1
|
Algoet M, Janssens S, Himmelreich U, Gsell
W, Pusovnik M, Van den Eynde J and Oosterlinck W: Myocardial
ischemia-reperfusion injury and the influence of inflammation.
Trends Cardiovasc Med. 33:357–366. 2023. View Article : Google Scholar
|
2
|
Liu T, Hao Y, Zhang D, Zhou H, Peng S,
Zhang D, Li K, Chen Y and Chen M: Advanced cardiac patches for the
treatment of myocardial infarction. Circulation. 149:2002–2020.
2024. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yap J, Irei J, Lozano-Gerona J, Vanapruks
S, Bishop T and Boisvert WA: Macrophages in cardiac remodelling
after myocardial infarction. Nat Rev Cardiol. 20:373–385. 2023.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Xie S, Xu SC, Deng W and Tang Q: Metabolic
landscape in cardiac aging: insights into molecular biology and
therapeutic implications. Signal Transduct Target Ther. 8:1142023.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Shadel GS and Horvath TL: Mitochondrial
ROS signaling in organismal homeostasis. Cell. 163:560–569. 2015.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Lingappan K: NF-κB in oxidative stress.
Curr Opin Toxicol. 7:81–86. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wang D, Yu X, Gao K, Li F, Li X, Pu H,
Zhang P, Guo S and Wang W: Sweroside alleviates pressure
overload-induced heart failure through targeting CaMKⅡδ to inhibit
ROS-mediated NF-κB/NLRP3 in cardiomyocytes. Redox Biol.
74:1032232024. View Article : Google Scholar
|
8
|
Robichaux DJ, Harata M, Murphy E and Karch
J: Mitochondrial permeability transition pore-dependent necrosis. J
Mol Cell Cardiol. 174:47–55. 2023. View Article : Google Scholar :
|
9
|
Zhang X, Sun Y, Yang R, Liu B, Liu Y, Yang
J and Liu W: An injectable mitochondria-targeted nanodrug
loaded-hydrogel for restoring mitochondrial function and
hierarchically attenuating oxidative stress to reduce myocardial
ischemia-reperfusion injury. Biomaterials. 287:1216562022.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Song JQ, Teng X, Cai Y, Tang CS and Qi YF:
Activation of Akt/GSK-3beta signaling pathway is involved in
intermedin(1-53) protection against myocardial apoptosis induced by
ischemia/reperfusion. Apoptosis. 14:1061–1069. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Korotkov SM: Mitochondrial oxidative
stress is the general reason for apoptosis induced by
different-valence heavy metals in cells and mitochondria. Int J Mol
Sci. 24:144592023. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang Q, Wang L, Wang S, Cheng H, Xu L,
Pei G, Wang Y, Fu C, Jiang Y, He C and Wei Q: Signaling pathways
and targeted therapy for myocardial infarction. Signal Transduct
Target Ther. 7:782022. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhuang L, Zong X, Yang Q, Fan Q and Tao R:
Interleukin-34-NF-κB signaling aggravates myocardial
ischemic/reperfusion injury by facilitating macrophage recruitment
and polarization. EBioMedicine. 95:1047442023. View Article : Google Scholar
|
14
|
Yuan X, Liu K, Dong P and Han H:
Protective effect and mechanism of different proportions of
'Danggui-Kushen' herb pair on ischemic heart disease. Heliyon.
9:e221502023. View Article : Google Scholar
|
15
|
Lin H, Wang W, Peng M, Kong Y, Zhang X,
Wei X and Shang H: Pharmacological properties of Polygonatum and
its active ingredients for the prevention and treatment of
cardiovascular diseases. Chin Med. 19:12024. View Article : Google Scholar : PubMed/NCBI
|
16
|
Qi Q, Cai D, Yu X, Shi J, Bai W and Yan N:
Anthocyanins in Subtropical Fruits. CRC Press; Boca Raton, FL: pp.
1–31. 2023
|
17
|
Cheng F, Li D, Ma X, Wang Y, Lu L, Hu B
and Cui S: Liriodendrin exerts protective effects against chronic
endometritis in rats by modulating gut microbiota composition and
the arginine/nitric oxide metabolic pathway. Int Immunopharmacol.
126:1112352024. View Article : Google Scholar
|
18
|
Zhang S, Hu D, Zhuo Y, Cui L, Li D, Zhang
L, Yang L and Wang X: Protective effect of liriodendrin on IgG
immune complex-induced acute lung injury via inhibiting
SRC/STAT3/MAPK signaling pathway: A network pharmacology research.
Naunyn Schmiedebergs Arch Pharmacol. 396:3269–3283. 2023.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Li B, Yao BC, Chen QL, Song YQ, Jiang N,
Zhao LL and Guo ZG: The protective role and mechanism of
liriodendrin in rats with myocardial infarction. J Thorac Dis.
14:135–146. 2022. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yu ZY and Cheng G: Protective effect of
liriodendrin against liver ischaemia/reperfusion injury in mice via
modulating oxidative stress, inflammation and nuclear factor kappa
B/toll-like receptor 4 pathway. Folia Morphol (Warsz). 82:668–676.
2023. View Article : Google Scholar
|
21
|
Zhang P, Liu X, Yu X, Zhuo Y, Li D, Yang L
and Lu Y: Protective effects of liriodendrin on myocardial
infarction-induced fibrosis in rats via the PI3K/Akt autophagy
pathway: A network pharmacology study. Comb Chem High Throughput
Screen. 27:1566–1575. 2024. View Article : Google Scholar
|
22
|
Percie du Sert N, Hurst V, Ahluwalia A,
Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl
U, et al: The ARRIVE guidelines 2.0: Updated guidelines for
reporting animal research. J Cereb Blood Flow Metab. 40:1769–1777.
2020. View Article : Google Scholar : PubMed/NCBI
|
23
|
Rashidi Z, Azadbakht M and Khazaei M:
Hydrostatic pressure improves in-vitro maturation of oocytes
derived from vitrified-warmed mouse ovaries. Iran J Reprod Med.
10:257–264. 2012.PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
25
|
Ge Y, Huang M and Yao YM: Autophagy and
proinflammatory cytokines: Interactions and clinical implications.
Cytokine Growth Factor Rev. 43:38–46. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wen J, Guan Y, Niu H, Dang Y and Guan J:
Targeting cardiac resident CCR2+ macrophage-secreted MCP-1 to
attenuate inflammation after myocardial infarction. Acta Biomater.
Aug 23–2024.Epub ahead of print. View Article : Google Scholar
|
27
|
Jomova K, Alomar SY, Alwasel SH,
Nepovimova E, Kuca K and Valko M: Several lines of antioxidant
defense against oxidative stress: Antioxidant enzymes,
nanomaterials with multiple enzyme-mimicking activities, and
low-molecular-weight antioxidants. Arch Toxicol. 98:1323–1367.
2024. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cheng Y, Yan M, He S, Xie Y, Wei L, Xuan
B, Shang Z, Wu M, Zheng H, Chen Y, et al: Baicalin alleviates
angiotensin II-induced cardiomyocyte apoptosis and autophagy and
modulates the AMPK/mTOR pathway. J Cell Mol Med. 28:e183212024.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Granger DN and Kvietys PR: Reperfusion
injury and reactive oxygen species: The evolution of a concept.
Redox Biol. 6:524–551. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Seeger JP, Benda NM, Riksen NP, van Dijk
AP, Bellersen L, Hopman MT, Cable NT and Thijssen DH: Heart failure
is associated with exaggerated endothelial ischaemia-reperfusion
injury and attenuated effect of ischaemic preconditioning. Eur J
Prev Cardiol. 23:33–40. 2016. View Article : Google Scholar
|
31
|
Sánchez-Hernández CD, Torres-Alarcón LA,
González-Cortés A and Peón AN: Ischemia/reperfusion injury:
pathophysiology, current clinical management, and potential
preventive approaches. Mediators Inflamm. 2020:84053702020.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Zeng JJ, Shi HQ, Ren FF, Zhao XS, Chen QY,
Wang DJ, Wu LP, Chu MP, Lai TF and Li L: Notoginsenoside R1
protects against myocardial ischemia/reperfusion injury in mice via
suppressing TAK1-JNK/p38 signaling. Acta Pharmacol Sin.
44:1366–1379. 2023. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ding S, Duanmu X, Xu L, Zhu L and Wu Z:
Ozone pretreatment alleviates ischemiareperfusion injury-induced
myocardial ferroptosis by activating the Nrf2/Slc7a11/Gpx4 axis.
Biomed Pharmacother. 165:1151852023. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhang Z, Yang L, Wang B, Zhang L, Zhang Q,
Li D, Zhang S, Gao H and Wang X: Protective role of liriodendrin in
mice with dextran sulphate sodium-induced ulcerative colitis. Int
Immunopharmacol. 52:203–210. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Xiang Q, Yi X, Zhu XH, Wei X and Jiang DS:
Regulated cell death in myocardial ischemia-reperfusion injury.
Trends Endocrinol Metab. 35:219–234. 2024. View Article : Google Scholar
|
36
|
Lu Y, Chen K, Zhao W, Hua Y, Bao S, Zhang
J, Wu T, Ge G, Yu Y, Sun J and Zhang F: Magnetic vagus nerve
stimulation alleviates myocardial ischemia-reperfusion injury by
the inhibition of pyroptosis through the M(2)AChR/OGDHL/ROS axis in
rats. J Nanobiotechnology. 21:4212023. View Article : Google Scholar : PubMed/NCBI
|
37
|
Bou-Teen D, Kaludercic N, Weissman D,
Turan B, Maack C, Di Lisa F and Ruiz-Meana M: Mitochondrial ROS and
mitochondria-targeted antioxidants in the aged heart. Free Radic
Biol Med. 167:109–124. 2021. View Article : Google Scholar : PubMed/NCBI
|
38
|
Jiang L, Yin X, Chen YH, Chen Y, Jiang W,
Zheng H, Huang FQ, Liu B, Zhou W, Qi LW and Li J: Proteomic
analysis reveals ginsenoside Rb1 attenuates myocardial
ischemia/reperfusion injury through inhibiting ROS production from
mitochondrial complex I. Theranostics. 11:1703–1720. 2021.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Bhandary B, Piao CS, Kim DS, Lee GH, Chae
SW, Kim HR and Chae HJ: The protective effect of rutin against
ischemia/reperfusion-associated hemodynamic alteration through
antioxidant activity. Arch Pharm Res. 35:1091–1097. 2012.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Khalifa AR, Abdel-Rahman EA, Mahmoud AM,
Ali MH, Noureldin M, Saber SH, Mohsen M and Ali SS: Sex-specific
differences in mitochondria biogenesis, morphology, respiratory
function, and ROS homeostasis in young mouse heart and brain.
Physiol Rep. 5:e131252017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Pomerantz BJ, Reznikov LL, Harken AH and
Dinarello CA: Inhibition of caspase 1 reduces human myocardial
ischemic dysfunction via inhibition of IL-18 and IL-1beta. Proc
Natl Acad Sci USA. 98:2871–2876. 2001. View Article : Google Scholar : PubMed/NCBI
|
42
|
Hamid T, Guo SZ, Kingery JR, Xiang X, Dawn
B and Prabhu SD: Cardiomyocyte NF-κB p65 promotes adverse
remodelling, apoptosis, and endoplasmic reticulum stress in heart
failure. Cardiovasc Res. 89:129–138. 2011. View Article : Google Scholar
|
43
|
Zhang Z, Liu Y, Ren X, Zhou H, Wang K,
Zhang H and Luo P: Caffeoylquinic acid derivatives extract of
erigeron multiradiatus alleviated acute myocardial ischemia
reperfusion injury in rats through inhibiting NF-KappaB and JNK
activations. Mediators Inflamm. 2016:79619402016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Huang Q, Zhan L, Cao H, Li J, Lyu Y, Guo
X, Zhang J, Ji L, Ren T, An J, et al: Increased mitochondrial
fission promotes autophagy and hepatocellular carcinoma cell
survival through the ROS-modulated coordinated regulation of the
NFKB and TP53 pathways. Autophagy. 12:999–1014. 2016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Yu H, Lin L, Zhang Z, Zhang H and Hu H:
Targeting NF-κB pathway for the therapy of diseases: Mechanism and
clinical study. Signal Transduct Target Ther. 5:2092020. View Article : Google Scholar
|
46
|
Sui Y, Park SH, Xu J, Monette S, Helsley
RN, Han SS and Zhou C: IKKβ links vascular inflammation to obesity
and atherosclerosis. J Exp Med. 211:869–886. 2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Dong X, Jiang J, Lin Z, Wen R, Zou L, Luo
T, Guan Z, Li X, Wang L, Lu L, et al: Nuanxinkang protects against
ischemia/reperfusion-induced heart failure through regulating
IKKβ/IκBα/NF-κB-mediated macrophage polarization. Phytomedicine.
101:1540932022. View Article : Google Scholar
|
48
|
Feng C, Li BG, Gao XP, Qi HY and Zhang GL:
A new triterpene and an antiarrhythmic liriodendrin from
Pittosporum brevicalyx. Arch Pharm Res. 33:1927–1932. 2010.
View Article : Google Scholar : PubMed/NCBI
|