Advancements in omics technologies: Molecular mechanisms of acute lung injury and acute respiratory distress syndrome (Review)
- Authors:
- Zhihuan Zheng
- Xinyu Qiao
- Junhao Yin
- Junjie Kong
- Wanqing Han
- Jing Qin
- Fanda Meng
- Ge Tian
- Xiujing Feng
-
Affiliations: Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China, Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China, Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China, School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, P.R. China - Published online on: December 27, 2024 https://doi.org/10.3892/ijmm.2024.5479
- Article Number: 38
-
Copyright: © Zheng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bateman RM, Sharpe MD, Jagger JE, Ellis CG, Solé-Violán J, López-Rodríguez M, Herrera-Ramos E, Ruíz-Hernández J, Borderías L, Horcajada J, et al: 36th International symposium on intensive care and emergency medicine: Brussels, Belgium. 15-18 march 2016. Crit Care. 20(Suppl 2): S942016. View Article : Google Scholar | |
Hussain M, Khurram Syed S, Fatima M, Shaukat S, Saadullah M, Alqahtani AM, Alqahtani T, Bin Emran T, Alamri AH, Barkat MQ and Wu X: Acute respiratory distress syndrome and COVID-19: A literature review. J Inflamm Res. 14:7225–7242. 2021. View Article : Google Scholar | |
Schuster DP: What is acute lung injury? What is ARDS? Chest. 107:1721–1726. 1995. View Article : Google Scholar : PubMed/NCBI | |
Thompson BT, Chambers RC and Liu KD: Acute respiratory distress syndrome. N Engl J Med. 377:562–572. 2017. View Article : Google Scholar : PubMed/NCBI | |
Villar J, Szakmany T, Grasselli G and Camporota L: Redefining ARDS: A paradigm shift. Crit Care. 27:4162023. View Article : Google Scholar : PubMed/NCBI | |
ARDS Definition Task Force; Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L and Slutsky AS: Acute respiratory distress syndrome: The berlin definition. JAMA. 307:2526–2533. 2012.PubMed/NCBI | |
Matthay MA, Arabi Y, Arroliga AC, Bernard G, Bersten AD, Brochard LJ, Calfee CS, Combes A, Daniel BM, Ferguson ND, et al: A new global definition of acute respiratory distress syndrome. Am J Respir Crit Care Med. 209:37–47. 2024. View Article : Google Scholar : | |
Gorman EA, O'Kane CM and McAuley DF: Acute respiratory distress syndrome in adults: Diagnosis, outcomes, long-term sequelae, and management. Lancet. 400:1157–1170. 2022. View Article : Google Scholar : PubMed/NCBI | |
Meyer NJ, Gattinoni L and Calfee CS: Acute respiratory distress syndrome. Lancet. 398:622–637. 2021. View Article : Google Scholar : PubMed/NCBI | |
Stanski NL and Wong HR: Prognostic and predictive enrichment in sepsis. Nat Rev Nephrol. 16:20–31. 2020. View Article : Google Scholar : | |
Janga H, Cassidy L, Wang F, Spengler D, Oestern-Fitschen S, Krause MF, Seekamp A, Tholey A and Fuchs S: Site-specific and endothelial-mediated dysfunction of the alveolar-capillary barrier in response to lipopolysaccharides. J Cell Mol Med. 22:982–998. 2018. View Article : Google Scholar | |
Kumar V: Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury. Front Immunol. 11:17222020. View Article : Google Scholar : PubMed/NCBI | |
Pokharel MD, Garcia-Flores A, Marciano D, Franco MC, Fineman JR, Aggarwal S, Wang T and Black SM: Mitochondrial network dynamics in pulmonary disease: Bridging the gap between inflammation, oxidative stress, and bioenergetics. Redox Biol. 70:1030492024. View Article : Google Scholar : PubMed/NCBI | |
Aisiku IP, Yamal JM, Doshi P, Benoit JS, Gopinath S, Goodman JC and Robertson CS: Plasma cytokines IL-6, IL-8, and IL-10 are associated with the development of acute respiratory distress syndrome in patients with severe traumatic brain injury. Crit Care. 20:2882016. View Article : Google Scholar : PubMed/NCBI | |
Tang N, Yang Y, Xie Y, Yang G, Wang Q, Li C, Liu Z and Huang JA: CD274 (PD-L1) negatively regulates M1 macrophage polarization in ALI/ARDS. Front Immunol. 15:13448052024. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Zhen N, Zhou Q, Lou J, Cui W, Zhang G and Tian B: NETs promote inflammatory injury by activating cGAS-STING pathway in acute lung injury. Int J Mol Sci. 24:51252023. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Wang X, Lin F, Li W, Zhao Y, Zhu F, Yang H, Rao M, Li Y, Liang H, et al: MiR-29a-3p improves acute lung injury by reducing alveolar epithelial cell PANoptosis. Aging Dis. 13:899–909. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang SW, Zhang Q, Lu D, Fang YC, Yan XC, Chen J, Xia ZK, Yuan QT, Chen LH, Zhang YM, et al: GPR84 regulates pulmonary inflammation by modulating neutrophil functions. Acta Pharmacol Sin. 44:1665–1675. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gong R, Luo H, Long G, Xu J, Huang C, Zhou X, Shang Y and Zhang D: Integrative proteomic profiling of lung tissues and blood in acute respiratory distress syndrome. Front Immunol. 14:11589512023. View Article : Google Scholar : PubMed/NCBI | |
Korde A, Haslip M, Pednekar P, Khan A, Chioccioli M, Mehta S, Lopez-Giraldez F, Bermejo S, Rojas M, Dela Cruz C, et al: MicroRNA-1 protects the endothelium in acute lung injury. JCI Insight. 8:e1648162023. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Tang Y, Tang J, Liu X, Zi S, Li S, Chen H, Liu A, Huang W, Xie J, et al: Endothelial cell-derived extracellular vesicles expressing surface VCAM1 promote sepsis-related acute lung injury by targeting and reprogramming monocytes. J Extracell Vesicles. 13:e124232024. View Article : Google Scholar : PubMed/NCBI | |
Helou DG, Quach C, Hurrell BP, Li X, Li M, Akbari A, Shen S, Shafiei-Jahani P and Akbari O: LAIR-1 limits macrophage activation in acute inflammatory lung injury. Mucosal Immunol. 16:788–800. 2023. View Article : Google Scholar : PubMed/NCBI | |
Park S, Kim M, Park M, Jin Y, Lee SJ and Lee H: Specific upregulation of extracellular miR-6238 in particulate matter-induced acute lung injury and its immunomodulation. J Hazard Mater. 445:1304662023. View Article : Google Scholar | |
Blank R and Napolitano LM: Epidemiology of ARDS and ALI. Crit Care Clin. 27:439–458. 2011. View Article : Google Scholar : PubMed/NCBI | |
Katzenstein AL, Bloor CM and Leibow AA: Diffuse alveolar damage-the role of oxygen, shock, and related factors. A review. Am J Pathol. 85:209–228. 1976.PubMed/NCBI | |
Razzaque MS, Nazneen A and Taguchi T: Immunolocalization of collagen and collagen-binding heat shock protein 47 in fibrotic lung diseases. Mod Pathol. 11:1183–1188. 1998. | |
Raghavendran K and Napolitano LM: Definition of ALI/ARDS. Crit Care Clin. 27:429–437. 2011. View Article : Google Scholar : PubMed/NCBI | |
Laffey JG and Kavanagh BP: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury. N Engl J Med. 343:812author reply 813-4. 2000. View Article : Google Scholar : PubMed/NCBI | |
Gattinoni L, Marini JJ, Collino F, Maiolo G, Rapetti F, Tonetti T, Vasques F and Quintel M: The future of mechanical ventilation: Lessons from the present and the past. Crit Care. 21:1832017. View Article : Google Scholar : PubMed/NCBI | |
Matthay MA, Ware LB and Zimmerman GA: The acute respiratory distress syndrome. J Clin Invest. 122:2731–2740. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rubenfeld GD and Herridge MS: Epidemiology and outcomes of acute lung injury. Chest. 131:554–562. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xia K, Sun HX, Li J, Li J, Zhao Y, Chen L, Qin C, Chen R, Chen Z, Liu G, et al: The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves. Dev Cell. 57:1299–1310 e4. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu SQ, Gao ZJ, Wu J, Zheng HM, Li B, Sun S, Meng XY and Wu Q: Single-cell and spatially resolved analysis uncovers cell heterogeneity of breast cancer. J Hematol Oncol. 15:192022. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Tang S, Li M, Wang D, Chen C, Qiu Y, Fang Z, Zhang H, Gao H, Weng H, et al: Single-cell and spatial transcriptomics decodes wharton's jelly-derived mesenchymal stem cells heterogeneity and a subpopulation with wound repair signatures. Adv Sci (Weinh). 10:e22047862023. View Article : Google Scholar | |
Ji AL, Rubin AJ, Thrane K, Jiang S, Reynolds DL, Meyers RM, Guo MG, George BM, Mollbrink A, Bergenstråhle J, et al: Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell. 182:497–514 e22. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bhargava M and Wendt CH: Biomarkers in acute lung injury. Transl Res. 159:205–217. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Ma X, Huang W, Wang S, Lou A, Wang J, Tu Y, Cui W, Zhou W, Zhang W, et al: Macrophage biomimetic nanoparticle-targeted functional extracellular vesicle micro-RNAs revealed via multiomics analysis alleviate sepsis-induced acute lung injury. J Nanobiotechnology. 22:3622024. View Article : Google Scholar : PubMed/NCBI | |
Du M, Garcia JGN, Christie JD, Xin J, Cai G, Meyer NJ, Zhu Z, Yuan Q, Zhang Z, Su L, et al: Integrative omics provide biological and clinical insights into acute respiratory distress syndrome. Intensive Care Med. 47:761–771. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sun D, Guan X, Moran AE, Wu LY, Qian DZ, Schedin P, Dai MS, Danilov AV, Alumkal JJ, Adey AC, et al: Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data. Nat Biotechnol. 40:527–538. 2022. View Article : Google Scholar : | |
Wu Y, Hu SS, Zhang R, Goplen NP, Gao X, Narasimhan H, Shi A, Chen Y, Li Y, Zang C, et al: Single cell RNA sequencing unravels mechanisms underlying senescence-like phenotypes of alveolar macrophages. iScience. 26:1071972023. View Article : Google Scholar : PubMed/NCBI | |
Long E, Yin J, Shin JH, Li Y, Li B, Kane A, Patel H, Sun X, Wang C, Luong T, et al: Context-aware single-cell multiomics approach identifies cell-type-specific lung cancer susceptibility genes. Nat Commun. 15:79952024. View Article : Google Scholar : PubMed/NCBI | |
Bertrams W, Jung AL and Schmeck B: Modeling of Pneumonia and Acute Lung Injury: Bioinformatics, Systems Medicine, and Artificial Intelligence. Systems Med. 2:573–580. 2021. View Article : Google Scholar | |
Lam E and dos Santos CC: Advances in molecular acute lung injury/acute respiratory distress syndrome and ventilator-induced lung injury: The role of genomics, proteomics, bioinformatics and translational biology. Curr Opin Crit Care. 14:3–10. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Wu Y, Li J, Wang X, Zeng Z, Xu J, Liu Y, Feng J, Chen H, He Y and Xia R: TBtools-II: A 'one for all, all for one' bioinformatics platform for biological big-data mining. Mol Plant. 16:1733–1742. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Li Y, Liu Q, Li L, Feng A, Wang T, Zheng S, Xu A and Lyu J: Brief introduction of medical database and data mining technology in big data era. J Evid Based Med. 13:57–69. 2020. View Article : Google Scholar : PubMed/NCBI | |
Grumet FC, Coukell A, Bodmer JG, Bodmer WF and McDevitt HO: Histocompatibility (HL-A) antigens associated with systemic lupus erythematosus. A possible genetic predisposition to disease. N Engl J Med. 285:193–196. 1971. View Article : Google Scholar : PubMed/NCBI | |
Bajwa EK: The genetics of acute lung injury: Looking back and pointing the way forward. Crit Care. 13:1082009. View Article : Google Scholar : PubMed/NCBI | |
Ergul A: Hypertension in black patients: An emerging role of the endothelin system in salt-sensitive hypertension. Hypertension. 36:62–67. 2000. View Article : Google Scholar : PubMed/NCBI | |
Shukla P and Singh KK: Uncovering mitochondrial determinants of racial disparities in ovarian cancer. Trends Cancer. 7:93–97. 2021. View Article : Google Scholar | |
Mirsaeidi M, Machado RF, Schraufnagel D, Sweiss NJ and Baughman RP: Racial difference in sarcoidosis mortality in the United States. Chest. 147:438–449. 2015. View Article : Google Scholar : | |
Moss M and Mannino DM: Race and gender differences in acute respiratory distress syndrome deaths in the United States: An analysis of multiple-cause mortality data (1979-1996). Crit Care Med. 30:1679–1685. 2002. View Article : Google Scholar : PubMed/NCBI | |
Flores C, Pino-Yanes Mdel M and Villar J: A quality assessment of genetic association studies supporting susceptibility and outcome in acute lung injury. Crit Care. 12:R1302008. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Fan EK and Fan J: Cell-cell interaction mechanisms in acute lung injury. Shock. 55:167–176. 2021. View Article : Google Scholar : | |
Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 520:57–62. 2015. View Article : Google Scholar : PubMed/NCBI | |
Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA and Kirschner MW: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 161:1187–1201. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Jia C, Luo S, Li Y, Xiao F, Dai H and Wang C: Effect of HA330 resin-directed hemoadsorption on a porcine acute respiratory distress syndrome model. Ann Intensive Care. 7:842017. View Article : Google Scholar : PubMed/NCBI | |
Huang RT, Wu D, Meliton A, Oh MJ, Krause M, Lloyd JA, Nigdelioglu R, Hamanaka RB, Jain MK, Birukova A, et al: Experimental lung injury reduces kruppel-like factor 2 to increase endothelial permeability via regulation of RAPGEF3-Rac1 signaling. Am J Respir Crit Care Med. 195:639–651. 2017. View Article : Google Scholar : | |
Montoro DT, Haber AL, Biton M, Vinarsky V, Lin B, Birket SE, Yuan F, Chen S, Leung HM, Villoria J, et al: A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature. 560:319–324. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lynn H, Sun X, Casanova N, Gonzales-Garay M, Bime C and Garcia JGN: Genomic and genetic approaches to deciphering acute respiratory distress syndrome risk and mortality. Antioxid Redox Signal. 31:1027–1052. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Wu Z, Xie J, Yang Y, Wang L and Qiu H: DNA methylation exploration for ARDS: A multi-omics and multi-microarray interrelated analysis. J Transl Med. 17:3452019. View Article : Google Scholar : PubMed/NCBI | |
Adrover JM, Aroca-Crevillén A, Crainiciuc G, Ostos F, Rojas-Vega Y, Rubio-Ponce A, Cilloniz C, Bonzón-Kulichenko E, Calvo E, Rico D, et al: Programmed 'disarming' of the neutrophil proteome reduces the magnitude of inflammation. Nat Immunol. 21:135–144. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li L, Fu WW, Wu RT, Song YH, Wu WY, Yin SH, Li WJ and Xie MY: Protective effect of Ganoderma atrum polysaccharides in acute lung injury rats and its metabolomics. Int J Biol Macromol. 142:693–704. 2020. View Article : Google Scholar | |
Hu L, Wang Y, Sun H, Xiong Y, Zhong L, Wu Z and Yang M: An untargeted metabolomics approach to investigate the wine-processed mechanism of Scutellariae radix in acute lung injury. J Ethnopharmacol. 253:1126652020. View Article : Google Scholar : PubMed/NCBI | |
Boyd DF, Allen EK, Randolph AG, Guo XJ, Weng Y, Sanders CJ, Bajracharya R, Lee NK, Guy CS, Vogel P, et al: Exuberant fibroblast activity compromises lung function via ADAMTS4. Nature. 587:466–471. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Rosborough BR, Chen J, Das S, Kitsios GD, McVerry BJ, Mallampalli RK, Lee JS, Ray A, Chen W and Ray P: Single cell RNA sequencing identifies an early monocyte gene signature in acute respiratory distress syndrome. JCI Insight. 5:e1356782020. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Yao X, Ma S, Ping Y, Fan Y, Sun S, He Z, Shi Y, Sun L, Xiao S, et al: A single-cell transcriptomic landscape of the lungs of patients with COVID-19. Nat Cell Biol. 23:1314–1328. 2021. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Liu Y, Zhao S, Xu W, Li Y, Zhao P, Wang D, Cheng H, Ke Y and Zhang X: Oxidative stress-induced FABP5 S-glutathionylation protects against acute lung injury by suppressing inflammation in macrophages. Nat Commun. 12:70942021. View Article : Google Scholar : PubMed/NCBI | |
Dong X, Zhu Z, Wei Y, Ngo D, Zhang R, Du M, Huang H, Lin L, Tejera P, Su L, et al: Plasma insulin-like growth factor binding protein 7 contributes causally to ARDS 28-day mortality: Evidence from multistage mendelian randomization. Chest. 159:1007–1018. 2021. View Article : Google Scholar : | |
Wendisch D, Dietrich O, Mari T, von Stillfried S, Ibarra IL, Mittermaier M, Mache C, Chua RL, Knoll R, Timm S, et al: SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell. 184:6243–6261 e27. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bradic M, Taleb S, Thomas B, Chidiac O, Robay A, Hassan N, Malek J, Ait Hssain A and Abi Khalil C: DNA methylation predicts the outcome of COVID-19 patients with acute respiratory distress syndrome. J Transl Med. 20:5262022. View Article : Google Scholar : PubMed/NCBI | |
Nan W, Xiong F, Zheng H, Li C, Lou C, Lei X, Wu H, Gao H and Li Y: Myristoyl lysophosphatidylcholine is a biomarker and potential therapeutic target for community-acquired pneumonia. Redox Biol. 58:1025562022. View Article : Google Scholar : PubMed/NCBI | |
Whitney JE, Lee IH, Lee JW and Kong SW: Evolution of multiple omics approaches to define pathophysiology of pediatric acute respiratory distress syndrome. Elife. 11:e774052022. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Wang M, Liao X, Gao S, Hua J, Wu X, Guo Q, Xu W, Sun J, He Y, et al: Locally organised and activated Fth1(hi) neutrophils aggravate inflammation of acute lung injury in an IL-10-dependent manner. Nat Commun. 13:77032022. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Zhong L, Tian X, Zou Y, Hu S, Liu J, Li P, Zhu M, Luo F and Wan H: RUNX1 promotes mitophagy and alleviates pulmonary inflammation during acute lung injury. Signal Transduct Target Ther. 8:2882023. View Article : Google Scholar : PubMed/NCBI | |
Lai Y, Li X, Li T, Li X, Nyunoya T, Chen K, Kitsios G, Nouraie M, Zhang Y, McVerry BJ, et al: Protein arginine N-methyltransferase 4 (PRMT4) contributes to lymphopenia in experimental sepsis. Thorax. 78:383–393. 2023. View Article : Google Scholar | |
Li G, Yan K, Zhang W, Pan H and Guo P: ARDS and aging: TYMS emerges as a promising biomarker and therapeutic target. Front Immunol. 15:13652062024. View Article : Google Scholar : PubMed/NCBI | |
Gong T, Zhang X, Liu X, Ye Y, Tian Z, Yin S, Zhang M, Tang J and Liu Y: Exosomal Tenascin-C primes macrophage pyroptosis amplifying aberrant inflammation during sepsis-induced acute lung injury. Transl Res. 270:66–80. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xia LX, Xiao YY, Jiang WJ, Yang XY, Tao H, Mandukhail SR, Qin JF, Pan QR, Zhu YG, Zhao LX, et al: Exosomes derived from induced cardiopulmonary progenitor cells alleviate acute lung injury in mice. Acta Pharmacol Sin. 45:1644–1659. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Yang S, Shao X, Li C, Wang Z, Dai H and Wang C: Mesenchymal stem cells-derived exosomes alleviate acute lung injury by inhibiting alveolar macrophage pyroptosis. Stem Cells Transl Med. 13:371–386. 2024. View Article : Google Scholar : PubMed/NCBI | |
Pollenus E, Possemiers H, Knoops S, Prenen F, Vandermosten L, Thienpont C, Abdurahiman S, Demeyer S, Cools J, Matteoli G, et al: Single cell RNA sequencing reveals endothelial cell killing and resolution pathways in experimental malaria-associated acute respiratory distress syndrome. PLoS Pathog. 20:e10119292024. View Article : Google Scholar : PubMed/NCBI | |
Mitsuyama Y, Matsumoto H, Togami Y, Oda S, Onishi S, Yoshimura J, Murtatsu A, Ito H, Ogura H, Okuzaki D and Oda J: T cell dysfunction in elderly ARDS patients based on miRNA and mRNA integration analysis. Front Immunol. 15:13684462024. View Article : Google Scholar : PubMed/NCBI | |
Zheng L, Liu C, Wang H, Zhang J, Mao L, Dong X, Hu S, Li N, Pi D, Qiu J, et al: Intact lung tissue and bronchoalveolar lavage fluid are both suitable for the evaluation of murine lung microbiome in acute lung injury. Microbiome. 12:562024. View Article : Google Scholar : PubMed/NCBI | |
Wu G, Sun Y, Wang K, Chen Z, Wang X, Chang F, Li T, Feng P and Xia Z: Relationship between elevated soluble CD74 and severity of experimental and clinical ALI/ARDS. Sci Rep. 6:300672016. View Article : Google Scholar : PubMed/NCBI | |
Meyer NJ: Beyond single-nucleotide polymorphisms: Genetics, genomics, and other 'omic approaches to acute respiratory distress syndrome. Clin Chest Med. 35:673–684. 2014. View Article : Google Scholar : PubMed/NCBI | |
Reilly JP, Wang F, Jones TK, Palakshappa JA, Anderson BJ, Shashaty MGS, Dunn TG, Johansson ED, Riley TR, Lim B, et al: Plasma angiopoietin-2 as a potential causal marker in sepsis-associated ARDS development: Evidence from Mendelian randomization and mediation analysis. Intensive Care Med. 44:1849–1858. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Beach D, Su L, Zhai R and Christiani DC: A genome-wide expression analysis in blood identifies pre-elafin as a biomarker in ARDS. Am J Respir Cell Mol Biol. 38:724–732. 2008. View Article : Google Scholar : PubMed/NCBI | |
Devaney J, Contreras M and Laffey JG: Clinical review: Gene-based therapies for ALI/ARDS: Where are we now? Crit Care. 15:2242011. View Article : Google Scholar : PubMed/NCBI | |
Tromp TR, Stroes ESG and Hovingh GK: Gene-based therapy in lipid management: The winding road from promise to practice. Expert Opin Investig Drugs. 29:483–493. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ramsey LB, Brown JT, Vear SI, Bishop JR and Van Driest SL: Gene-based dose optimization in children. Annu Rev Pharmacol Toxicol. 60:311–331. 2020. View Article : Google Scholar | |
Ma A, Feng Z, Li Y, Wu Q, Xiong H, Dong M, Cheng J, Wang Z, Yang J and Kang Y: Ferroptosis-related signature and immune infiltration characterization in acute lung injury/acute respiratory distress syndrome. Respir Res. 24:1542023. View Article : Google Scholar : PubMed/NCBI | |
Cheng H, Wang X, Yao J, Yang C and Liu J: Mitophagy and ferroptosis in sepsis-induced ALI/ARDS: Molecular mechanisms, interactions and therapeutic prospects of medicinal plants. J Inflamm Res. 17:7819–7835. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Cao Y, Xiao J, Shang J, Tan Q, Ping F, Huang W, Wu F, Zhang H and Zhang X: Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury. Cell Death Differ. 27:2635–2650. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shen K, Wang X, Wang Y, Jia Y, Zhang Y, Wang K, Luo L, Cai W, Li J, Li S, et al: miR-125b-5p in adipose derived stem cells exosome alleviates pulmonary microvascular endothelial cells ferroptosis via Keap1/Nrf2/GPX4 in sepsis lung injury. Redox Biol. 62:1026552023. View Article : Google Scholar : PubMed/NCBI | |
Dodson M, Castro-Portuguez R and Zhang DD: NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 23:1011072019. View Article : Google Scholar : PubMed/NCBI | |
Stockwell BR: Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 185:2401–2421. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ma C, Liu K, Wang F, Fei X, Niu C, Li T and Liu L: Neutrophil membrane-engineered Panax ginseng root-derived exosomes loaded miRNA 182-5p targets NOX4/Drp-1/NLRP3 signal pathway to alleviate acute lung injury in sepsis: Experimental studies. Int J Surg. 110:72–86. 2024. | |
Fan L, Bin Wang, Ma J, Ye Z, Nie X, Cheng M, Xie Y, Gu P, Zhang Y, You X, et al: Role and mechanism of WNT5A in benzo(a)pyrene-induced acute lung injury and lung function decline. J Hazard Mater. 460:1323912023. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Chang P, Ye J, Ma W, Zhou J, Zhang P, Chen X, Jia B, Zheng M, Huang W and Wang T: Genome-wide landscape of mRNAs, microRNAs, lncRNAs, and circRNAs in hemorrhagic shock-induced ALI/ARDS in rats. J Trauma Acute Care Surg. 90:827–837. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bai G, Li Y, Ji Y, Peng Y, Yang Z and Zhao L: Treatments and whole exon sequencing of a case with multiple primary lung cancer. J Cardiothorac Surg. 18:582023. View Article : Google Scholar : PubMed/NCBI | |
Guo W, Zhou B, Bie F, Huai Q, Xue X, Guo L, Tan F, Xue Q, Zhao L and Gao S: Single-cell RNA sequencing analysis reveals transcriptional heterogeneity of multiple primary lung cancer. Clin Transl Med. 13:e14532023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Fu F, Zhang Q, Li L, Liu H, Deng C, Xue Q, Zhao Y, Sun W, Han H, et al: Evolutionary proteogenomic landscape from pre-invasive to invasive lung adenocarcinoma. Cell Rep Med. 5:1013582024. View Article : Google Scholar : PubMed/NCBI | |
Egger G, Liang G, Aparicio A and Jones PA: Epigenetics in human disease and prospects for epigenetic therapy. Nature. 429:457–463. 2004. View Article : Google Scholar : PubMed/NCBI | |
Liao SY, Casanova NG, Bime C, Camp SM, Lynn H and Garcia JGN: Identification of early and intermediate biomarkers for ARDS mortality by multi-omic approaches. Sci Rep. 11:188742021. View Article : Google Scholar : PubMed/NCBI | |
Binnie A, Tsang JLY, Hu P, Carrasqueiro G, Castelo-Branco P and Dos Santos CC: Epigenetics of sepsis. Crit Care Med. 48:745–756. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ahmad S, Manzoor S, Siddiqui S, Mariappan N, Zafar I and Ahmad A and Ahmad A: Epigenetic underpinnings of inflammation: Connecting the dots between pulmonary diseases, lung cancer and COVID-19. Semin Cancer Biol. 83:384–398. 2022. View Article : Google Scholar | |
Yang IV, Lozupone CA and Schwartz DA: The environment, epigenome, and asthma. J Allergy Clin Immunol. 140:14–23. 2017. View Article : Google Scholar : PubMed/NCBI | |
Scheinecker C, Goschl L and Bonelli M: Treg cells in health and autoimmune diseases: New insights from single cell analysis. J Autoimmun. 110:1023762020. View Article : Google Scholar | |
Balnis J, Madrid A, Hogan KJ, Drake LA, Chieng HC, Tiwari A, Vincent CE, Chopra A, Vincent PA, Robek MD, et al: Blood DNA methylation and COVID-19 outcomes. Clin Epigenetics. 13:1182021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Jurkowska R, Soeroes S, Rajavelu A, Dhayalan A, Bock I, Rathert P, Brandt O, Reinhardt R, Fischle W and Jeltsch A: Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Res. 38:4246–4253. 2010. View Article : Google Scholar : PubMed/NCBI | |
Goldberg AD, Allis CD and Bernstein E: Epigenetics: A landscape takes shape. Cell. 128:635–638. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wu D, Spencer CB, Ortoga L, Zhang H and Miao C: Histone lactylation-regulated METTL3 promotes ferroptosis via m6A-modification on ACSL4 in sepsis-associated lung injury. Redox Biol. 74:1031942024. View Article : Google Scholar : PubMed/NCBI | |
Rombauts A, Bódalo Torruella M, Abelenda-Alonso G, Perera-Bel J, Ferrer-Salvador A, Acedo-Terrades A, Gabarrós-Subirà M, Oriol I, Gudiol C, Nonell L and Carratalà J: Dynamics of gene expression profiling and identification of high-risk patients for severe COVID-19. Biomedicines. 11:13482023. View Article : Google Scholar : PubMed/NCBI | |
Bejaoui Y, Humaira Amanullah F, Saad M, Taleb S, Bradic M, Megarbane A, Ait Hssain A, Abi Khalil C and El Hajj N: Epigenetic age acceleration in surviving versus deceased COVID-19 patients with acute respiratory distress syndrome following hospitalization. Clin Epigenetics. 15:1862023. View Article : Google Scholar : PubMed/NCBI | |
Singer BD, Mock JR, Aggarwal NR, Garibaldi BT, Sidhaye VK, Florez MA, Chau E, Gibbs KW, Mandke P, Tripathi A, et al: Regulatory T cell DNA methyltransferase inhibition accelerates resolution of lung inflammation. Am J Respir Cell Mol Biol. 52:641–652. 2015. View Article : Google Scholar : | |
Ponting CP, Oliver PL and Reik W: Evolution and functions of long noncoding RNAs. Cell. 136:629–641. 2009. View Article : Google Scholar : PubMed/NCBI | |
He X, Liu X, Zuo F, Shi H and Jing J: Artificial intelligence-based multi-omics analysis fuels cancer precision medicine. Semin Cancer Biol. 88:187–200. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xiong S, Hong Z, Huang LS, Tsukasaki Y, Nepal S, Di A, Zhong M, Wu W, Ye Z, Gao X, et al: IL-1β suppression of VE-cadherin transcription underlies sepsis-induced inflammatory lung injury. J Clin Invest. 130:3684–3698. 2020. View Article : Google Scholar : PubMed/NCBI | |
Qian G and Fang H, Chen A, Sun Z, Huang M, Luo M, Cheng E, Zhang S, Wang X and Fang H: A hub gene signature as a therapeutic target and biomarker for sepsis and geriatric sepsis-induced ARDS concomitant with COVID-19 infection. Front Immunol. 14:12578342023. View Article : Google Scholar : PubMed/NCBI | |
Zhang ZT, Xie K, Luo RJ, Zhang DY, He ZW, Li KF, Lin SH and Xu F: Dexmedetomidine alleviates acute lung injury by promoting Tregs differentiation via activation of AMPK/SIRT1 pathway. Inflammopharmacology. 31:423–438. 2023. View Article : Google Scholar | |
Xu Z, Jiang X, Dai X and Li B: The dynamic role of FOXP3(+) tregs and their potential therapeutic applications during SARS-CoV-2 infection. Front Immunol. 13:9164112022. View Article : Google Scholar : PubMed/NCBI | |
He G, Chen K, Wang H, Li X, Li W, Liu L, Chen J, Yang D, Hu J, Xu D, et al: Fudosteine attenuates acute lung injury in septic mice by inhibiting pyroptosis via the TXNIP/NLRP3/GSDMD pathway. Eur J Pharmacol. 926:1750472022. View Article : Google Scholar : PubMed/NCBI | |
Tsubaki H, Tooyama I and Walker DG: Thioredoxin-interacting protein (TXNIP) with focus on brain and neurodegenerative diseases. Int J Mol Sci. 21:93572020. View Article : Google Scholar : PubMed/NCBI | |
Lee S, Nakahira K, Dalli J, Siempos II, Norris PC, Colas RA, Moon JS, Shinohara M, Hisata S, Howrylak JA, et al: NLRP3 inflammasome deficiency protects against microbial sepsis via increased lipoxin B4 synthesis. Am J Respir Crit Care Med. 196:713–726. 2017. View Article : Google Scholar : PubMed/NCBI | |
Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MW, Gaffney DJ, Elo LL, Zhang X and Mortazavi A: A survey of best practices for RNA-seq data analysis. Genome Biol. 17:132016. View Article : Google Scholar : PubMed/NCBI | |
Reilly JP, Christie JD and Meyer NJ: Fifty years of research in ARDS. genomic contributions and opportunities. Am J Respir Crit Care Med. 196:1113–1121. 2017. View Article : Google Scholar : PubMed/NCBI | |
Restrepo-Pérez L, Joo C and Dekker C: Paving the way to single-molecule protein sequencing. Nat Nanotechnol. 13:786–796. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Lee SJ, Minshall RD and Choi AM: Caveolin-1: A critical regulator of lung injury. Am J Physiol Lung Cell Mol Physiol. 300:L151–L160. 2011. View Article : Google Scholar | |
Davey A, McAuley DF and O'Kane CM: Matrix metalloproteinases in acute lung injury: Mediators of injury and drivers of repair. Eur Respir J. 38:959–970. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mura M, Han B, Andrade CF, Seth R, Hwang D, Waddell TK, Keshavjee S and Liu M: The early responses of VEGF and its receptors during acute lung injury: Implication of VEGF in alveolar epithelial cell survival. Crit Care. 10:R1302006. View Article : Google Scholar : PubMed/NCBI | |
Uchida T, Shirasawa M, Ware LB, Kojima K, Hata Y, Makita K, Mednick G, Matthay ZA and Matthay MA: Receptor for advanced glycation end-products is a marker of type I cell injury in acute lung injury. Am J Respir Crit Care Med. 173:1008–1015. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fremont RD, Koyama T, Calfee CS, Wu W, Dossett LA, Bossert FR, Mitchell D, Wickersham N, Bernard GR, Matthay MA, et al: Acute lung injury in patients with traumatic injuries: Utility of a panel of biomarkers for diagnosis and pathogenesis. J Trauma. 68:1121–1127. 2010. | |
Ding Z, Wang N, Ji N and Chen ZS: Proteomics technologies for cancer liquid biopsies. Mol Cancer. 21:532022. View Article : Google Scholar : PubMed/NCBI | |
Hanash S: Disease proteomics. Nature. 422:226–232. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rao Z, Liu S, Li Z, Wang Q, Gao F, Peng H, Ren D, Zang Y, Li H, Li Y, et al: Alarmin-loaded extracellular lipid droplets induce airway neutrophil infiltration during type 2 inflammation. Immunity. 57:2514–2529.e7. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Huang X, Yu H, Shi H, Chen M, Song J, Tang W, Teng F, Li C, Yi L, et al: TMT-based quantitative proteomics revealed protective efficacy of Icariside II against airway inflammation and remodeling via inhibiting LAMP2, CTSD and CTSS expression in OVA-induced chronic asthma mice. Phytomedicine. 118:1549412023. View Article : Google Scholar : PubMed/NCBI | |
Bowler RP, Ellison MC and Reisdorph N: Proteomics in pulmonary medicine. Chest. 130:567–574. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zi SF, Wu XJ, Tang Y, Liang YP, Liu X, Wang L, Li SL, Wu CD, Xu JY, Liu T, et al: Endothelial cell-derived extracellular vesicles promote aberrant neutrophil trafficking and subsequent remote lung injury. Adv Sci (Weinh). 11:e24006472024. View Article : Google Scholar : PubMed/NCBI | |
Bowler RP, Duda B, Chan ED, Enghild JJ, Ware LB, Matthay MA and Duncan MW: Proteomic analysis of pulmonary edema fluid and plasma in patients with acute lung injury. Am J Physiol Lung Cell Mol Physiol. 286:L1095–L1104. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rozanova S, Barkovits K, Nikolov M, Schmidt C, Urlaub H and Marcus K: Quantitative mass spectrometry-based proteomics: An overview. Methods Mol Biol. 2228:85–116. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shuken SR: An introduction to mass spectrometry-based proteomics. J Proteome Res. 22:2151–2171. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gao CL, Song JQ, Yang ZN, Wang H, Wu XY, Shao C, Dai HX, Chen K, Guo YW, Pang T and Li XW: Chemoproteomics of marine natural product naamidine J unveils CSE1L as a therapeutic target in acute lung injury. J Am Chem Soc. Sep 26–2024.Epub ahead of print. View Article : Google Scholar | |
Hsu CY, Fu SH, Chien MW, Liu YW, Chen SJ and Sytwu HK: Post-translational modifications of transcription factors harnessing the etiology and pathophysiology in colonic diseases. Int J Mol Sci. 21:32072020. View Article : Google Scholar : PubMed/NCBI | |
Zhu G, Jin L, Sun W, Wang S and Liu N: Proteomics of post-translational modifications in colorectal cancer: Discovery of new biomarkers. Biochim Biophys Acta Rev Cancer. 1877:1887352022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Huang Y and Li T: PTM-X: Prediction of post-translational modification crosstalk within and across proteins. Methods Mol Biol. 2499:275–283. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ran H, Li C, Zhang M, Zhong J and Wang H: Neglected PTM in animal adipogenesis: E3-mediated ubiquitination. Gene. 878:1475742023. View Article : Google Scholar : PubMed/NCBI | |
Ebert T, Tran N, Schurgers L, Stenvinkel P and Shiels PG: Ageing-oxidative stress, PTMs and disease. Mol Aspects Med. 86:1010992022. View Article : Google Scholar | |
Zhang WJ, Zhou Y, Zhang Y, Su YH and Xu T: Protein phosphorylation: A molecular switch in plant signaling. Cell Rep. 42:1127292023. View Article : Google Scholar : PubMed/NCBI | |
Shindo S, Kakizaki S, Sakaki T, Kawasaki Y, Sakuma T, Negishi M and Shizu R: Phosphorylation of nuclear receptors: Novelty and therapeutic implications. Pharmacol Ther. 248:1084772023. View Article : Google Scholar : PubMed/NCBI | |
Paulo JA and Schweppe DK: Advances in quantitative high-throughput phosphoproteomics with sample multiplexing. Proteomics. 21:e20001402021. View Article : Google Scholar : PubMed/NCBI | |
Zhao A, Guo C, Wang L, Chen S, Xu Q, Cheng J, Zhang J, Jiang J, Di J, Zhang H, et al: Xiebai San alleviates acute lung injury by inhibiting the phosphorylation of the ERK/Stat3 pathway and regulating multiple metabolisms. Phytomedicine. 128:1553972024. View Article : Google Scholar : PubMed/NCBI | |
Li N, Liu B, Xiong R, Li G, Wang B and Geng Q: HDAC3 deficiency protects against acute lung injury by maintaining epithelial barrier integrity through preserving mitochondrial quality control. Redox Biol. 63:1027462023. View Article : Google Scholar : PubMed/NCBI | |
Zeng X, Lan Y, Xiao J, Hu L, Tan L, Liang M, Wang X, Lu S, Peng T and Long F: Advances in phosphoproteomics and its application to COPD. Expert Rev Proteomics. 19:311–324. 2022. View Article : Google Scholar | |
Chen L, Huang L, Gu Y, Cang W, Sun P and Xiang Y: Lactate-lactylation hands between metabolic reprogramming and immunosuppression. Int J Mol Sci. 23:119432022. View Article : Google Scholar : PubMed/NCBI | |
Jing F, Zhang J, Zhang H and Li T: Unlocking the multifaceted molecular functions and diverse disease implications of lactylation. Biol Rev Camb Philos Soc. Sep 16–2024.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Alvarez M, Marik P and Bellomo R: Sepsis-associated hyperlactatemia. Crit Care. 18:5032014. View Article : Google Scholar : PubMed/NCBI | |
Fan M, Yang K, Wang X, Zhang X, Xu J, Tu F, Gill PS, Ha T, Williams DL and Li C: Lactate impairs vascular permeability by inhibiting HSPA12B expression via GPR81-dependent signaling in sepsis. Shock. 58:304–312. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yao G and Yang Z: Glypican-3 knockdown inhibits the cell growth, stemness, and glycolysis development of hepatocellular carcinoma cells under hypoxic microenvironment through lactylation. Arch Physiol Biochem. 130:546–554. 2024. | |
Wang J, Yang P, Yu T, Gao M, Liu D, Zhang J, Lu C, Chen X, Zhang X and Liu Y: Lactylation of PKM2 suppresses inflammatory metabolic adaptation in pro-inflammatory macrophages. Int J Biol Sci. 18:6210–6225. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dichtl S, Lindenthal L, Zeitler L, Behnke K, Schlösser D, Strobl B, Scheller J, El Kasmi KC and Murray PJ: Lactate and IL6 define separable paths of inflammatory metabolic adaptation. Sci Adv. 7:eabg35052021. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Li S, Luo H, Lu Q and Yu S: PCSK9 promotes the progression and metastasis of colon cancer cells through regulation of EMT and PI3K/AKT signaling in tumor cells and phenotypic polarization of macrophages. J Exp Clin Cancer Res. 41:3032022. View Article : Google Scholar : PubMed/NCBI | |
Cockram PE, Kist M, Prakash S, Chen SH, Wertz IE and Vucic D: Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ. 28:591–605. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li L, Wei J, Li S, Jacko AM, Weathington NM, Mallampalli RK, Zhao J and Zhao Y: The deubiquitinase USP13 stabilizes the anti-inflammatory receptor IL-1R8/Sigirr to suppress lung inflammation. EBioMedicine. 45:553–562. 2019. View Article : Google Scholar : PubMed/NCBI | |
Qian Y, Wang Z, Lin H, Lei T, Zhou Z, Huang W, Wu X, Zuo L, Wu J, Liu Y, et al: TRIM47 is a novel endothelial activation factor that aggravates lipopolysaccharide-induced acute lung injury in mice via K63-linked ubiquitination of TRAF2. Signal Transduct Target Ther. 7:1482022. View Article : Google Scholar : PubMed/NCBI | |
Li J, Deng SH, Li J, Li L, Zhang F, Zou Y, Wu DM and Xu Y: Obacunone alleviates ferroptosis during lipopolysaccharide-induced acute lung injury by upregulating Nrf2-dependent antioxidant responses. Cell Mol Biol Lett. 27:292022. View Article : Google Scholar : PubMed/NCBI | |
Gao L, Zhang W, Shi XH, Chang X, Han Y, Liu C, Jiang Z and Yang X: The mechanism of linear ubiquitination in regulating cell death and correlative diseases. Cell Death Dis. 14:6592023. View Article : Google Scholar : PubMed/NCBI | |
De Silva ARI and Page RC: Ubiquitination detection techniques. Exp Biol Med (Maywood). 248:1333–1346. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wishart DS: Metabolomics for investigating physiological and pathophysiological processes. Physiol Rev. 99:1819–1875. 2019. View Article : Google Scholar : PubMed/NCBI | |
McGarrah RW, Crown SB, Zhang GF, Shah SH and Newgard CB: Cardiovascular metabolomics. Circ Res. 122:1238–1258. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zampieri M, Sekar K, Zamboni N and Sauer U: Frontiers of high-throughput metabolomics. Curr Opin Chem Biol. 36:15–23. 2017. View Article : Google Scholar : PubMed/NCBI | |
Paglia G and Astarita G: Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nat Protoc. 12:797–813. 2017. View Article : Google Scholar : PubMed/NCBI | |
Evans CR, Karnovsky A, Kovach MA, Standiford TJ, Burant CF and Stringer KA: Untargeted LC-MS metabolomics of bronchoalveolar lavage fluid differentiates acute respiratory distress syndrome from health. J Proteome Res. 13:640–649. 2014. View Article : Google Scholar : | |
Fan L, Meng K, Meng F, Wu Y and Lin L: Metabolomic characterization benefits the identification of acute lung injury in patients with type A acute aortic dissection. Front Mol Biosci. 10:12221332023. View Article : Google Scholar : PubMed/NCBI | |
Tzanakis K, Nattkemper TW, Niehaus K and Albaum SP: MetHoS: A platform for large-scale processing, storage and analysis of metabolomics data. BMC Bioinformatics. 23:2672022. View Article : Google Scholar : PubMed/NCBI | |
Lind L, Fall T, Ärnlöv J, Elmståhl S and Sundström J: Large-Scale Metabolomics and the Incidence of Cardiovascular Disease. J Am Heart Assoc. 12:e0268852023. View Article : Google Scholar : PubMed/NCBI | |
Serkova NJ, Standiford TJ and Stringer KA: The emerging field of quantitative blood metabolomics for biomarker discovery in critical illnesses. Am J Respir Crit Care Med. 184:647–655. 2011. View Article : Google Scholar : PubMed/NCBI | |
Muthubharathi BC, Gowripriya T and Balamurugan K: Metabolomics: Small molecules that matter more. Mol Omics. 17:210–229. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ingelfinger F, Beltrán E, Gerdes LA and Becher B: Single-cell multiomics in neuroinflammation. Curr Opin Immunol. 76:1021802022. View Article : Google Scholar : PubMed/NCBI | |
Zormpas E, Queen R, Comber A and Cockell SJ: Mapping the transcriptome: Realizing the full potential of spatial data analysis. Cell. 186:5677–5689. 2023. View Article : Google Scholar : PubMed/NCBI | |
Fatumo S, Chikowore T, Choudhury A, Ayub M, Martin AR and Kuchenbaecker K: A roadmap to increase diversity in genomic studies. Nat Med. 28:243–250. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kan M, Shumyatcher M and Himes BE: Using omics approaches to understand pulmonary diseases. Respir Res. 18:1492017. View Article : Google Scholar : PubMed/NCBI | |
Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, et al: Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 13:397–406. 2014. View Article : Google Scholar : | |
Robles-Remacho A, Sanchez-Martin RM and Diaz-Mochon JJ: Spatial transcriptomics: Emerging technologies in tissue gene expression profiling. Anal Chem. 95:15450–15460. 2023. View Article : Google Scholar : PubMed/NCBI | |
Banavasi H, Nguyen P, Osman H and Soubani AO: Management of ARDS - what works and what does not. Am J Med Sci. 362:13–23. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li H, Li D, Ledru N, Xuanyuan Q, Wu H, Asthana A, Byers LN, Tullius SG, Orlando G, Waikar SS and Humphreys BD: Transcriptomic, epigenomic, and spatial metabolomic cell profiling redefines regional human kidney anatomy. Cell Metab. 36:1105–1125.e10. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xiong X, James BT, Boix CA, Park YP, Galani K, Victor MB, Sun N, Hou L, Ho LL, Mantero J, et al: Epigenomic dissection of Alzheimer's disease pinpoints causal variants and reveals epigenome erosion. Cell. 186:4422–4437.e21. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ozsolak F and Milos PM: RNA sequencing: Advances, challenges and opportunities. Nat Rev Genet. 12:87–98. 2011. View Article : Google Scholar : | |
Marand AP, Chen Z, Gallavotti A and Schmitz RJ: A cis-regulatory atlas in maize at single-cell resolution. Cell. 184:3041–3055.e21. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tejera P, Wang Z, Zhai R, Su L, Sheu CC, Taylor DM, Chen F, Gong MN, Thompson BT and Christiani DC: Genetic polymorphisms of peptidase inhibitor 3 (elafin) are associated with acute respiratory distress syndrome. Am J Respir Cell Mol Biol. 41:696–704. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Sun BL, Sammani S, Bermudez T, Dudek SM, Camp SM and Garcia JGN: Genetic and epigenetic regulation of the non-muscle myosin light chain kinase isoform by lung inflammatory factors and mechanical stress. Clin Sci (Lond). 35:963–977. 2021. View Article : Google Scholar | |
Adyshev DM, Moldobaeva N, Mapes B, Elangovan V and Garcia JG: MicroRNA regulation of nonmuscle myosin light chain kinase expression in human lung endothelium. Am J Respir Cell Mol Biol. 49:58–66. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kovacs-Kasa A, Zaied AA, Leanhart S, Koseoglu M, Sridhar S, Lucas R, Fulton DJ, Vazquez JA and Annex BH: Elevated cytokine levels in plasma of patients with SARS-CoV-2 do not contribute to pulmonary microvascular endothelial permeability. Microbiol Spectr. 10:e01671212022. View Article : Google Scholar : PubMed/NCBI | |
Albini A, Calabrone L, Carlini V, Benedetto N, Lombardo M, Bruno A and Noonan DM: Preliminary evidence for IL-10-induced ACE2 mRNA expression in lung-derived and endothelial cells: Implications for SARS-Cov-2 ARDS pathogenesis. Front Immunol. 12:7181362021. View Article : Google Scholar : PubMed/NCBI | |
Xian H, Liu Y, Rundberg Nilsson A, Gatchalian R, Crother TR, Tourtellotte WG, Zhang Y, Aleman-Muench GR, Lewis G, Chen W, et al: Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity. 54:1463–1477.e11. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liu B, Zhao G, Lee Y, Buzdin A, Mu X, Zhao J, Chen H and Li X: Spatial transcriptomics: Technologies, applications and experimental considerations. Genomics. 115:1106712023. View Article : Google Scholar : PubMed/NCBI | |
Han J, Zhang X, Cai M, Tian F, Xu Y, Chen H, He W, Zhang J and Tian H: TSPO deficiency exacerbates acute lung injury via NLRP3 inflammasome-mediated pyroptosis. Chin Med J (Engl). 137:1592–1602. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Sheng S, Luo W, Xu X and Zhang Z: Acute respiratory distress syndrome heterogeneity and the septic ARDS subgroup. Front Immunol. 14:12771612023. View Article : Google Scholar : PubMed/NCBI | |
Tang W, Wu S, Tang Y, Ma J, Ao Y, Liu L and Wei K: Microarray analysis identifies lncFirre as a potential regulator of obesity-related acute lung injury. Life Sci. 340:1224592024. View Article : Google Scholar : PubMed/NCBI | |
Zou L, Yu Q, Zhang L, Yuan X, Fang F and Xu F: Identification of inflammation related lncRNAs and Gm33647 as a potential regulator in septic acute lung injury. Life Sci. 282:1198142021. View Article : Google Scholar : PubMed/NCBI | |
Sivakumar P, Ammar R, Thompson JR, Luo Y, Streltsov D, Porteous M, McCoubrey C, Cantu E III, Beers MF, Jarai G and Christie JD: Integrated plasma proteomics and lung transcriptomics reveal novel biomarkers in idiopathic pulmonary fibrosis. Respir Res. 22:2732021. View Article : Google Scholar : PubMed/NCBI | |
Sinha S, Rosin NL, Arora R, Labit E, Jaffer A, Cao L, Farias R, Nguyen AP, de Almeida LGN, Dufour A, et al: Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19. Nat Med. 28:201–211. 2022. View Article : Google Scholar : | |
Ramaswamy A, Brodsky NN, Sumida TS, Comi M, Asashima H, Hoehn KB, Li N, Liu Y, Shah A, Ravindra NG, et al: Immune dysregulation and autoreactivity correlate with disease severity in SARS-CoV-2-associated multisystem inflammatory syndrome in children. Immunity. 54:1083–1095.e7. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tong F, Shen W, Zhao J, Hu Y, Zhao Q, Lv H, Liu F, Meng Z and Liu J: Silencing information regulator 1 ameliorates lipopolysaccharide-induced acute lung injury in rats via the upregulation of caveolin-1. Biomed Pharmacother. 165:1150182023. View Article : Google Scholar : PubMed/NCBI | |
Ren Y, Li L, Wang MM, Cao LP, Sun ZR, Yang ZZ, Zhang W, Zhang P and Nie SN: Pravastatin attenuates sepsis-induced acute lung injury through decreasing pulmonary microvascular permeability via inhibition of Cav-1/eNOS pathway. Int Immunopharmacol. 100:1080772021. View Article : Google Scholar : PubMed/NCBI | |
Liang X, Wei SQ, Lee SJ, Fung JK, Zhang M, Tanaka A, Choi AM and Jin Y: p62 sequestosome 1/light chain 3b complex confers cytoprotection on lung epithelial cells after hyperoxia. Am J Respir Cell Mol Biol. 48:489–496. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tanaka A, Jin Y, Lee SJ, Zhang M, Kim HP, Stolz DB, Ryter SW and Choi AM: Hyperoxia-induced LC3B interacts with the Fas apoptotic pathway in epithelial cell death. Am J Respir Cell Mol Biol. 46:507–514. 2012. View Article : Google Scholar : | |
Chen ZH, Lam HC, Jin Y, Kim HP, Cao J, Lee SJ, Ifedigbo E, Parameswaran H, Ryter SW and Choi AM: Autophagy protein microtubule-associated protein 1 light chain-3B (LC3B) activates extrinsic apoptosis during cigarette smoke-induced emphysema. Proc Natl Acad Sci USA. 107:18880–18885. 2010. View Article : Google Scholar : PubMed/NCBI | |
Baysoy A, Bai Z, Satija R and Fan R: The technological landscape and applications of single-cell multi-omics. Nat Rev Mol Cell Biol. 24:695–713. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wong HR, Cvijanovich NZ, Allen GL, Thomas NJ, Freishtat RJ, Anas N, Meyer K, Checchia PA, Lin R, Shanley TP, et al: Validation of a gene expression-based subclassification strategy for pediatric septic shock. Crit Care Med. 39:2511–2517. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rao A, Barkley D, França GS and Yanai I: Exploring tissue architecture using spatial transcriptomics. Nature. 596:211–220. 2021. View Article : Google Scholar : PubMed/NCBI | |
Computational Pan-Genomics Consortium: Computational pan-genomics: Status, promises and challenges. Brief Bioinform. 19:118–135. 2018. | |
Vandereyken K, Sifrim A, Thienpont B and Voet T: Methods and applications for single-cell and spatial multi-omics. Nat Rev Genet. 24:494–515. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Shan P, Srivastava A, Li Z and Lee PJ: Endothelial stanniocalcin 1 maintains mitochondrial bioenergetics and prevents oxidant-induced lung injury via toll-like receptor 4. Antioxid Redox Signal. 30:1775–1796. 2019. View Article : Google Scholar : | |
Wang Y, Chen D, Xie H, Jia M, Sun X, Peng F, Guo F and Tang D: AUF1 protects against ferroptosis to alleviate sepsis-induced acute lung injury by regulating NRF2 and ATF3. Cell Mol Life Sci. 79:2282022. View Article : Google Scholar : PubMed/NCBI | |
Ghiasi M, Kheirandish Zarandi P, Dayani A, Salimi A and Shokri E: Potential therapeutic effects and nano-based delivery systems of mesenchymal stem cells and their isolated exosomes to alleviate acute respiratory distress syndrome caused by COVID-19. Regen Ther. 27:319–328. 2024. View Article : Google Scholar : PubMed/NCBI | |
Deng H, Zhu L, Zhang Y, Zheng L, Hu S, Zhou W, Zhang T, Xu W, Chen Y, Zhou H, et al: Differential lung protective capacity of exosomes derived from human adipose tissue, bone marrow, and umbilical cord mesenchymal stem cells in sepsis-induced acute lung injury. Oxid Med Cell Longev. 2022:78378372022. View Article : Google Scholar : PubMed/NCBI | |
Xian H, Watari K, Sanchez-Lopez E, Offenberger J, Onyuru J, Sampath H, Ying W, Hoffman HM, Shadel GS and Karin M: Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity. 55:1370–1385.e8. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li J, Bai Y, Tang Y, Wang X, Cavagnaro MJ, Li L, Li Z, Zhang Y and Shi J: A 4-benzene-indol derivative alleviates LPS-induced acute lung injury through inhibiting the NLRP3 inflammasome. Front Immunol. 13:8121642022. View Article : Google Scholar : PubMed/NCBI | |
Xie H, Liu X, Zhou Q, Huang T, Zhang L, Gao J, Wang Y, Liu Y, Yan T, Zhang S and Wang CY: DNA Methylation Modulates Aging Process in Adipocytes. Aging Dis. 13:433–446. 2022. View Article : Google Scholar : PubMed/NCBI | |
Picard M, Scott-Boyer MP, Bodein A, Périn O and Droit A: Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J. 19:3735–3746. 2021. View Article : Google Scholar : PubMed/NCBI | |
Poirion OB, Jing Z, Chaudhary K, Huang S and Garmire LX: DeepProg: An ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data. Genome Med. 13:1122021. View Article : Google Scholar : PubMed/NCBI | |
Ravindran U and Gunavathi C: A survey on gene expression data analysis using deep learning methods for cancer diagnosis. Prog Biophys Mol Biol. 177:1–13. 2023. View Article : Google Scholar | |
P D and G C: A systematic review on machine learning and deep learning techniques in cancer survival prediction. Prog Biophys Mol Biol. 174:62–71. 2022. View Article : Google Scholar : PubMed/NCBI | |
Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, Waldstein SM and Bogunović H: Artificial intelligence in retina. Prog Retin Eye Res. 67:1–29. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cui H, Wang C, Maan H, Pang K, Luo F, Duan N and Wang B: mscGPT: Toward building a foundation model for single-cell multi-omics using generative AI. Nat Methods. 21:1470–1480. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kang M, Ko E and Mersha TB: A roadmap for multi-omics data integration using deep learning. Brief Bioinform. 23:bbab4542022. View Article : Google Scholar : | |
Lin M, Xu F, Sun J, Song J, Shen Y, Lu S, Ding H, Lan L, Chen C, Ma W, et al: Integrative multi-omics analysis unravels the host response landscape and reveals a serum protein panel for early prognosis prediction for ARDS. Crit Care. 28:2132024. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Huang W, Wu X, Chen H, Wang L, Chao J, Xie J and Qiu H: IBR1, a novel endogenous IFIH1-binding dsRNA, governs IFIH1 activation and M1 macrophage polarisation in ARDS. Clin Transl Med. 14:e700272024. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Bai C and Wang X: Bioinformatics insights into acute lung injury/acute respiratory distress syndrome. Clin Transl Med. 1:92012. View Article : Google Scholar | |
Zhang Z, Navarese EP, Zheng B, Meng Q, Liu N, Ge H, Pan Q, Yu Y and Ma X: Analytics with artificial intelligence to advance the treatment of acute respiratory distress syndrome. J Evid Based Med. 13:301–312. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ober-Reynolds B, Wang C, Ko JM, Rios EJ, Aasi SZ, Davis MM, Oro AE and Greenleaf WJ: Integrated single-cell chromatin and transcriptomic analyses of human scalp identify gene-regulatory programs and critical cell types for hair and skin diseases. Nat Genet. 55:1288–1300. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hwang B, Lee JH and Bang D: Single-cell RNA sequencing technologies and bioinformatic pipelines. Exp Mol Med. 50:1–14. 2018. View Article : Google Scholar | |
Wang Y and Navin NE: Advances and applications of single-cell sequencing technologies. Mol Cell. 58:598–609. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gawad C, Koh W and Quake SR: Single-cell genome sequencing: Current state of the science. Nat Rev Genet. 17:175–188. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang R, Zheng T, Xiang H, Liu M and Hu K: Lung single-cell RNA profiling reveals response of pulmonary capillary to sepsis-induced acute lung injury. Front Immunol. 15:13089152024. View Article : Google Scholar : PubMed/NCBI | |
Kang ZY, Huang QY, Zhen NX, Xuan NX, Zhou QC, Zhao J, Cui W, Zhang ZC and Tian BP: Heterogeneity of immune cells and their communications unveiled by transcriptome profiling in acute inflammatory lung injury. Front Immunol. 15:13824492024. View Article : Google Scholar : PubMed/NCBI | |
Suvà ML and Tirosh I: Single-Cell RNA sequencing in cancer: Lessons learned and emerging challenges. Mol Cell. 75:7–12. 2019. View Article : Google Scholar : PubMed/NCBI | |
Halpern KB, Shenhav R, Matcovitch-Natan O, Toth B, Lemze D, Golan M, Massasa EE, Baydatch S, Landen S, Moor AE, et al: Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature. 542:352–356. 2017. View Article : Google Scholar : PubMed/NCBI | |
Van de Sande B, Lee JS, Mutasa-Gottgens E, Naughton B, Bacon W, Manning J, Wang Y, Pollard J, Mendez M, Hill J, et al: Applications of single-cell RNA sequencing in drug discovery and development. Nat Rev Drug Discov. 22:496–520. 2023. View Article : Google Scholar : PubMed/NCBI | |
Greener JG, Kandathil SM, Moffat L and Jones DT: A guide to machine learning for biologists. Nat Rev Mol Cell Biol. 23:40–55. 2022. View Article : Google Scholar | |
Handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ and Asadi H: eDoctor: Machine learning and the future of medicine. J Intern Med. 284:603–619. 2018. View Article : Google Scholar : PubMed/NCBI | |
Deo RC: Machine learning in medicine. Circulation. 132:1920–1930. 2015. View Article : Google Scholar : PubMed/NCBI |