gastroenterol Hepatol. 5:167–228. 2020. View Article : Google Scholar | |
Wang H, Wang Y, Lai S, Zhao L, Liu W, Liu S, Chen H, Wang J, Du G and Tang B: LINC01468 drives NAFLD-HCC progression through CUL4A-linked degradation of SHIP2. Cell Death Discov. 8:4492022. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Kang M, Liu X, Wang Z, Wang Y, Chen H, Liu W, Liu S, Li B, Li C, et al: UBR7 inhibits HCC tumorigenesis by targeting Keap1/Nrf2/Bach1/HK2 and glycolysis. J Exp Clin Cancer Res. 41:3302022. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Wang Q, Wang X, Xu Z, Wei X and Li J: Circular RNA cIARS regulates ferroptosis in HCC cells through interacting with RNA binding protein ALKBH5. Cell Death Discov. 6:722020. View Article : Google Scholar : PubMed/NCBI | |
Adjibade P, Di-Marco S, Gallouzi IE and Mazroui R: The RNA demethylases ALKBH5 and FTO regulate the translation of ATF4 mRNA in sorafenib-treated hepatocarcinoma cells. Biomolecules. 14:9322024. View Article : Google Scholar : PubMed/NCBI | |
Yeermaike A, Gu P, Liu D and Nadire T: LncRNA NEAT1 sponges miR-214 to promoted tumor growth in hepatocellular carcinoma. Mamm Genome. 33:525–533. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Jiang Y, Lu J, Peng C, Ling Z, Chen Y, Chen D, Tong R, Zheng S and Wu J: m6A-modification regulated circ-CCT3 acts as the sponge of miR-378a-3p to promote hepatocellular carcinoma progression. Epigenetics. 18:22047722023. View Article : Google Scholar | |
Chen Y, Ling Z, Cai X, Xu Y, Lv Z, Man D, Ge J, Yu C, Zhang D, Zhang Y, et al: Activation of YAP1 by N6-methyladenosine-modified circcpsf6 drives malignancy in hepatocellular carcinoma. Cancer Res. 82:599–614. 2022. View Article : Google Scholar | |
Levrero M and Zucman-Rossi J: Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol. 64(Suppl 1): S84–S101. 2016. View Article : Google Scholar : PubMed/NCBI | |
Meng Y, Shu Z, Wang X, Hong L, Wang B, Jiang J, He K, Cao Q, Shi F, Wang H, et al: Hepatitis B virus-mediated m6A demethylation increases hepatocellular carcinoma stemness and immune escape. Mol Cancer Res. 22:642–655. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tian Y, Yang W, Song J, Wu Y and Ni B: Hepatitis B virus X protein-induced aberrant epigenetic modifications contributing to human hepatocellular carcinoma pathogenesis. Mol Cell Biol. 33:2810–2816. 2013. View Article : Google Scholar : PubMed/NCBI | |
Qu S, Jin L, Huang H, Lin J, Gao W and Zeng Z: A positive-feedback loop between HBx and ALKBH5 promotes hepatocellular carcinogenesis. BMC Cancer. 21:6862021. View Article : Google Scholar : PubMed/NCBI | |
Razumilava N and Gores GJ: Cholangiocarcinoma. Lancet. 383:2168–2179. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Yu M, Liu Z, Liu Y, Kong Z, Zhu C, Qin X, Li Y and Tang L: m6A demethylase ALKBH5 maintains stemness of intrahepatic cholangiocarcinoma by sustaining BUB1B expression and cell proliferation. Transl Oncol. 41:1018582024. View Article : Google Scholar | |
Qiu X, Yang S, Wang S, Wu J, Zheng B, Wang K, Shen S, Jeong S, Li Z, Zhu Y, et al: M6A demethylase ALKBH5 regulates PD-L1 expression and tumor immunoenvironment in intrahepatic cholangiocarcinoma. Cancer Res. 81:4778–4793. 2021. View Article : Google Scholar : PubMed/NCBI | |
Roa JC, García P, Kapoor VK, Maithel SK, Javle M and Koshiol J: Gallbladder cancer. Nat Rev Dis Primers. 8:692022. View Article : Google Scholar : PubMed/NCBI | |
Jiang D, Wu Y, Liu L, Shen Y, Li T, Lu Y, Wang P, Sun C, Wang K, Wang K and Ye H: Burden of gastrointestinal tumors in Asian countries, 1990-2021: An analysis for the global burden of disease study 2021. Clin Epidemiol. 16:587–601. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Ke Q, Jiang L, Hong H, Pan W, Chen W, Abudukeremu X, She F and Chen Y: TGF-β1 facilitates gallbladder carcinoma metastasis by regulating FOXA1 translation efficiency through m6A modification. Cell Death Dis. 15:4222024. View Article : Google Scholar | |
Oettle H, Neuhaus P, Hochhaus A, Hartmann JT, Gellert K, Ridwelski K, Niedergethmann M, Zülke C, Fahlke J, Arning MB, et al: Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: The CONKO-001 randomized trial. JAMA. 310:1473–1481. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zeng S, Pöttler M, Lan B, Grützmann R, Pilarsky C and Yang H: Chemoresistance in pancreatic cancer. Int J Mol Sci. 20:45042019. View Article : Google Scholar : | |
Zhang T, Sheng P and Jiang Y: m6A regulators are differently expressed and correlated with immune response of pancreatic adenocarcinoma. J Cancer Res Clin Oncol. 149:2805–2822. 2023. View Article : Google Scholar | |
Cho SH, Ha M, Cho YH, Ryu JH, Yang K, Lee KH, Han ME, Oh SO and Kim YH: ALKBH5 gene is a novel biomarker that predicts the prognosis of pancreatic cancer: A retrospective multicohort study. Ann Hepatobiliary Pancreat Surg. 22:305–309. 2018. View Article : Google Scholar : PubMed/NCBI | |
He Y, Hu H, Wang Y, Yuan H, Lu Z, Wu P, Liu D, Tian L, Yin J, Jiang K and Miao Y: ALKBH5 inhibits pancreatic cancer motility by decreasing long non-coding RNA KCNK15-AS1 methylation. Cell Physiol Biochem. 48:838–846. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lai S, Wang Y, Li T, Dong Y, Lin Y, Wang L, Weng S, Zhang X and Lin C: N6-methyladenosine-mediated CELF2 regulates CD44 alternative splicing affecting tumorigenesis via ERAD pathway in pancreatic cancer. Cell Biosci. 12:1252022. View Article : Google Scholar : PubMed/NCBI | |
Huang R, Yang L, Zhang Z, Liu X, Fei Y, Tong WM, Niu Y and Liang Z: RNA m6A demethylase ALKBH5 protects against pancreatic ductal adenocarcinoma via targeting regulators of iron metabolism. Front Cell Dev Biol. 9:7242822021. View Article : Google Scholar | |
Tan Z, Xu J, Zhang B, Shi S, Yu X and Liang C: Hypoxia: A barricade to conquer the pancreatic cancer. Cell Mol Life Sci. 77:3077–3083. 2020. View Article : Google Scholar : PubMed/NCBI | |
Williams JK, Schwarz JL and Keutgen XM: Surgery for metastatic pancreatic neuroendocrine tumors: A narrative review. Hepatobiliary Surg Nutr. 12:69–83. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Ye M, Bai J, Gong Z, Yan L, Gu D, Hu C, Lu F, Yu P, Xu L, et al: ALKBH5 enhances lipid metabolism reprogramming by increasing stability of FABP5 to promote pancreatic neuroendocrine neoplasms progression in an m6A-IGF2BP2-dependent manner. J Transl Med. 21:7412023. View Article : Google Scholar : PubMed/NCBI | |
Guo H, Wang B, Xu K, Nie L, Fu Y, Wang Z, Wang Q, Wang S and Zou X: m6A reader HNRNPA2B1 promotes esophageal cancer progression via up-regulation of ACLY and ACC1. Front Oncol. 10:5530452020. View Article : Google Scholar | |
Xu LC, Pan JX and Pan H: Construction and validation of an m6A RNA methylation regulators-based prognostic signature for esophageal cancer. Cancer Manag Res. 12:5385–5394. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Huang Z, Jiang P, Wu R, Jiang H, Luo C, Hong H and Yin H: Elevated N6-methyladenosine RNA levels in peripheral blood immune cells: A novel predictive biomarker and therapeutic target for colorectal cancer. Front Immunol. 12:7607472021. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Liu L, Dong Z, Li J, Yu Y, Chen X, Ren F, Cui G and Sun R: Expression patterns and prognostic value of m6A-related genes in colorectal cancer. Am J Transl Res. 11:3972–3991. 2019. | |
Nakagawa N, Tanaka K, Sonohara F, Kandimalla R, Sunagawa Y, Inokawa Y, Takami H, Hayashi M, Yamada S, Kanda M, et al: Novel prognostic implications of methylated RNA and demethylases in resected HCC and background liver tissue. Anticancer Res. 40:6665–6676. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yao Y, Luo L, Xiang G, Xiong J, Ke N, Tan C, Chen Y and Liu X: The expression of m6A regulators correlated with the immune microenvironment plays an important role in the prognosis of pancreatic ductal adenocarcinoma. Gland Surg. 11:147–165. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lin B, Pan Y, Yu D, Dai S, Sun H, Chen S, Zhang J, Xiang Y and Huang C: Screening and identifying m6A regulators as an independent prognostic biomarker in pancreatic cancer based on the cancer genome atlas database. Biomed Res Int. 2021:55736282021. View Article : Google Scholar : PubMed/NCBI | |
Xu F, Zhang Z, Yuan M, Zhao Y, Zhou Y, Pei H and Bai L: M6A regulatory genes play an important role in the prognosis, progression and immune microenvironment of pancreatic adenocarcinoma. Cancer Invest. 39:39–54. 2021. View Article : Google Scholar | |
Takahashi H, Hase H, Yoshida T, Tashiro J, Hirade Y, Kitae K and Tsujikawa K: Discovery of two novel ALKBH5 selective inhibitors that exhibit uncompetitive or competitive type and suppress the growth activity of glioblastoma multiforme. Chem Biol Drug Des. 100:1–12. 2022. View Article : Google Scholar : PubMed/NCBI | |
Selberg S, Seli N, Kankuri E and Karelson M: Rational design of novel anticancer small-molecule RNA m6A demethylase ALKBH5 inhibitors. ACS Omega. 6:13310–13320. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li N, Kang Y, Wang L, Huff S, Tang R, Hui H, Agrawal K, Gonzalez GM, Wang Y, Patel SP and Rana TM: ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci USA. 117:20159–20170. 2020. View Article : Google Scholar : PubMed/NCBI | |
Malacrida A, Rivara M, Di Domizio A, Cislaghi G, Miloso M, Zuliani V and Nicolini G: 3D proteome-wide scale screening and activity evaluation of a new ALKBH5 inhibitor in U87 glioblastoma cell line. Bioorg Med Chem. 28:1153002020. View Article : Google Scholar : PubMed/NCBI | |
Li F, Kennedy S, Hajian T, Gibson E, Seitova A, Xu C, Arrowsmith CH and Vedadi M: A radioactivity-based assay for screening human m6A-RNA methyltransferase, METTL3-METTL14 complex, and demethylase ALKBH5. J Biomol Screen. 21:290–297. 2016. View Article : Google Scholar | |
Tang W, Xu N, Zhou J, He Z, Lenahan C, Wang C, Ji H, Liu B, Zou Y, Zeng H and Guo H: ALKBH5 promotes PD-L1-mediated immune escape through m6A modification of ZDHHC3 in glioma. Cell Death Discov. 8:4972022. View Article : Google Scholar : PubMed/NCBI | |
Fang Z, Mu B, Liu Y, Guo N, Xiong L, Guo Y, Xia A, Zhang R, Zhang H, Yao R, et al: Discovery of a potent, selective and cell active inhibitor of m6A demethylase ALKBH5. Eur J Med Chem. 238:1144462022. View Article : Google Scholar | |
You Y, Fu Y, Huang M, Shen D, Zhao B, Liu H, Zheng Y and Huang L: Recent advances of m6A demethylases inhibitors and their biological functions in human diseases. Int J Mol Sci. 23:58152022. View Article : Google Scholar : PubMed/NCBI | |
Wang YZ, Li HY, Zhang Y, Jiang RX, Xu J, Gu J, Jiang Z, Jiang ZY, You QD and Guo XK: Discovery of Pyrazolo[1,5-a] pyrimidine Derivative as a novel and Selective ALKBH5 inhibitor for the treatment of AML. J Med Chem. 66:15944–15959. 2023. View Article : Google Scholar : PubMed/NCBI | |
Komal S, Gohar A, Althobaiti S, Ahmad Khan I, Cui LG, Zhang LR, Han SN and Shakeel M: ALKBH5 inhibitors as a potential treatment strategy in heart failure-inferences from gene expression profiling. Front Cardiovasc Med. 10:11943112023. View Article : Google Scholar : PubMed/NCBI | |
Chang G, Xie GS, Ma L, Li P, Li L and Richard HT: USP36 promotes tumorigenesis and drug sensitivity of glioblastoma by deubiquitinating and stabilizing ALKBH5. Neuro Oncol. 25:841–853. 2023. View Article : Google Scholar : | |
Cheng C, Wang P, Yang Y, Du X, Xia H, Liu J, Lu L, Wu H and Liu Q: Smoking-induced M2-TAMs, via circEML4 in EVs, promote the progression of NSCLC through ALKBH5-regulated m6A modification of SOCS2 in NSCLC cells. Adv Sci (Weinh). 10:e23009532023. View Article : Google Scholar : PubMed/NCBI | |
Shen C, Sheng Y, Zhu AC, Robinson S, Jiang X, Dong L, Chen H, Su R, Yin Z, Li W, et al: RNA demethylase ALKBH5 selectively promotes tumorigenesis and cancer stem cell self-renewal in acute myeloid leukemia. Cell Stem Cell. 27:64–80.e9. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhang Y, Qu B, Yang H, Hu S and Dong X: If small molecules immunotherapy comes can the prime be far behind? Eur J Med Chem. 218:1133562021. View Article : Google Scholar | |
Schrödinger, LLC: The PyMOL molecular graphics system version 2.6.0a0. 2010. |