Recent advances in nanomaterials for the detection of mycobacterium tuberculosis (Review)
- Authors:
- Jianmeng Zhu
- Hongqin Wang
- Lili Chen
-
Affiliations: Clinical Laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Affiliated Chun'an Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 311700, P.R. China, Orthopedics of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Affiliated Chun'an Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 311700, P.R. China - Published online on: December 24, 2024 https://doi.org/10.3892/ijmm.2024.5477
- Article Number: 36
-
Copyright: © Zhu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bagcchi S: WHO's global tuberculosis report 2022. Lancet Microbe. 4:e202023. View Article : Google Scholar | |
Asadi L, Croxen M, Heffernan C, Dhillon M, Paulsen C, Egedahl ML, Tyrrell G, Doroshenko A and Long R: How much do smear-negative patients really contribute to tuberculosis transmissions? Re-examining an old question with new tools. EClinicalMedicine. 43:1012502022. View Article : Google Scholar : PubMed/NCBI | |
Meriki HD, Wung NH, Tufon KA, Tony NJ, Ane-Anyangwe I and Cho-Ngwa F: Evaluation of the performance of an in-house duplex PCR assay targeting the IS6110 and rpoB genes for tuberculosis diagnosis in Cameroon. BMC Infect Dis. 20:7912020. View Article : Google Scholar : PubMed/NCBI | |
Natarajan S, Ranganathan M, Hanna LE and Tripathy S: Transcriptional profiling and deriving a seven-gene signature that discriminates active and latent tuberculosis: An integrative bioinformatics approach. Genes (Basel). 13:6162022. View Article : Google Scholar : PubMed/NCBI | |
Molloy A, Harrison J, McGrath JS, Owen Z, Smith C, Liu X, Li X and Cox JAG: Microfluidics as a novel technique for tuberculosis: From diagnostics to drug discovery. Microorganisms. 9:23302021. View Article : Google Scholar : PubMed/NCBI | |
Meier JP, Möbus S, Heigl F, Asbach-Nitzsche A, Niller HH, Plentz A, Avsar K, Heiß-Neumann M, Schaaf B, Cassens U, et al: Performance of T-Track® TB, a novel dual marker RT-qPCR-based whole-blood test for improved detection of active tuberculosis. Diagnostics (Basel). 13:7582023. View Article : Google Scholar | |
Çiftci İH and Karakeçe E: Comparative evaluation of TK SLC-L, a rapid liquid mycobacterial culture medium, with the MGIT system. BMC Infect Dis. 14:1302014. View Article : Google Scholar : PubMed/NCBI | |
Okoi C anderson STB, Antonio M, Mulwa SN, Gehre F and Adetifa IMO: Non-tuberculous mycobacteria isolated from pulmonary samples in sub-Saharan Africa-a systematic review and meta analyses. Sci Rep. 7:120022017. View Article : Google Scholar | |
Reed JL, Walker ZJ, Basu D, Allen V, Nicol MP, Kelso DM and McFall SM: Highly sensitive sequence specific qPCR detection of Mycobacterium tuberculosis complex in respiratory specimens. Tuberculosis (Edinb). 101:114–124. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Fan S, Ma Y, Chen H, Xu JF, Pi J, Wang W and Chen G: Current progress of functional nanobiosensors for potential tuberculosis diagnosis: The novel way for TB control? Front Bioeng Biotechnol. 10:10366782022. View Article : Google Scholar : | |
Lyu M, Zhou J, Zhou Y, Chong W, Xu W, Lai H, Niu L, Hai Y, Yao X, Gong S, et al: From tuberculosis bedside to bench: UBE2B splicing as a potential biomarker and its regulatory mechanism. Signal Transduct Target Ther. 8:822023. View Article : Google Scholar : PubMed/NCBI | |
Metcalf T, Soria J, Montano SM, Ticona E, Evans CA, Huaroto L, Kasper M, Ramos ES, Mori N, Jittamala P, et al: Evaluation of the GeneXpert MTB/RIF in patients with presumptive tuberculous meningitis. PLoS One. 13:e01986952018. View Article : Google Scholar : PubMed/NCBI | |
Tu Phan LM, Tufa LT, Kim HJ, Lee J and Park TJ: Trends in diagnosis for active tuberculosis using nanomaterials. Curr Med Chem. 26:1946–1959. 2019. View Article : Google Scholar | |
Joshi H, Kandari D, Maitra SS and Bhatnagar R: Biosensors for the detection of Mycobacterium tuberculosis: A comprehensive overview. Crit Rev Microbiol. 48:784–812. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pourakbari R, Shadjou N, Yousefi H, Isildak I, Yousefi M, Rashidi MR and Khalilzadeh B: Recent progress in nanomaterial-based electrochemical biosensors for pathogenic bacteria. Mikrochim Acta. 186:8202019. View Article : Google Scholar : PubMed/NCBI | |
Uhuo OV, Waryo TT, Douman SF, Januarie KC, Nwambaekwe KC, Ndipingwi MM, Ekwere P and Iwuoha EI: Bioanalytical methods encompassing label-free and labeled tuberculosis aptasensors: A review. Anal Chim Acta. 1234:3403262022. View Article : Google Scholar : PubMed/NCBI | |
Xu K, Liang ZC, Ding X, Hu H, Liu S, Nurmik M, Bi S, Hu F, Ji Z, Ren J, et al: Nanomaterials in the prevention, diagnosis, and treatment of Mycobacterium tuberculosis infections. Adv Healthc Mater. 7:17005092018. View Article : Google Scholar | |
Tan P, Li H, Wang J and Gopinath SCB: Silver nanoparticle in biosensor and bioimaging: Clinical perspectives. Biotechnol Appl Biochem. 68:1236–1242. 2021. | |
Muthukrishnan L: Multidrug resistant tuberculosis-diagnostic challenges and its conquering by nanotechnology approach-an overview. Chem Biol Interact. 337:1093972021. View Article : Google Scholar | |
Zhou B, Zhu M, Hao Y and Yang P: Potential-resolved electrochemiluminescence for simultaneous determination of triple latent tuberculosis infection markers. ACS Appl Mater Interfaces. 9:30536–30542. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dykman L and Khlebtsov N: Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem Soc Rev. 41:2256–2282. 2012. View Article : Google Scholar | |
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH and Medintz IL: Functionalizing nanoparticles with biological molecules: Developing chemistries that facilitate nanotechnology. Chem Rev. 113:1904–2074. 2013. View Article : Google Scholar : PubMed/NCBI | |
Drain PK, Bajema KL, Dowdy D, Dheda K, Naidoo K, Schumacher SG, Ma S, Meermeier E, Lewinsohn DM and Sherman DR: Incipient and subclinical tuberculosis: A clinical review of early stages and progression of infection. Clin Microbiol Rev. 31:e00021–18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rosi NL and Mirkin CA: Nanostructures in biodiagnostics. Chem Rev. 105:1547–1562. 2005. View Article : Google Scholar : PubMed/NCBI | |
Singh V and Chibale K: Strategies to combat multi-drug resistance in tuberculosis. Acc Chem Res. 54:2361–2376. 2021. View Article : Google Scholar : PubMed/NCBI | |
Golichenari B, Nosrati R, Farokhi-Fard A, Abnous K, Vaziri F and Behravan J: Nano-biosensing approaches on tuberculosis: Defy of aptamers. Biosens Bioelectron. 117:319–331. 2018. View Article : Google Scholar : PubMed/NCBI | |
Eivazzadeh-Keihan R, Saadatidizaji Z, Mahdavi M, Maleki A, Irani M and Zare I: Recent advances in gold nanoparticles-based biosensors for tuberculosis determination. Talanta. 275:1260992024. View Article : Google Scholar : PubMed/NCBI | |
Golichenari B, Nosrati R, Farokhi-Fard A, Faal Maleki M, Gheibi Hayat SM, Ghazvini K, Vaziri F and Behravan J: Electrochemical-based biosensors for detection of Mycobacterium tuberculosis and tuberculosis biomarkers. Crit Rev Biotechnol. 39:1056–1077. 2019. View Article : Google Scholar : PubMed/NCBI | |
Seele PP, Dyan B, Skepu A, Maserumule C and Sibuyi NRS: Development of gold-nanoparticle-based lateral flow immunoassays for rapid detection of TB ESAT-6 and CFP-10. Biosensors (Basel). 13:3542023. View Article : Google Scholar : PubMed/NCBI | |
Kamra E, Prasad T, Rais A, Dahiya B, Sheoran A, Soni A, Sharma S and Mehta PK: Diagnosis of genitourinary tuberculosis: Detection of mycobacterial lipoarabinomannan and MPT-64 biomarkers within urine extracellular vesicles by nano-based immuno-PCR assay. Sci Rep. 13:115602023. View Article : Google Scholar : PubMed/NCBI | |
Dahiya B, Prasad T, Rais A, Sheoran A, Kamra E, Mor P, Soni A, Sharma S and Mehta PK: Quantification of mycobacterial proteins in extrapulmonary tuberculosis cases by nano-based real-time immuno-PCR. Future Microbiol. 18:771–783. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tripathi A, Jain R and Dandekar P: Rapid visual detection of Mycobacterium tuberculosis DNA using gold nanoparticles. Anal Methods. 15:2497–2504. 2023. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Chen Y, Zuo J, Deng C, Fan J, Bai L and Guo S: MXene-incorporated C60NPs and Au@Pt with dual-electric signal outputs for accurate detection of Mycobacterium tuberculosis ESAT-6 antigen. Biosens Bioelectron. 242:1157342023. View Article : Google Scholar | |
Patnaik N and Dey RJ: Label-free citrate-stabilized silver nanoparticles-based, highly sensitive, cost-effective, and rapid visual method for the differential detection of Mycobacterium tuberculosis and mycobacterium bovis. ACS Infect Dis. 10:426–435. 2024. View Article : Google Scholar | |
Pei X, Hong H, Liu S and Li N: Nucleic acids detection for Mycobacterium tuberculosis based on gold nanoparticles counting and rolling-circle amplification. Biosensors (Basel). 12:4482022. View Article : Google Scholar : PubMed/NCBI | |
León-Janampa N, Shinkaruk S, Gilman RH, Kirwan DE, Fouquet E, Szlosek M, Sheen P and Zimic M: Biorecognition and detection of antigens from Mycobacterium tuberculosis using a sandwich ELISA associated with magnetic nanoparticles. J Pharm Biomed Anal. 215:1147492022. View Article : Google Scholar : PubMed/NCBI | |
Zhang J and He F: Mycobacterium tuberculosis piezoelectric sensor based on AuNPs-mediated enzyme assisted signal amplification. Talanta. 236:1229022022. View Article : Google Scholar | |
Xie J, Mu Z, Yan B, Wang J, Zhou J and Bai L: An electrochemical aptasensor for Mycobacterium tuberculosis ESAT-6 antigen detection using bimetallic organic framework. Mikrochim Acta. 188:4042021. View Article : Google Scholar : PubMed/NCBI | |
Prabowo BA, Purwidyantri A, Liu B, Lai HC and Liu KC: Gold nanoparticle-assisted plasmonic enhancement for DNA detection on a graphene-based portable surface plasmon resonance sensor. Nanotechnology. 32:0955032021. View Article : Google Scholar | |
Tai MJY, Perumal V, Gopinath SCB, Raja PB, Ibrahim MNM, Jantan IN, Suhaimi NSH and Liu WW: Laser-scribed graphene nanofiber decorated with oil palm lignin capped silver nanoparticles: A green biosensor. Sci Rep. 11:54752021. View Article : Google Scholar : PubMed/NCBI | |
Mohd Azmi UZ, Yusof NA, Abdullah J, Alang Ahmad SA, Mohd Faudzi FN, Ahmad Raston NH, Suraiya S, Ong PS, Krishnan D and Sahar NK: Portable electrochemical immunosensor for detection of Mycobacterium tuberculosis secreted protein CFP10-ESAT6 in clinical sputum samples. Mikrochim Acta. 188:202021. View Article : Google Scholar : PubMed/NCBI | |
Gupta S, Bhatter P and Kakkar V: Point-of-care detection of tuberculosis using magnetoresistive biosensing chip. Tuberculosis (Edinb). 127:1020552021. View Article : Google Scholar : PubMed/NCBI | |
León-Janampa N, Zimic M, Shinkaruk S, Quispe-Marcatoma J, Gutarra A, Le Bourdon G, Gayot M, Changanaqui K, Gilman RH, Fouquet E, et al: Synthesis, characterization and bio-functionalization of magnetic nanoparticles to improve the diagnosis of tuberculosis. Nanotechnology. 31:1751012020. View Article : Google Scholar : PubMed/NCBI | |
Terefinko D, Dzimitrowicz A, Bielawska-Pohl A, Klimczak A, Pohl P and Jamroz P: The influence of cold atmospheric pressure plasma-treated media on the cell viability, motility, and induction of apoptosis in in human non-metastatic (MCF7) and metastatic (MDA-MB-231) breast cancer cell lines. Int J Mol Sci. 22:38552021. View Article : Google Scholar | |
Gupta AK, Singh A and Singh S: Diagnosis of Tuberculosis: Nanodiagnostics Approaches. Saxena S and Khurana S: NanoBioMedicine. Springer; Singapore: pp. 261–283. 2020, View Article : Google Scholar | |
Cordeiro M, Ferreira Carlos F, Pedrosa P, Lopez A and Baptista PV: Gold nanoparticles for diagnostics: Advances towards points of care. Diagnostics (Basel). 6:432016. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yu L, Kong X and Sun L: Application of nanodiagnostics in point-of-care tests for infectious diseases. Int J Nanomedicine. 12:4789–4803. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chowdhury NK, Choudhury R, Gogoi B, Chang CM and Pandey RP: Microbial synthesis of gold nanoparticles and their application. Curr Drug Targets. 23:752–760. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lopes TS, Alves GG, Pereira MR, Granjeiro JM and Leite PEC: Advances and potential application of gold nanoparticles in nanomedicine. J Cell Biochem. 120:16370–16378. 2019. View Article : Google Scholar : PubMed/NCBI | |
Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J and Van Duyne RP: Biosensing with plasmonic nanosensors. Nat Mater. 7:442–453. 2008. View Article : Google Scholar : PubMed/NCBI | |
Datta M, Desai D and Kumar A: Gene specific DNA sensors for diagnosis of pathogenic infections. Indian J Microbiol. 57:139–147. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mi X, He F, Xiang M, Lian Y and Yi S: Novel phage amplified multichannel series piezoelectric quartz crystal sensor for rapid and sensitive detection of Mycobacterium tuberculosis. Anal Chem. 84:939–946. 2012. View Article : Google Scholar | |
Zhang X, Feng Y, Duan S, Su L, Zhang J and He F: Mycobacterium tuberculosis strain H37Rv electrochemical sensor mediated by aptamer and AuNPs-DNA. ACS Sens. 4:849–855. 2019. View Article : Google Scholar : PubMed/NCBI | |
Teengam P, Siangproh W, Tuantranont A, Vilaivan T, Chailapakul O and Henry CS: Multiplex paper-based colorimetric DNA sensor using pyrrolidinyl peptide nucleic acid-induced AgNPs aggregation for detecting MERS-CoV, MTB, and HPV oligonucleotides. Anal Chem. 89:5428–5435. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pascu B, Negrea A, Ciopec M, Duteanu N, Negrea P, Bumm LA, Grad mBuriac O, Nemeş NS, Mihalcea C and Duda-Seiman DM: Silver nanoparticle synthesis via photochemical reduction with sodium citrate. Int J Mol Sci. 24:2552022. View Article : Google Scholar | |
Iravani S, Korbekandi H, Mirmohammadi SV and Zolfaghari B: Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res Pharm Sci. 9:385–406. 2014. | |
Salvador M, Marqués-Fernandez JL, Martinez-Garcia JC, Fiorani D, Arosio P, Avolio M, Brero F, Balanean F, Guerrini A, Sangregorio C, et al: Double-layer fatty acid nanoparticles as a multiplatform for diagnostics and therapy. Nanomaterials (Basel). 12:2052022. View Article : Google Scholar : PubMed/NCBI | |
Cheon HJ, Lee SM, Kim SR, Shin HY, Seo YH, Cho YK, Lee SP and Kim MI: Colorimetric detection of MPT64 antibody based on an aptamer adsorbed magnetic nanoparticles for diagnosis of tuberculosis. J Nanosci Nanotechnol. 19:622–626. 2019. View Article : Google Scholar | |
Yan Z, Gan N, Zhang H, Wang D, Qiao L, Cao Y, Li T and Hu F: A sandwich-hybridization assay for simultaneous determination of HIV and tuberculosis DNA targets based on signal amplification by quantum dots-PowerVision™ polymer coding nanotracers. Biosens Bioelectron. 71:207–213. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Meng Y, Liu T, Peng W, Gao Y, He Y, Qu R, Zhang C, Hu W and Ying B: Sensitive urine immunoassay for visualization of lipoarabinomannan for noninvasive tuberculosis diagnosis. ACS Nano. 17:6998–7006. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hu O, Li Z, Wu J, Tan Y, Chen Z and Tong Y: A multicomponent nucleic acid enzyme-cleavable quantum dot nanobeacon for highly sensitive diagnosis of tuberculosis with the naked eye. ACS Sens. 8:254–262. 2023. View Article : Google Scholar | |
He Q, Cai S, Wu J, Hu O, Liang L and Chen Z: Determination of tuberculosis-related volatile organic biomarker methyl nicotinate in vapor using fluorescent assay based on quantum dots and cobalt-containing porphyrin nanosheets. Mikrochim Acta. 189:1082022. View Article : Google Scholar : PubMed/NCBI | |
Hu O, Li Z, He Q, Tong Y, Tan Y and Chen Z: Fluorescence biosensor for one-step simultaneous detection of Mycobacterium tuberculosis multidrug-resistant genes using nanoCoTPyP and double quantum dots. Anal Chem. 94:7918–7927. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kabwe KP, Nsibande SA, Lemmer Y, Pilcher LA and Forbes PBC: Synthesis and characterisation of quantum dots coupled to mycolic acids as a water-soluble fluorescent probe for potential lateral flow detection of antibodies and diagnosis of tuberculosis. Luminescence. 37:278–289. 2022. View Article : Google Scholar | |
Shi T, Jiang P, Peng W, Meng Y, Ying B and Chen P: Nucleic acid and nanomaterial synergistic amplification enables dual targets of ultrasensitive fluorescence quantification to improve the efficacy of clinical tuberculosis diagnosis. ACS Appl Mater Interfaces. 16:14510–14519. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kabwe KP, Nsibande SA, Pilcher LA and Forbes PBC: Development of a mycolic acid-graphene quantum dot probe as a potential tuberculosis biosensor. Luminescence. 37:1881–1890. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liang L, Chen M, Tong Y, Tan W and Chen Z: Detection of Mycobacterium tuberculosis IS6110 gene fragment by fluorescent biosensor based on FRET between two-dimensional metal-organic framework and quantum dots-labeled DNA probe. Anal Chim Acta. 1186:3390902021. View Article : Google Scholar : PubMed/NCBI | |
Mohd Bakhori N, Yusof NA, Abdullah J, Wasoh H, Ab Rahman SK and Abd Rahman SF: Surface enhanced CdSe/ZnS QD/SiNP electrochemical immunosensor for the detection of Mycobacterium tuberculosis by combination of CFP10-ESAT6 for better diagnostic specificity. Materials (Basel). 13:1492019. View Article : Google Scholar | |
Qian J, Cui H, Lu X, Wang C, An K, Hao N and Wang K: Bi-color FRET from two nano-donors to a single nano-acceptor: A universal aptasensing platform for simultaneous determination of dual targets. Chem Eng J. 401:1260172020. View Article : Google Scholar | |
Zhang LM, Li R, Zhao XC, Zhang Q and Luo XL: Increased transfusion of fresh frozen plasma is associated with mortality or worse functional outcomes after severe traumatic brain injury: A retrospective study. World Neurosurg. 104:381–389. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Hu Y, Yang X, Tang Y, Han S, Kang A, Deng H, Chi Y, Zhu D and Lu Y: FÖrster resonance energy transfer (FRET)-based biosensors for biological applications. Biosens Bioelectron. 138:1113142019. View Article : Google Scholar | |
Chen S, Yu YL and Wang JH: Inner filter effect-based fluorescent sensing systems: A review. Anal Chim Acta. 999:13–26. 2018. View Article : Google Scholar | |
Afsari HS, Cardoso Dos Santos M, Lindén S, Chen T, Qiu X, van Bergen En Henegouwen PM, Jennings TL, Susumu K, Medintz IL, Hildebrandt N and Miller LW: Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging. Sci Adv. 2:e16002652016. View Article : Google Scholar : PubMed/NCBI | |
Gliddon HD, Howes PD, Kaforou M, Levin M and Stevens MM: A nucleic acid strand displacement system for the multiplexed detection of tuberculosis-specific mRNA using quantum dots. Nanoscale. 8:10087–10095. 2016. View Article : Google Scholar : PubMed/NCBI | |
Futane A, Narayanamurthy V, Jadhav P and Srinivasan A: Aptamer-based rapid diagnosis for point-of-care application. Microfluid Nanofluidics. 27:152023. View Article : Google Scholar : PubMed/NCBI | |
Kumar S, Wang Z, Zhang W, Liu X, Li M, Li G, Zhang B and Singh R: Optically active nanomaterials and its biosensing applications-a review. Biosensors (Basel). 13:852023. View Article : Google Scholar : PubMed/NCBI | |
Sharifi S, Vahed SZ, Ahmadian E, Dizaj SM, Eftekhari A, Khalilov R, Ahmadi M, Hamidi-Asl E and Labib M: Detection of pathogenic bacteria via nanomaterials-modified aptasensors. Biosens Bioelectron. 150:1119332020. View Article : Google Scholar | |
Pornprom T, Phusi N, Thongdee P, Pakamwong B, Sangswan J, Kamsri P, Punkvang A, Suttisintong K, Leanpolchareanchai J, Hongmanee P, et al: Toward the early diagnosis of tuberculosis: A gold particle-decorated graphene-modified paper-based electrochemical biosensor for Hsp16.3 detection. Talanta. 267:1252102024. View Article : Google Scholar | |
Wang J, Shao W, Liu Z, Kesavan G, Zeng Z, Shurin MR and Star A: Diagnostics of tuberculosis with single-walled carbon nanotube-based field-effect transistors. ACS Sens. 9:1957–1966. 2024. View Article : Google Scholar : PubMed/NCBI | |
Le TN, Descanzo MJN, Hsiao WWW, Soo PC, Peng WP and Chang HC: Fluorescent nanodiamond immunosensors for clinical diagnostics of tuberculosis. J Mater Chem B. 12:3533–3542. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bisht N, Patel M, Dwivedi N, Kumar P, Mondal DP, Srivastava AK and Dhand C: Bio-inspired polynorepinephrine based nanocoatings for reduced graphene oxide/gold nanoparticles composite for high-performance biosensing of Mycobacterium tuberculosis. Environ Res. 227:1156842023. View Article : Google Scholar : PubMed/NCBI | |
Seo G, Lee G, Kim W, An I, Choi M, Jang S, Park YJ, Lee JO, Cho D and Park EC: Ultrasensitive biosensing platform for Mycobacterium tuberculosis detection based on functionalized graphene devices. Front Bioeng Biotechnol. 11:13134942023. View Article : Google Scholar | |
Mogha NK, Sahu V, Sharma RK and Masram DT: Reduced graphene oxide nanoribbon immobilized gold nanoparticle based electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis. J Mater Chem B. 6:5181–5187. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Peng D, Guo S, Yang B, Zhou J, Zhou J, Zhang Q and Bai L: Aptasensor for Mycobacterium tuberculosis antigen MPT64 detection using anthraquinone derivative confined in ordered mesoporous carbon as a new redox nanoprobe. Bioelectrochemistry. 147:1082092022. View Article : Google Scholar : PubMed/NCBI | |
Rizi KS, Hatamluyi B, Rezayi M, Meshkat Z, Sankian M, Ghazvini K, Farsiani H and Aryan E: Response surface methodology optimized electrochemical DNA biosensor based on HAPNPTs/PPY/MWCNTs nanocomposite for detecting Mycobacterium tuberculosis. Talanta. 226:1220992021. View Article : Google Scholar : PubMed/NCBI | |
Javed A, Abbas SR, Hashmi MU, Babar NUA and Hussain I: Graphene oxide based electrochemical genosensor for label free detection of mycobacterium tuberculosis from raw clinical samples. Int J Nanomedicine. 16:7339–7352. 2021. View Article : Google Scholar : PubMed/NCBI | |
Omar RA, Verma N and Arora PK: Development of ESAT-6 based immunosensor for the detection of mycobacterium tuberculosis. Front Immunol. 12:6538532021. View Article : Google Scholar : PubMed/NCBI | |
Jaroenram W, Kampeera J, Arunrut N, Karuwan C, Sappat A, Khumwan P, Jaitrong S, Boonnak K, Prammananan T, Chaiprasert A, et al: Graphene-based electrochemical genosensor incorporated loop-mediated isothermal amplification for rapid on-site detection of Mycobacterium tuberculosis. J Pharm Biomed Anal. 186:1133332020. View Article : Google Scholar : PubMed/NCBI | |
Kahng SJ, Soelberg SD, Fondjo F, Kim JH, Furlong CE and Chung JH: Carbon nanotube-based thin-film resistive sensor for point-of-care screening of tuberculosis. Biomed Microdevices. 22:502020. View Article : Google Scholar : PubMed/NCBI | |
Hidayah NMS, Liu WW, Lai CW, Noriman NZ, Khe CS, Hashim U and Lee HC: Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization. AIP Conf Proc. 1892:1500022017. View Article : Google Scholar | |
Ping J, Zhou Y, Wu Y, Papper V, Boujday S, Marks RS and Steele TW: Recent advances in aptasensors based on graphene and graphene-like nanomaterials. Biosens Bioelectron. 64:373–385. 2015. View Article : Google Scholar | |
Raccichini R, Varzi A, Passerini S and Scrosati B: The role of graphene for electrochemical energy storage. Nat Mater. 14:271–279. 2015. View Article : Google Scholar | |
Yan Q, Zhi N, Yang L, Xu G, Feng Q, Zhang Q and Sun S: A highly sensitive uric acid electrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode. Sci Rep. 10:106072020. View Article : Google Scholar : PubMed/NCBI | |
Barra A, Nunes C, Ruiz-Hitzky E and Ferreira P: Green carbon nanostructures for functional composite materials. Int J Mol Sci. 23:18482022. View Article : Google Scholar : PubMed/NCBI | |
Chaturvedi M, Patel M, Bisht N, Shruti, Das Mukherjee M, Tiwari A, Mondal DP, Srivastava AK, Dwivedi N and Dhand C: Reduced graphene oxide-polydopamine-gold nanoparticles: A ternary nanocomposite-based electrochemical genosensor for rapid and early Mycobacterium tuberculosis detection. Biosensors (Basel). 13:3422023. View Article : Google Scholar : PubMed/NCBI | |
Tian J, Deng SY, Li DL, Shan D, He W, Zhang XJ and Shi Y: Bioinspired polydopamine as the scaffold for the active AuNPs anchoring and the chemical simultaneously reduced graphene oxide: Characterization and the enhanced biosensing application. Biosens Bioelectron. 49:466–471. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Shi S, Cao H, Zhao Z, Su C and Wen H: Improvement of the antifouling performance and stability of an anion exchange membrane by surface modification with graphene oxide (GO) and polydopamine (PDA). J Memb Sci. 566:44–53. 2018. View Article : Google Scholar | |
Xia L, Vemuri B, Gadhamshetty V and Kilduff J: Poly (ether sulfone) membrane surface modification using norepinephrine to mitigate fouling. J Memb Sci. 598:1176572020. View Article : Google Scholar | |
Dhand C, Ong ST, Dwivedi N, Diaz SM, Venugopal JR, Navaneethan B, Fazil MH, Liu S, Seitz V, Wintermantel E, et al: Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering. Biomaterials. 104:323–338. 2016. View Article : Google Scholar : PubMed/NCBI | |
Teengam P, Siangproh W, Tuantranont A, Vilaivan T, Chailapakul O and Henry CS: Electrochemical impedance-based DNA sensor using pyrrolidinyl peptide nucleic acids for tuberculosis detection. Anal Chim Acta. 1044:102–109. 2018. View Article : Google Scholar : PubMed/NCBI | |
Thangamuthu M, Hsieh KY, Kumar PV and Chen GY: Graphene- and graphene oxide-based nanocomposite platforms for electrochemical biosensing applications. Int J Mol Sci. 20:29752019. View Article : Google Scholar : PubMed/NCBI | |
Vu CA and Chen WY: Field-effect transistor biosensors for biomedical applications: Recent advances and future prospects. Sensors (Basel). 19:42142019. View Article : Google Scholar : PubMed/NCBI | |
Chen S and Bashir R: Advances in field-effect biosensors towards point-of-use. Nanotechnology. 34:4920022023. View Article : Google Scholar : | |
Szunerits S, Rodrigues T, Bagale R, Happy H, Boukherroub R and Knoll W: Graphene-based field-effect transistors for biosensing: Where is the field heading to? Anal Bioanal Chem. 416:2137–2150. 2024. View Article : Google Scholar | |
Krishnan SK, Nataraj N, Meyyappan M and Pal U: Graphene-based field-effect transistors in biosensing and neural interfacing applications: Recent advances and prospects. Anal Chem. 95:2590–2622. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gong X, Shuai L, Beingessner RL, Yamazaki T, Shen J, Kuehne M, Jones K, Fenniri H and Strano MS: Size selective corona interactions from self-assembled rosette and single-walled carbon nanotubes. Small. 18:e21049512022. View Article : Google Scholar : PubMed/NCBI | |
Kumar THV, Rajendran J, Atchudan R, Arya S, Govindasamy M, Habila MA and Sundramoorthy AK: Cobalt ferrite/semiconducting single-walled carbon nanotubes based field-effect transistor for determination of carbamate pesticides. Environ Res. 238:1171932023. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Liu F, Sun Z, Cai X, Sun H, Kai Y, Chen L and Jiang C: Single layer aligned semiconducting single-walled carbon nanotube array with high linear density. Nanotechnology. 33:3753012022. View Article : Google Scholar | |
Wang Y, Liu D, Zhang H, Wang J, Du R, Li TT, Qian J, Hu Y and Huang S: Methylation-induced reversible metallic-semiconducting transition of single-walled carbon nanotube arrays for high-performance field-effect transistors. Nano Lett. 20:496–501. 2020. View Article : Google Scholar | |
Tran TT, Clark K, Ma W and Mulchandani A: Detection of a secreted protein biomarker for citrus Huanglongbing using a single-walled carbon nanotubes-based chemiresistive biosensor. Biosens Bioelectron. 147:1117662020. View Article : Google Scholar | |
Shao W, Shurin MR, Wheeler SE, He X and Star A: Rapid detection of SARS-CoV-2 Antigens using high-purity semiconducting single-walled carbon nanotube-based field-effect transistors. ACS Appl Mater Interfaces. 13:10321–10327. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li T, Liang Y, Li J, Yu Y, Xiao MM, Ni W, Zhang Z and Zhang GJ: Carbon nanotube field-effect transistor biosensor for ultrasensitive and label-free detection of breast cancer exosomal miRNA21. Anal Chem. 93:15501–15507. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Xiao M, He J, Zhang Y, Liang Y, Liu H and Zhang Z: Aptamer-functionalized carbon nanotube field-effect transistor biosensors for Alzheimer's disease serum biomarker detection. ACS Sens. 7:2075–2083. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hui YY, Chen OJ, Lin HH, Su YK, Chen KY, Wang CY, Hsiao WW and Chang HC: Magnetically modulated fluorescence of nitrogen-vacancy centers in nanodiamonds for ultrasensitive biomedical analysis. Anal Chem. 93:7140–7147. 2021. View Article : Google Scholar : PubMed/NCBI | |
Boruah A and Saikia BK: Synthesis, characterization, properties and novel applications of fluorescent nanodiamonds. J Fluoresc. 32:863–885. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mzyk A, Sigaeva A and Schirhagl R: Relaxometry with nitrogen vacancy (NV) centers in diamond. Acc Chem Res. 55:3572–3580. 2022. View Article : Google Scholar : PubMed/NCBI | |
Daniel MC and Astruc D: Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 104:293–346. 2004. View Article : Google Scholar : PubMed/NCBI | |
Medintz IL, Uyeda HT, Goldman ER and Mattoussi H: Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 4:435–446. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wei Y and Yang R: Nanomechanics of graphene. Natl Sci Rev. 6:324–348. 2019. View Article : Google Scholar : PubMed/NCBI | |
Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B and Fromm KM: Nanobio silver: Its interactions with peptides and bacteria, and its uses in medicine. Chem Rev. 113:4708–4754. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhao P, Xu Q, Tao J, Jin Z, Pan Y, Yu C and Yu Z: Near infrared quantum dots in biomedical applications: Current status and future perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 10:e14832018. View Article : Google Scholar | |
Laurent S, Bridot JL, Elst LV and Muller RN: Magnetic iron oxide nanoparticles for biomedical applications. Future Med Chem. 2:427–449. 2010. View Article : Google Scholar | |
Haiss W, Thanh NT, Aveyard J and Fernig DG: Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal Chem. 79:4215–4221. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kim D, Shin K, Kwon SG and Hyeon T: Synthesis and biomedical applications of multifunctional nanoparticles. Adv Mater. 30:e18023092018. View Article : Google Scholar : PubMed/NCBI | |
Sobhanan J, Anas A and Biju V: Nanomaterials for fluorescence and multimodal bioimaging. Chem Rec. 23:e2022002532023. View Article : Google Scholar : PubMed/NCBI | |
Katz E and Willner I: Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew Chem Int Ed Engl. 43:6042–6108. 2004. View Article : Google Scholar : PubMed/NCBI | |
Li B, Wang W, Zhao L, Wu Y, Li X, Yan D, Gao Q, Yan Y, Zhang J, Feng Y, et al: Photothermal therapy of tuberculosis using targeting pre-activated macrophage membrane-coated nanoparticles. Nat Nanotechnol. 19:834–845. 2024. View Article : Google Scholar : PubMed/NCBI | |
Nair A, Greeny A, Nandan A, Sah RK, Jose A, Dyawanapelly S, Junnuthula V, K V A and Sadanandan P: Advanced drug delivery and therapeutic strategies for tuberculosis treatment. J Nanobiotechnology. 21:4142023. View Article : Google Scholar : PubMed/NCBI | |
El-Samadony H, Althani A, Tageldin MA and Azzazy HME: Nanodiagnostics for tuberculosis detection. Expert Rev Mol Diagn. 17:427–443. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li M, Singh R, Wang Y, Marques C, Zhang B and Kumar S: Advances in novel nanomaterial-based optical fiber biosensors-a review. Biosensors (Basel). 12:8432022. View Article : Google Scholar : PubMed/NCBI | |
Vu CQ and Arai S: Quantitative imaging of genetically encoded fluorescence lifetime biosensors. Biosensors (Basel). 13:9392023. View Article : Google Scholar : PubMed/NCBI | |
Hemmerová E and Homola J: Combining plasmonic and electrochemical biosensing methods. Biosens Bioelectron. 251:1160982024. View Article : Google Scholar : PubMed/NCBI |