
The molecular mechanisms underlying retinal ganglion cell apoptosis and optic nerve regeneration in glaucoma (Review)
- Authors:
- Xiaotong Wang
- Liang Sun
- Xudong Han
- Zhanglong Li
- Yuqing Xing
- Xinyue Chen
- Ruofan Xi
- Yuecong Sun
- Guilong Wang
- Ping Zhao
-
Affiliations: Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China, College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Jinan, Shandong 250021, P.R. China, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China, Shandong Provincial Education Department, Jinan, Shandong 250012, P.R. China - Published online on: February 13, 2025 https://doi.org/10.3892/ijmm.2025.5504
- Article Number: 63
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
Jayaram H, Kolko M, Friedman DS and Gazzard G: Glaucoma: Now and beyond. Lancet. 402:1788–1801. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tham YC, Li X, Wong TY, Quigley HA, Aung T and Cheng CY: Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology. 121:2081–2090. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kang JM and Tanna AP: Glaucoma. Med Clin North Am. 105:493–510. 2021. View Article : Google Scholar : PubMed/NCBI | |
Downs JC and Girkin CA: Lamina cribrosa in glaucoma. Curr Opin Ophthalmol. 28:113–119. 2017. View Article : Google Scholar : | |
Fernández-Albarral JA, Ramírez AI, de Hoz R, Matamoros JA, Salobrar-García E, Elvira-Hurtado L, López-Cuenca I, Sánchez-Puebla L, Salazar JJ and Ramírez JM: Glaucoma: From pathogenic mechanisms to retinal glial cell response to damage. Front Cell Neurosci. 18:13545692024. View Article : Google Scholar : PubMed/NCBI | |
Syc-Mazurek SB and Libby RT: Axon injury signaling and compartmentalized injury response in glaucoma. Prog Retin Eye Res. 73:1007692019. View Article : Google Scholar : PubMed/NCBI | |
Li L and Song F: Biomechanical research into lamina cribrosa in glaucoma. Natl Sci Rev. 7:1277–1279. 2020. View Article : Google Scholar : PubMed/NCBI | |
Crupi L, Capra AP, Paterniti I, Lanza M, Calapai F, Cuzzocrea S, Ardizzone A and Esposito E: Evaluation of the nutraceutical Palmitoylethanolamide in reducing intraocular pressure (IOP) in patients with glaucoma or ocular hypertension: A systematic review and meta-analysis. Nat Prod Res. 1–20. 2024. View Article : Google Scholar | |
Keuthan CJ, Schaub JA, Wei M, Fang W, Quillen S, Kimball E, Johnson TV, Ji H, Zack DJ and Quigley HA: Regional gene expression in the retina, optic nerve head, and optic nerve of mice with optic nerve crush and experimental glaucoma. Int J Mol Sci. 24:137192023. View Article : Google Scholar : PubMed/NCBI | |
Liu L and Yang X, Zhang J, Jiang W, Hou T, Zong Y, Bai H, Yang K and Yang X: Long non-coding RNA SNHG11 regulates the Wnt/β-catenin signaling pathway through rho/ROCK in trabecular meshwork cells. FASEB J. 37:e228732023. View Article : Google Scholar | |
Tsai T, Reinehr S, Deppe L, Strubbe A, Kluge N, Dick HB and Joachim SC: Glaucoma animal models beyond chronic IOP increase. Int Mol Sci. 25:9062024. View Article : Google Scholar | |
Leung DYL and Tham CC: Normal-tension glaucoma: Current concepts and approaches-A review. Clin Exp Ophthalmol. 50:247–259. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang W and Wang H: Understanding the complex genetics and molecular mechanisms underlying glaucoma. Mol Aspects Med. 94:1012202023. View Article : Google Scholar : PubMed/NCBI | |
Abbasi M, Gupta V, Chitranshi N, Moustardas P, Ranjbaran R and Graham SL: Molecular mechanisms of glaucoma pathogenesis with implications to caveolin adaptor protein and Caveolin-Shp2 axis. Aging Dis. 15:2051–2068. 2024. View Article : Google Scholar : | |
Abbasi M, Gupta VK, Chitranshi N, Gupta V, Ranjbaran R, Rajput R, Pushpitha K, Kb D, You Y, Salekdeh GH, et al: Inner retinal injury in experimental glaucoma is prevented upon AAV mediated Shp2 silencing in a caveolin dependent manner. Theranostics. 11:6154–6172. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xi X, Chen Q, Ma J, Wang X, Xia Y, Wen X, Cai B and Li Y: Acteoside protects retinal ganglion cells from experimental glaucoma by activating the PI3K/AKT signaling pathway via caveolin 1 upregulation. Ann Transl Med. 10:3122022. View Article : Google Scholar : PubMed/NCBI | |
Zhang JH, Wang MJ, Tan YT, Luo J and Wang SC: A bibliometric analysis of apoptosis in glaucoma. Front Neurosci. 17:11051582023. View Article : Google Scholar : PubMed/NCBI | |
Erichev VP, Khachatryan GK and Khomchik OV: Current trends in studying pathogenesis of glaucoma. Vestn Oftalmol. 137:268–274. 2021.In Russian. View Article : Google Scholar | |
Xu F, Na L, Li Y and Chen L: Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci. 10:542020. View Article : Google Scholar : PubMed/NCBI | |
Levkovitch-Verbin H: Retinal ganglion cell apoptotic pathway in glaucoma: Initiating and downstream mechanisms. Prog Brain Res. 220:37–57. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nie XG, Fan DS, Huang YX, He YY, Dong BL and Gao F: Downregulation of microRNA-149 in retinal ganglion cells suppresses apoptosis through activation of the PI3K/Akt signaling pathway in mice with glaucoma. Am J Physiol Cell Physiol. 315:C839–C849. 2018. View Article : Google Scholar : PubMed/NCBI | |
Husain S, Ahmad A, Singh S, Peterseim C, Abdul Y and Nutaitis MJ: PI3K/Akt pathway: A role in δ-opioid receptor-mediated RGC Neuroprotection. Invest Ophthalmol Vis Sci. 58:6489–6499. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bilanges B, Posor Y and Vanhaesebroeck B: PI3K isoforms in cell signalling and vesicle trafficking. Nat Rev Mol Cell Biol. 20:515–534. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jafari M, Ghadami E, Dadkhah T and Akhavan-Niaki H: PI3k/AKT signaling pathway: Erythropoiesis and beyond. J Cell Physiol. 234:2373–2385. 2019. View Article : Google Scholar | |
Sánchez-Alegría K, Flores-León M, Avila-Muñoz E, Rodríguez-Corona N and Arias C: PI3K signaling in neurons: A central node for the control of multiple functions. Int J Mol Sci. 19:37252018. View Article : Google Scholar : PubMed/NCBI | |
Haddadi N, Lin Y, Travis G, Simpson AM, Nassif NT and McGowan EM: PTEN/PTENP1: 'Regulating the regulator of RTK-dependent PI3K/Akt signalling', new targets for cancer therapy. Mol Cancer. 17:372018. View Article : Google Scholar : PubMed/NCBI | |
Yudushkin I: Getting the Akt Together: Guiding Intracellular Akt Activity by PI3K. Biomolecules. 9:672019. View Article : Google Scholar : PubMed/NCBI | |
Xu K, Li S, Yang Q, Zhou Z, Fu M, Yang X, Hao K, Liu Y and Ji H: MicroRNA-145-5p targeting of TRIM2 mediates the apoptosis of retinal ganglion cells via the PI3K/AKT signaling pathway in glaucoma. J Gene Med. 23:e33782021. View Article : Google Scholar : PubMed/NCBI | |
Ariotti N and Parton RG: SnapShot: Caveolae, caveolins, and cavins. Cell. 154:704–704.e1. 2013. View Article : Google Scholar : PubMed/NCBI | |
Parton RG and Collins BM: The structure of caveolin finally takes shape. Sci Adv. 8:eabq69852022. View Article : Google Scholar : PubMed/NCBI | |
Surguchov A: Caveolin: A new link between diabetes and AD. Cell Mol Neurobiol. 40:1059–1066. 2020. View Article : Google Scholar : PubMed/NCBI | |
Elliott MH, Ashpole NE, Gu X, Herrnberger L, McClellan ME, Griffith GL, Reagan AM, Boyce TM, Tanito M, Tamm ER and Stamer WD: Caveolin-1 modulates intraocular pressure: Implications for caveolae mechanoprotection in glaucoma. Sci Rep. 6:371272016. View Article : Google Scholar : PubMed/NCBI | |
Xu Q, Shi W, Lv P, Meng W, Mao G, Gong C, Chen Y, Wei Y, He X, Zhao J, et al: Critical role of caveolin-1 in aflatoxin B1-induced hepatotoxicity via the regulation of oxidation and autophagy. Cell Death Dis. 11:62020. View Article : Google Scholar : PubMed/NCBI | |
De Almeida CJG: Caveolin-1 and Caveolin-2 can be antagonistic partners in inflammation and beyond. Front Immunol. 8:15302017. View Article : Google Scholar : PubMed/NCBI | |
Kang Q, Xiang Y, Li D, Liang J, Zhang X, Zhou F, Qiao M, Nie Y, He Y, Cheng J, et al: MiR-124-3p attenuates hyperphosphorylation of Tau protein-induced apoptosis via caveolin-1-PI3K/Akt/GSK3β pathway in N2a/APP695swe cells. Oncotarget. 8:24314–24326. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Chen B and Ren Q: Baicalin relieves hypoxia-aroused H9c2 cell apoptosis by activating Nrf2/HO-1-mediated HIF1α/BNIP3 pathway. Artif Cells Nanomed Biotechnol. 47:3657–3663. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xiao JR, Do CW and To CH: Potential therapeutic effects of baicalein, baicalin, and wogonin in ocular disorders. J Ocul Pharmacol Ther. 30:605–614. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Xi X, Zeng Y, He Z, Zhao J and Li Y: Acteoside inhibits autophagic apoptosis of retinal ganglion cells to rescue glaucoma-induced optic atrophy. J Cell Biochem. 120:13133–13140. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao N, Shi J, Xu H, Luo Q, Li Q and Liu M: Baicalin suppresses glaucoma pathogenesis by regulating the PI3K/AKT signaling in vitro and in vivo. Bioengineered. 12:10187–10198. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kim EK and Choi EJ: Compromised MAPK signaling in human diseases: An update. Arch Toxicol. 89:867–882. 2015. View Article : Google Scholar : PubMed/NCBI | |
Moustardas P, Aberdam D and Lagali N: MAPK pathways in ocular pathophysiology: Potential therapeutic drugs and challenges. Cells. 12:6172023. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Li X, Chen X, Zhang J, Luo L, Hu Q, Zhou J, Yan J, Lin S and Ye J: JIP1 deficiency protects retinal ganglion cells from apoptosis in a Rotenone-induced injury model. Front Cell Dev Biol. 7:2252019. View Article : Google Scholar : PubMed/NCBI | |
Silverman SM and Wong WT: Microglia in the retina: Roles in development, maturity, and disease. Annu Rev Vis Sci. 4:45–77. 2018. View Article : Google Scholar : PubMed/NCBI | |
Canovas B and Nebreda AR: Diversity and versatility of p38 kinase signalling in health and disease. Nat Rev Mol Cell Biol. 22:346–366. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mazaheri N, Peymani M, Galehdari H, Ghaedi K, Ghoochani A, Kiani-Esfahani A and Nasr-Esfahani MH: Ameliorating Effect of Osteopontin on H2O2-Induced apoptosis of human oligodendrocyte progenitor cells. Cell Mol Neurobiol. 38:891–899. 2018. View Article : Google Scholar | |
Sun CM, Enkhjargal B, Reis C, Zhou KR, Xie ZY, Wu LY, Zhang TY, Zhu QQ, Tang JP, Jiang XD and Zhang JH: Osteopontin attenuates early brain injury through regulating autophagy-apoptosis interaction after subarachnoid hemorrhage in rats. CNS Neurosci Ther. 25:1162–1172. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang RH, Quan YJ, Chen JH, Wang TF, Xu M, Ye M, Yuan H, Zhang CJ, Liu XJ and Min ZJ: Osteopontin promotes cell migration and invasion, and inhibits apoptosis and autophagy in colorectal cancer by activating the p38 MAPK signaling pathway. Cell Physiol Biochem. 41:1851–1864. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ulland TK, Song WM, Huang SC, Ulrich JD, Sergushichev A, Beatty WL, Loboda AA, Zhou Y, Cairns NJ, Kambal A, et al: TREM2 maintains microglial metabolic fitness in Alzheimer's disease. Cell. 170:649–663.e13. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ruzafa N, Pereiro X, Aspichueta P, Araiz J and Vecino E: The retina of osteopontin deficient mice in aging. Mol Neurobiol. 55:213–221. 2018. View Article : Google Scholar : | |
Lin EY, Xi W, Aggarwal N and Shinohara ML: Osteopontin (OPN)/SPP1: From its biochemistry to biological functions in the innate immune system and the central nervous system (CNS). Int Immunol. 35:171–180. 2023. View Article : Google Scholar : | |
Yu H, Zhong H, Li N, Chen K, Chen J, Sun J, Xu L, Wang J, Zhang M, Liu X, et al: Osteopontin activates retinal microglia causing retinal ganglion cells loss via p38 MAPK signaling pathway in glaucoma. FASEB J. 35:e214052021. View Article : Google Scholar : PubMed/NCBI | |
Ando K, Uemura K, Kuzuya A, Maesako M, Asada-Utsugi M, Kubota M, Aoyagi N, Yoshioka K, Okawa K, Inoue H, et al: N-cadherin regulates p38 MAPK signaling via association with JNK-associated leucine zipper protein: Implications for neurodegeneration in Alzheimer disease. J Biol Chem. 286:7619–7628. 2011. View Article : Google Scholar : | |
Spigolon G, Cavaccini A, Trusel M, Tonini R and Fisone G: cJun N-terminal kinase (JNK) mediates cortico-striatal signaling in a model of Parkinson's disease. Neurobiol Dis. 110:37–46. 2018. View Article : Google Scholar | |
Mammone T, Chidlow G, Casson RJ and Wood JPM: Expression and activation of mitogen-activated protein kinases in the optic nerve head in a rat model of ocular hypertension. Mol Cell Neurosci. 88:270–291. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim BJ, Silverman SM, Liu Y, Wordinger RJ, Pang IH and Clark AF: In vitro and in vivo neuroprotective effects of cJun N-terminal kinase inhibitors on retinal ganglion cells. Mol Neurodegener. 11:302016. View Article : Google Scholar : PubMed/NCBI | |
Kang EY, Liu PK, Wen YT, Quinn PMJ, Levi SR, Wang NK and Tsai RK: Role of oxidative stress in ocular diseases associated with retinal ganglion cells degeneration. Antioxidants (Basel). 10:19482021. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Chen S, Ren J, Li B and Qin B: Ghrelin protects retinal ganglion cells against rotenone via inhibiting apoptosis, restoring mitochondrial function, and activating AKT-mTOR signaling. Neuropeptides. 67:63–70. 2018. View Article : Google Scholar | |
Yeo EJ, Eum WS, Yeo HJ, Choi YJ, Sohn EJ, Kwon HJ, Kim DW, Kim DS, Cho SW, Park J, et al: Protective role of transduced Tat-thioredoxin1 (Trx1) against oxidative stress-induced neuronal cell death via ASK1-MAPK signal pathway. Biomol Ther (Seoul). 29:321–330. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Liu J, Chen S, Zhang C, Shen L, Yao K and Yu Y: Thioredoxin-1 regulates the autophagy induced by oxidative stress through LC3-II in human lens epithelial cells. Clin Exp Pharmacol Physiol. 50:476–485. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Cheng Q, Hu Y, Fan X, Liang C, Niu C, Kang Q and Wei T: Correction to: Melatonin antagonizes oxidative stress-induced apoptosis in retinal ganglion cells through activating the thioredoxin-1 pathway. Mol Cell Biochem. 479:13172024. View Article : Google Scholar : PubMed/NCBI | |
Bernardo-Colón A, Vest V, Cooper ML, Naguib SA, Calkins DJ and Rex TS: Progression and pathology of traumatic optic neuropathy from repeated primary blast exposure. Front Neurosci. 13:7192019. View Article : Google Scholar : PubMed/NCBI | |
Chu X, Wang C, Wu Z, Fan L, Tao C, Lin J, Chen S, Lin Y and Ge Y: JNK/c-Jun-driven NLRP3 inflammasome activation in microglia contributed to retinal ganglion cells degeneration induced by indirect traumatic optic neuropathy. Exp Eye Res. 202:1083352021. View Article : Google Scholar | |
Glab JA, Cao Z and Puthalakath H: Bcl-2 family proteins, beyond the veil. Int Rev Cell Mol Biol. 351:1–22. 2020. View Article : Google Scholar : PubMed/NCBI | |
Maes ME, Schlamp CL and Nickells RW: BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells. Prog Retin Eye Res. 57:1–25. 2017. View Article : Google Scholar : PubMed/NCBI | |
Singh R, Letai A and Sarosiek K: Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 20:175–193. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kaloni D, Diepstraten ST, Strasser A and Kelly GL: BCL-2 protein family: Attractive targets for cancer therapy. Apoptosis. 28:20–38. 2023. View Article : Google Scholar : | |
Aniogo EC, George BPA and Abrahamse H: Role of Bcl-2 family proteins in photodynamic therapy mediated cell survival and regulation. Molecules. 25:53082020. View Article : Google Scholar : PubMed/NCBI | |
Tsuji T, Murase T, Konishi Y and Inatani M: Optic nerve injury enhanced mitochondrial fission and increased mitochondrial density without altering the uniform mitochondrial distribution in the unmyelinated axons of retinal ganglion cells in a mouse model. Int J Mol Sci. 24:43562023. View Article : Google Scholar : PubMed/NCBI | |
Guo KM, Li W, Wang ZH, He LC, Feng Y and Liu HS: Low-dose aspirin inhibits trophoblast cell apoptosis by activating the CREB/Bcl-2 pathway in pre-eclampsia. Cell Cycle. 21:2223–2238. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ye D, Shi Y, Xu Y and Huang J: PACAP attenuates optic nerve Crush-induced retinal ganglion cell apoptosis via activation of the CREB-Bcl-2 pathway. J Mol Neurosci. 68:475–484. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ye D, Yang Y, Lu X, Xu Y, Shi Y, Chen H and Huang J: Spatiotemporal expression changes of PACAP and its receptors in retinal ganglion cells after optic nerve crush. J Mol Neurosci. 68:465–474. 2019. View Article : Google Scholar | |
Michelessi M, Lucenteforte E, Oddone F, Brazzelli M, Parravano M, Franchi S, Ng SM and Virgili G: Optic nerve head and fibre layer imaging for diagnosing glaucoma. Cochrane Database Syst Rev. 2015:CD0088032015.PubMed/NCBI | |
Hakim A, Guido B, Narsineni L, Chen DW and Foldvari M: Gene therapy strategies for glaucoma from IOP reduction to retinal neuroprotection: Progress towards non-viral systems. Adv Drug Deliv Rev. 196:1147812023. View Article : Google Scholar : PubMed/NCBI | |
Kimura A, Namekata K, Guo X, Harada C and Harada T: Neuroprotection, growth factors and BDNF-TrkB signalling in retinal degeneration. Int J Mol Sci. 17:15842016. View Article : Google Scholar : PubMed/NCBI | |
Mysona BA, Zhao J and Bollinger KE: Role of BDNF/TrkB pathway in the visual system: Therapeutic implications for glaucoma. Expert Rev Ophthalmol. 12:69–81. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dheer Y, Chitranshi N and Gupta V, Abbasi M, Mirzaei M, You Y, Chung R, Graham SL and Gupta V: Bexarotene modulates Retinoid-X-Receptor expression and is protective against neurotoxic endoplasmic reticulum stress response and apoptotic pathway activation. Mol Neurobiol. 55:9043–9056. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gupta VK, Rajala A and Rajala RV: Insulin receptor regulates photoreceptor CNG channel activity. Am J Physiol Endocrinol Metab. 303:E1363–E1372. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gómez del Rio MA, Sánchez-Reus MI, Iglesias I, Pozo MA, García-Arencibia M, Fernández-Ruiz J, García-García L, Delgado M and Benedí J: Neuroprotective properties of standardized extracts of hypericum perforatum on rotenone model of Parkinson's disease. CNS Neurol Disord Drug Targets. 12:665–679. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim HY, Park EJ, Joe EH and Jou I: Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J Immunol. 171:6072–6079. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gupta VK, You Y, Klistorner A and Graham SL: Shp-2 regulates the TrkB receptor activity in the retinal ganglion cells under glaucomatous stress. Biochim Biophys Acta. 1822:1643–1649. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gupta V, You Y, Li J, Gupta V, Golzan M, Klistorner A, van den Buuse M and Graham S: BDNF impairment is associated with age-related changes in the inner retina and exacerbates experimental glaucoma. Biochim Biophys Acta. 1842:1567–1578. 2014. View Article : Google Scholar : PubMed/NCBI | |
Osborne A, Khatib TZ, Songra L, Barber AC, Hall K, Kong GYX, Widdowson PS and Martin KR: Neuroprotection of retinal ganglion cells by a novel gene therapy construct that achieves sustained enhancement of brain-derived neurotrophic factor/tropomyosin-related kinase receptor-B signaling. Cell Death Dis. 9:10072018. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Ma W, Wang T, Yang J, Wu Z, Liu K, Dai Y, Zang C, Liu W, Liu J, et al: BDNF-TrkB and proBDNF-p75NTR/Sortilin signaling pathways are involved in Mitochondria-mediated neuronal apoptosis in dorsal root ganglia after sciatic nerve transection. CNS Neurol Disord Drug Targets. 19:66–82. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu MM, Zhu TT, Wang P, Kuang F, Hao DJ, You SW and Li YY: Dose-dependent protective effect of lithium chloride on retinal ganglion cells is interrelated with an upregulated intraretinal BDNF after optic nerve transection in adult rats. Int J Mol Sci. 15:13550–13563. 2014. View Article : Google Scholar : PubMed/NCBI | |
Alexander MS and Velinov M: DOCK3-Associated neurodevelopmental Disorder-clinical features and molecular basis. Genes (Basel). 14:19402023. View Article : Google Scholar : PubMed/NCBI | |
Namekata K, Tsuji N, Guo X, Nishijima E, Honda S, Kitamura Y, Yamasaki A, Kishida M, Takeyama J, Ishikawa H, et al: Neuroprotection and axon regeneration by novel low-molecular-weight compounds through the modification of DOCK3 conformation. Cell Death Discov. 9:1662023. View Article : Google Scholar : PubMed/NCBI | |
Li L, Fang F, Feng X, Zhuang P, Huang H, Liu P, Liu L, Xu AZ, Qi LS, Cong L and Hu Y: Single-cell transcriptome analysis of regenerating RGCs reveals potent glaucoma neural repair genes. Neuron. 110:2646–2663.e6. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gauthier AC and Liu J: Epigenetics and signaling pathways in glaucoma. Biomed Res Int. 2017:57123412017. View Article : Google Scholar : PubMed/NCBI | |
Chen AM, Azar SS, Har ris A, Brecha NC and Pérez de Sevilla Müller L: PTEN expression regulates gap junction connectivity in the retina. Front Neuroanat. 15:6292442021. View Article : Google Scholar : PubMed/NCBI | |
Xu K, Yu L, Wang Z, Lin P, Zhang N, Xing Y and Yang N: Use of gene therapy for optic nerve protection: Current concepts. Front Neurosci. 17:11580302023. View Article : Google Scholar : PubMed/NCBI | |
Mak HK, Ng SH, Ren T, Ye C and Leung CK: Impact of PTEN/SOCS3 deletion on amelioration of dendritic shrinkage of retinal ganglion cells after optic nerve injury. Exp Eye Res. 192:1079382020. View Article : Google Scholar : PubMed/NCBI | |
Saleeb R, Kim SS, Ding Q, Scorilas A, Lin S, Khella HW, Boulos C, Ibrahim G and Yousef GM: The miR-200 family as prognostic markers in clear cell renal cell carcinoma. Urol Oncol. 37:955–963. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shen Y, Zhu Y and Rong F: miR-200c-3p regulates the proliferation and apoptosis of human trabecular meshwork cells by targeting PTEN. Mol Med Rep. 22:1605–1612. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li XY, Wang SS, Han Z, Han F, Chang YP, Yang Y, Xue M, Sun B and Chen LM: Triptolide restores autophagy to alleviate diabetic renal fibrosis through the miR-141-3p/PTEN/Akt/mTOR pathway. Mol Ther Nucleic Acids. 9:48–56. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Niu L, Zhao J, Wang M, Li K and Zheng Y: An update: Mechanisms of microRNA in primary open-angle glaucoma. Brief Funct Genomics. 20:19–27. 2021. View Article : Google Scholar | |
Rheaume BA, Xing J, Lukomska A, Theune WC, Damania A, Sjogren G and Trakhtenberg EF: Pten inhibition dedifferentiates long-distance axon-regenerating intrinsically photosensitive retinal ganglion cells and upregulates mitochondria-associated Dynlt1a and Lars2. Development. 150:dev2016442023. View Article : Google Scholar : PubMed/NCBI | |
Van de Velde S, De Groef L, Stalmans I, Moons L and Van Hove I: Towards axonal regeneration and neuroprotection in glaucoma: Rho kinase inhibitors as promising therapeutics. Prog Neurobiol. 131:105–119. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Liu X and Zhong Y: Rho/Rho-associated kinase pathway in glaucoma (Review). Int J Oncol. 43:1357–1367. 2013. View Article : Google Scholar : PubMed/NCBI | |
Al-Humimat G, Marashdeh I, Daradkeh D and Kooner K: Investigational rho kinase inhibitors for the treatment of glaucoma. J Exp Pharmacol. 13:197–212. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ahmad I and Subramani M: Microglia: Friends or foes in glaucoma? A Developmental Perspective. Stem Cells Transl Med. 11:1210–1218. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sato K, Ohno-Oishi M, Yoshida M, Sato T, Aizawa T, Sasaki Y, Maekawa S, Ishikawa M, Omodaka K, Kawano C, et al: The GPR84 molecule is a mediator of a subpopulation of retinal microglia that promote TNF/IL-1α expression via the rho-ROCK pathway after optic nerve injury. Glia. 71:2609–2622. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sagawa H, Terasaki H, Nakamura M, Ichikawa M, Yata T, Tokita Y and Watanabe M: A novel ROCK inhibitor, Y-39983, promotes regeneration of crushed axons of retinal ganglion cells into the optic nerve of adult cats. Exp Neurol. 205:230–240. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lingor P, Tönges L, Pieper N, Bermel C, Barski E, Planchamp V and Bähr M: ROCK inhibition and CNTF interact on intrinsic signalling pathways and differentially regulate survival and regeneration in retinal ganglion cells. Brain. 131:250–263. 2008. View Article : Google Scholar | |
Shaw PX, Sang A, Wang Y, Ho D, Douglas C, Dia L and Goldberg JL: Topical administration of a Rock/Net inhibitor promotes retinal ganglion cell survival and axon regeneration after optic nerve injury. Exp Eye Res. 158:33–42. 2017. View Article : Google Scholar | |
Nishijima E, Namekata K, Kimura A, Guo X, Harada C, Noro T, Nakano T and Harada T: Topical ripasudil stimulates neuroprotection and axon regeneration in adult mice following optic nerve injury. Sci Rep. 10:157092020. View Article : Google Scholar : PubMed/NCBI | |
Pagano L, Lee JW, Posarelli M, Giannaccare G, Kaye S and Borgia A: ROCK inhibitors in corneal diseases and Glaucoma-A comprehensive review of these emerging drugs. J Clin Med. 12:67362023. View Article : Google Scholar : PubMed/NCBI | |
Palmhof M, Wagner N, Nagel C, Biert N, Stute G, Dick HB and Joachim SC: Retinal ischemia triggers early microglia activation in the optic nerve followed by neurofilament degeneration. Exp Eye Res. 198:1081332020. View Article : Google Scholar : PubMed/NCBI | |
Tokushige H, Waki M, Takayama Y and Tanihara H: Effects of Y-39983, a selective Rho-associated protein kinase inhibitor, on blood flow in optic nerve head in rabbits and axonal regeneration of retinal ganglion cells in rats. Curr Eye Res. 36:964–970. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Liu C and Lei B: siRNA mediated downregulation of RhoA expression reduces oxidative induced apoptosis in retinal ganglion cells. Curr Mol Med. 24:630–636. 2024. View Article : Google Scholar | |
Tan NY, Koh V, Girard MJ and Cheng CY: Imaging of the lamina cribrosa and its role in glaucoma: A review. Clin Exp Ophthalmol. 46:177–188. 2018. View Article : Google Scholar | |
Liu XY and Fan N: Lamina cribrosa defect and progress of glaucoma. Zhonghua Yan Ke Za Zhi. 56:17–20. 2020.In Chinese. PubMed/NCBI | |
Kim YW, Jeoung JW, Kim DW, Girard MJ, Mari JM, Park KH and Kim DM: Clinical assessment of lamina cribrosa curvature in eyes with primary Open-angle glaucoma. PLoS One. 11:e01502602016. View Article : Google Scholar : PubMed/NCBI | |
Kim JA, Lee SH, Son DH, Kim TW, Lee EJ, Girard MJA and Mari JM: Morphologic changes in the lamina cribrosa upon intraocular pressure lowering in patients with normal tension glaucoma. Invest Ophthalmol Vis Sci. 63:232022. View Article : Google Scholar | |
Strickland RG, Garner MA, Gross AK and Girkin CA: Remodeling of the lamina Cribrosa: Mechanisms and potential therapeutic approaches for glaucoma. Int J Mol Sci. 23:80682022. View Article : Google Scholar : PubMed/NCBI | |
Yao X, Gao S and Yan N: Structural biology of voltage-gated calcium channels. Channels (Austin). 18:22908072024. View Article : Google Scholar | |
Fan Gaskin JC, Shah MH and Chan EC: Oxidative stress and the role of NADPH oxidase in glaucoma. Antioxidants (Basel). 10:2382021. View Article : Google Scholar : PubMed/NCBI | |
Irnaten M and O'Brien CJ: Calcium-Signalling in human glaucoma lamina cribrosa myofibroblasts. Int J Mol Sci. 24:12872023. View Article : Google Scholar : PubMed/NCBI | |
Jain R, Watson U, Vasudevan L and Saini DK: ERK activation pathways downstream of GPCRs. Int Rev Cell Mol Biol. 338:79–109. 2018. View Article : Google Scholar : PubMed/NCBI | |
Woll KA and Van Petegem F: Calcium-release channels: Structure and function of IP3 receptors and ryanodine receptors. Physiol Rev. 102:209–268. 2022. View Article : Google Scholar | |
Irnaten M, Duff A, Clark A and O'Brien C: Intra-cellular calcium signaling pathways (PKC, RAS/RAF/MAPK, PI3K) in lamina cribrosa cells in glaucoma. J Clin Med. 10:622020. View Article : Google Scholar : PubMed/NCBI | |
Gu X, Reagan AM, McClellan ME and Elliott MH: Caveolins and caveolae in ocular physiology and pathophysiology. Prog Retin Eye Res. 56:84–106. 2017. View Article : Google Scholar : | |
Aga M, Bradley JM, Wanchu R, Yang YF, Acott TS and Keller KE: Differential effects of caveolin-1 and -2 knockdown on aqueous outflow and altered extracellular matrix turnover in caveolin-silenced trabecular meshwork cells. Invest Ophthalmol Vis Sci. 55:5497–5509. 2014. View Article : Google Scholar : PubMed/NCBI | |
Irnaten M, Zhdanov A, Brennan D, Crotty T, Clark A, Papkovsky D and O'Brien C: Activation of the NFAT-calcium signaling pathway in human lamina cribrosa cells in glaucoma. Invest Ophthalmol Vis Sci. 59:831–842. 2018. View Article : Google Scholar : PubMed/NCBI | |
Quill B, Irnaten M, Docherty NG, McElnea EM, Wallace DM, Clark AF and O'Brien CJ: Calcium channel blockade reduces mechanical strain-induced extracellular matrix gene response in lamina cribrosa cells. Br J Ophthalmol. 99:1009–1014. 2015. View Article : Google Scholar : PubMed/NCBI | |
Irnaten M, O'Malley G, Clark AF and O'Brien CJ: Transient receptor potential channels TRPC1/TRPC6 regulate lamina cribrosa cell extracellular matrix gene transcription and proliferation. Exp Eye Res. 193:1079802020. View Article : Google Scholar : PubMed/NCBI | |
Hu H, Nie D, Fang M, He W, Zhang J, Liu X and Zhang G: Müller cells under hydrostatic pressure modulate retinal cell survival via TRPV1/PLCγ1 complex-mediated calcium influx in experimental glaucoma. FEBS J. 291:2703–2714. 2024. View Article : Google Scholar : PubMed/NCBI | |
Irnaten M, Barry RC, Wallace DM, Docherty NG, Quill B, Clark AF and O'Brien CJ: Elevated maxi-K(+) ion channel current in glaucomatous lamina cribrosa cells. Exp Eye Res. 115:224–229. 2013. View Article : Google Scholar : PubMed/NCBI | |
McElnea EM, Quill B, Docherty NG, Irnaten M, Siah WF, Clark AF, O'Brien CJ and Wallace DM: Oxidative stress, mitochondrial dysfunction and calcium overload in human lamina cribrosa cells from glaucoma donors. Mol Vis. 17:1182–1191. 2011.PubMed/NCBI | |
Wallace DM and O'Brien CJ: The role of lamina cribrosa cells in optic nerve head fibrosis in glaucoma. Exp Eye Res. 142:102–109. 2016. View Article : Google Scholar | |
Das A, Kashyap O, Singh A, Shree J, Namdeo KP and Bodakhe SH: Oxymatrine protects TGFβ1-induced retinal fibrosis in an animal model of glaucoma. Front Med (Lausanne). 8:7503422021. View Article : Google Scholar | |
Ling C, Zhang D, Zhang J, Sun H, Du Q and Li X: Updates on the molecular genetics of primary congenital glaucoma (Review). Exp Ther Med. 20:968–977. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tsukamoto T, Kajiwara K, Nada S and Okada M: Src mediates TGF-β-induced intraocular pressure elevation in glaucoma. J Cell Physiol. 234:1730–1744. 2019. View Article : Google Scholar | |
Zhang YE: Non-smad signaling pathways of the TGF-β family. Cold Spring Harb Perspect Biol. 9:a0221292017. View Article : Google Scholar | |
Hachana S and Larrivée B: TGF-β superfamily signaling in the eye: Implications for ocular pathologies. Cells. 11:23362022. View Article : Google Scholar | |
Zode GS, Sethi A, Brun-Zinkernagel AM, Chang IF, Clark AF and Wordinger RJ: Transforming growth factor-β2 increases extracellular matrix proteins in optic nerve head cells via activation of the Smad signaling pathway. Mol Vis. 17:1745–1758. 2011. | |
Murphy-Ullrich JE and Downs JC: The Thrombospondin1-TGF-β pathway and glaucoma. J Ocul Pharmacol Ther. 31:371–375. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lopez NN, Rangan R, Clark AF and Tovar-Vidales T: Mirna expression in glaucomatous and TGFβ2 treated lamina cribrosa cells. Int J Mol Sci. 22:2372. 2021. View Article : Google Scholar | |
Zhou L, Wang L, Lu L, Jiang P, Sun H and Wang H: Inhibition of miR-29 by TGF-beta-Smad3 signaling through dual mechanisms promotes transdifferentiation of mouse myoblasts into myofibroblasts. PLoS One. 7:e337662012. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Zhang F, Pan Z, Luo H, Liu K and Duan X: LncRNA NR_003923 promotes cell proliferation, migration, fibrosis, and autophagy via the miR-760/miR-215-3p/IL22RA1 axis in human Tenon's capsule fibroblasts. Cell Death Dis. 10:5942019. View Article : Google Scholar : PubMed/NCBI | |
Hurley DJ, Normile C, Irnaten M and O'Brien C: The intertwined roles of oxidative stress and endoplasmic reticulum stress in glaucoma. Antioxidants. 11:8862022. View Article : Google Scholar : PubMed/NCBI | |
Baudouin C, Kolko M, Melik-Parsadaniantz S and Messmer EM: Inflammation in glaucoma: From the back to the front of the eye, and beyond. Prog Retin Eye Res. 83:1009162021. View Article : Google Scholar | |
Feng L, Dai S, Zhang C, Zhang W, Zhu W, Wang C, He Y and Song W: Ripa-56 protects retinal ganglion cells in glutamate-induced retinal excitotoxic model of glaucoma. Sci Rep. 14:38342024. View Article : Google Scholar : PubMed/NCBI | |
Vallée A, Lecarpentier Y and Vallée JN: Cannabidiol and the canonical WNT/β-catenin pathway in glaucoma. Int J Mol Sci. 22:37982021. View Article : Google Scholar | |
Boesl F, Drexler K, Müller B, Seitz R, Weber GR, Priglinger SG, Fuchshofer R, Tamm ER and Ohlmann A: Endogenous Wnt/β-catenin signaling in Müller cells protects retinal ganglion cells from excitotoxic damage. Mol Vis. 26:135–149. 2020. | |
Patel AK, Park KK and Hackam AS: Wnt signaling promotes axonal regeneration following optic nerve injury in the mouse. Neuroscience. 343:372–383. 2017. View Article : Google Scholar | |
Wang X, Huai G, Wang H, Liu Y, Qi P, Shi W, Peng J, Yang H, Deng S and Wang Y: Mutual regulation of the Hippo/Wnt/LPA/TGF-β signaling pathways and their roles in glaucoma (Review). Int J Mol Med. 41:1201–1212. 2018. | |
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 7:32022. View Article : Google Scholar | |
Wang Z, Li Z and Ji H: Direct targeting of β-catenin in the Wnt signaling pathway: Current progress and perspectives. Med Res Rev. 41:2109–2129. 2021. View Article : Google Scholar : PubMed/NCBI | |
Udeh A, Dvoriantchikova G, Carmy T, Ivanov D and Hackam AS: Wnt signaling induces neurite outgrowth in mouse retinal ganglion cells. Exp Eye Res. 182:39–43. 2019. View Article : Google Scholar : PubMed/NCBI | |
Seitz R, Hackl S, Seibuchner T, Tamm ER and Ohlmann A: Norrin mediates neuroprotective effects on retinal ganglion cells via activation of the Wnt/beta-catenin signaling pathway and the induction of neuroprotective growth factors in Muller cells. Neurosci. 30:5998–6010. 2010. View Article : Google Scholar | |
Fragoso MA, Patel AK, Nakamura RE, Yi H, Surapaneni K and Hackam AS: The Wnt/β-catenin pathway cross-talks with STAT3 signaling to regulate survival of retinal pigment epithelium cells. PLoS One. 7:e468922012. View Article : Google Scholar | |
Schmitt AM, Shi J, Wolf AM, Lu CC, King LA and Zou Y: Wnt-Ryk signalling mediates medial-lateral retinotectal topographic mapping. Nature. 439:31–37. 2006. View Article : Google Scholar | |
Cui J, Shi M, Quan M and Xie K: Regulation of EMT by KLF4 in gastrointestinal cancer. Curr Cancer Drug Targets. 13:986–995. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vallée A and Vallée JN: Warburg effect hypothesis in autism Spectrum disorders. Mol Brain. 11:12018. View Article : Google Scholar : PubMed/NCBI | |
Lee TJ, Kodeboyina SK, Bollinger KE, Ulrich L, Bogorad D, Estes A, Zhi W, Sharma S and Sharma A: The abundance of serine protease inhibitors in human aqueous humor and race and gender-specific alterations in glaucoma patients. Investigative Ophthalmol Visual Sci. 62:3367. 2021. | |
Basava rajappa D, Galindo-Romero C, Gupta V, Agudo-Barriuso M, Gupta VB, Graham SL and Chitranshi N: Signalling pathways and cell death mechanisms in glaucoma: Insights into the molecular pathophysiology. Mol Aspects Med. 94:1012162023. View Article : Google Scholar | |
Park HL, Kim JH, Jung Y and Park CK: Racial differences in the extracellular matrix and histone acetylation of the lamina cribrosa and peripapillary sclera. Invest Ophthalmol Vis Sci. 58:4143–4154. 2017. View Article : Google Scholar : PubMed/NCBI | |
Agarwal P and Agarwal R: Trabecular meshwork ECM remodeling in glaucoma: Could RAS be a target? Expert Opin Ther Targets. 22:629–638. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kontoh-Twumasi R, Budkin S, Edupuganti N, Vashishtha A and Sharma S: Role of serine protease inhibitors A1 and A3 in ocular pathologies. Invest Ophthalmol Vis Sci. 65:162024. View Article : Google Scholar : PubMed/NCBI | |
Chitranshi N, Rajput R, Godinez A, Pushpitha K, Mirzaei M, Basavarajappa D, Gupta V, Sharma S, You Y, Galliciotti G, et al: Neuroserpin gene therapy inhibits retinal ganglion cell apoptosis and promotes functional preservation in glaucoma. Mol Ther. 31:2056–2076. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gupta V, Mirzaei M, Gupta VB, Chitranshi N, Dheer Y, Vander Wall R, Abbasi M, You Y, Chung R and Graham S: Glaucoma is associated with plasmin proteolytic activation mediated through oxidative inactivation of neuroserpin. Sci Rep. 7:84122017. View Article : Google Scholar : PubMed/NCBI | |
Tsuda Y, Nakahara T, Ueda K, Mori A, Sakamoto K and Ishii K: Effect of nafamostat on N-methyl-D-aspartate-induced retinal neuronal and capillary degeneration in rats. Biol Pharm Bull. 35:2209–2213. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Zeng Q and Tezel G: Regulation of distinct caspase-8 functions in retinal ganglion cells and astroglia in experimental glaucoma. Neurobiol Dis. 150:1052582021. View Article : Google Scholar : PubMed/NCBI | |
Choudhury S, Liu Y, Clark AF and Pang IH: Caspase-7: A critical mediator of optic nerve injury-induced retinal ganglion cell death. Mol Neurodegener. 10:402015. View Article : Google Scholar : PubMed/NCBI |