The role of astrocyte metabolic reprogramming in ischemic stroke (Review)
- Authors:
- Published online on: January 21, 2025 https://doi.org/10.3892/ijmm.2025.5490
- Article Number: 49
-
Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
Ischemic stroke, a leading cause of disability and mortality worldwide, is characterized by the sudden loss of blood flow in specific area of the brain. Intravenous thrombolysis with recombinant tissue plasminogen activator is the only approved pharmacological treatment for acute ischemic stroke; however, the aforementioned treatment has significant clinical limitations, thus there is an urgent need for the development of novel mechanisms and therapeutic strategies for ischemic stroke. Astrocytes, abundant and versatile cells in the central nervous system, offer crucial support to neurons nutritionally, structurally and physically. They also contribute to blood‑brain barrier formation and regulate neuronal extracellular ion concentrations. Accumulated evidence has revealed the involvement of astrocytes in the regulation of host neurotransmitter metabolism, immune response and tissue repair, and different metabolic characteristics of astrocytes can contribute to the process and development of ischemic stroke, suggesting that targeted regulation of astrocyte metabolic reprogramming may contribute to the treatment and prognosis of ischemic stroke. In the present review, the current understanding of the multifaceted mechanisms of astrocyte metabolic reprogramming in ischemic stroke, along with its regulatory factors and pathways, as well as the strategies to promote its polarization balance, which hold promise for astrocyte immunometabolism‑targeted therapies in the treatment of ischemic stroke, were summarized.