
miR‑100: A key tumor suppressor regulatory factor in human malignant tumors (Review)
- Authors:
- Liang Zhang
- Jiuling Zhang
- Xue Zhang
- Shuang Liu
- Chunyu Qi
- Shengyu Gao
-
Affiliations: Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China - Published online on: February 25, 2025 https://doi.org/10.3892/ijmm.2025.5508
- Article Number: 67
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–148. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cao M, Li H, Sun D and Chen W: Cancer burden of major cancers in China: A need for sustainable actions. Cancer Commun (Lond). 40:205–210. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cao W, Chen HD, Yu YW, Li N and Chen WQ: Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin Med J (Engl). 134:783–791. 2021. View Article : Google Scholar : PubMed/NCBI | |
Toden S, Zumwalt TJ and Goel A: Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer. 1875:1884912021. View Article : Google Scholar : | |
Chen B, Dragomir MP, Yang C, Li Q, Horst D and Calin GA: Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther. 7:1212022. View Article : Google Scholar : PubMed/NCBI | |
Saw PE, Xu X, Chen J and Song EW: Non-coding RNAs: The new central dogma of cancer biology. Sci China Life Sci. 64:22–50. 2021. View Article : Google Scholar | |
Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 99:15524–15529. 2002. View Article : Google Scholar | |
Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI | |
Wightman B, Ha I and Ruvkun G: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 75:855–862. 1993. View Article : Google Scholar : PubMed/NCBI | |
Li C, Gao Y, Zhang K, Chen J, Han S, Feng B, Wang R and Chen L: Multiple roles of microRNA-100 in human cancer and its therapeutic potential. Cell Physiol Biochem. 37:2143–2159. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Deng B, Zhang Y and Jiang N: Expression of miR-100 and RBSP3 in FTC-133 cells after exposure to 131I. Nucl Med Commun. 35:932–938. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Xue S, Dai Y, Yang J, Chen Z, Fang X, Zhou W, Wu W and Li Q: Reduced expression of microRNA-100 confers unfavorable prognosis in patients with bladder cancer. Diagn Pathol. 7:1592012. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Yang L, Hu M, Hu R, Wang Y, Chen B, Jiang X and Cui R: Comprehensive analysis of the prognostic significance of Hsa-miR-100-5p and its related gene signature in stomach adenocarcinoma. Front Cell Dev Biol. 9:7362742021. View Article : Google Scholar : PubMed/NCBI | |
Yang XD, Xu XH, Zhang SY, Wu Y, Xing CG, Ru G, Xu HT and Cao JP: Role of miR-100 in the radioresistance of colorectal cancer cells. Am J Cancer Res. 5:5452015.PubMed/NCBI | |
Qin X, Yu S, Zhou L, Shi M, Hu Y, Xu X, Shen B, Liu S, Yan D and Feng J: Cisplatin-resistant lung cancer cell-derived exosomes increase cisplatin resistance of recipient cells in exosomal miR-100-5p-dependent manner. Int J Nanomedicine. 12:3721–3733. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dai Y, Xie CH, Neis JP, Fan CY, Vural E and Spring PM: MicroRNA expression profiles of head and neck squamous cell carcinoma with docetaxel-induced multidrug resistance. Head Neck. 33:786–791. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zeng J, Wang L, Zhao J, Zheng Z, Peng J, Zhang W, Wen T, Nie J, Ding L and Yi D: MiR-100-5p regulates cardiac hypertrophy through activation of autophagy by targeting mTOR. Hum Cell. 34:1388–1397. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Huang Y, Hu K, Zhang Z, Yang J and Wang Z: HIF1A activates the transcription of lncRNA RAET1K to modulate hypoxia-induced glycolysis in hepatocellular carcinoma cells via miR-100-5p. Cell Death Dis. 11:1762020. View Article : Google Scholar : PubMed/NCBI | |
Assmann TS, Recamonde-Mendoza M, De Souza BM and Crispim D: MicroRNA expression profiles and type 1 diabetes mellitus:systematic review and bioinformatic analysis. Endocr Connect. 6:773–790. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pek SL, Sum CF, Lin MX, Cheng AK, Wong MT, Lim SC and Tavintharan S: Circulating and visceral adipose miR-100 is down-regulated in patients with obesity and Type 2 diabetes. Mol Cell Endocrinol. 427:112–123. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ai L, Yi W, Chen L, Wang H and Huang Q: Xian-Ling-Gu-Bao protects osteoporosis through promoting osteoblast differentiation by targeting miR-100-5p/KDM6B/RUNX2 axis. In Vitro Cell Dev Biol Anim. 57:3–9. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kelch S, Balmayor ER, Seeliger C, Vester H, Kirschke JS and van Griensven M: miRNAs in bone tissue correlate to bone mineral density and circulating miRNAs are gender independent in osteoporotic patients. Sci Rep. 7:158612017. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Kuang L, Chen C, Yang J, Zeng WN, Li T, Chen H, Huang S, Fu Z, Li J, et al: miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials. 206:87–100. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chang YS, Chang YC, Chen PH, Li CY, Wu WC and Kao YH: MicroRNA-100 mediates hydrogen peroxide-induced apoptosis of human retinal pigment epithelium ARPE-19 cells. Pharmaceuticals. 14:3142021. View Article : Google Scholar : PubMed/NCBI | |
Tan Q, Shi S, Liang J, Cao D, Wang S and Wang Z: Endometrial cell-derived small extracellular vesicle miR-100-5p promotes functions of trophoblast during embryo implantation. Mol Ther-Nucleic Acids. 23:217–231. 2021. View Article : Google Scholar | |
Huang YL, Huang GY, Lv J, Pan LN, Luo X and Shen J: miR-100 promotes the proliferation of spermatogonial stem cells via regulating Stat3. Mol Reprod Dev. 84:693–701. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sempere LF, Sokol NS, Dubrovsky EB, Berger EM and Ambros V: Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity. Dev Biol. 259:9–18. 2003. View Article : Google Scholar : PubMed/NCBI | |
Henson BJ, Bhattacharjee S, O'Dee DM, Feingold E and Gollin SM: Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy. Genes Chromosomes Cancer. 48:569–582. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Liu S, Wei W, Qi Y and Meng F: Advances in targeting of miR-10-associated lncRNAs/circRNAs for the management of cancer. Oncolo Lett. 25:892023. View Article : Google Scholar | |
Liu X, Zhong L, Li P and Zhao P: MicroRNA-100 enhances autophagy and suppresses migration and invasion of renal cell carcinoma cells via disruption of NOX4-dependent mTOR pathway. Clin Transl Sci. 15:567–575. 2022. View Article : Google Scholar | |
Zhou MK, Liu XJ, Zhao ZG and Cheng YM: MicroRNA-100 functions as a tumor suppressor by inhibiting Lgr5 expression in colon cancer cells. Mol Med Rep. 11:2947–2952. 2015. View Article : Google Scholar | |
Qi X, Zhang DH, Wu N, Xiao JH, Wang X and Ma W: ceRNA in cancer: Possible functions and clinical implications. J Med Genet. 52:710–718. 2015. View Article : Google Scholar : PubMed/NCBI | |
Basera A, Hull R, Demetriou D, Bates DO, Kaufmann AM, Dlamini Z and Marima R: Competing Endogenous RNA (ceRNA) Networks and Splicing Switches in Cervical Cancer: HPV Oncogenesis, Clinical Significance and Therapeutic Opportunities. Microorganisms. 10:18522022. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Zhou Y, Zhang B, Sheng Z, Sun N, Yuan B and Wu X: Identification of lncRNA, miRNA and mRNA expression profiles and ceRNA Networks in small cell lung cancer. BMC Genomics. 24:2172023. View Article : Google Scholar : PubMed/NCBI | |
Qin L, Li B, Wang S, Tang Y, Fahira A, Kou Y, Li T, Hu Z and Huang Z: Construction of an Immune-related prognostic signature and lncRNA-miRNA-mRNA ceRNA network in acute myeloid leukaemia. J Leukoc Biol. 116:146–165. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Zhang Y and Xi S: Upregulation of lncRNA HAGLROS enhances the development of nasopharyngeal carcinoma via modulating miR-100/ATG14 axis-mediated PI3K/AKT/mTOR signals. Artif Cells Nanomed Biotechnol. 47:3043–3052. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li L, Zhu H, Li X, Ke Y, Yang S and Cheng Q: Long non-coding RNA HAGLROS facilitates the malignant phenotypes of NSCLC cells via repressing miR-100 and up-regulating SMARCA5. Biomed J. 44(6 Suppl 2): S305–S315. 2021. View Article : Google Scholar | |
Yang M, Zhai Z, Zhang Y and Wang Y: Clinical significance and oncogene function of long noncoding RNA HAGLROS overexpression in ovarian cancer. Arch Gynecol Obstet. 300:703–710. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shu L, Guo K, Lin ZH and Liu H: Long non-coding RNA HAGLROS promotes the development of diffuse large B-cell lymphoma via suppressing miR-100. J Clin Lab Anal. 36:e241682022. View Article : Google Scholar | |
Liu X, Liu C, Zhang A, Wang Q, Ge J, Li Q and Xiao J: Long non-coding RNA SDCBP2-AS1 delays the progression of ovarian cancer via microRNA-100-5p-targeted EPDR1. World J Surg Oncol. 19:1992021. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Wu P, Xia R, Yang J, Huo XY, Gu DY, Tang CJ, De W and Yang F: STAT3-induced lncRNA HAGLROS overexpression contributes to the malignant progression of gastric cancer cells via mTOR signal-mediated inhibition of autophagy. Mol Cancer. 17:62018. View Article : Google Scholar : PubMed/NCBI | |
Peng J, Zheng H, Liu F, Wu Q and Liu S: The m6A methyltransferase METTL3 affects autophagy and progression of nasopharyngeal carcinoma by regulating the stability of lncRNA ZFAS1. Infect Agent Cancer. 17:12022. View Article : Google Scholar : PubMed/NCBI | |
Le F, Ou Y, Luo P and Zhong X: LncRNA NCK1-AS1 in plasma distinguishes oral ulcer from early-stage oral squamous cell carcinoma. J Biol Res (Thessalon). 27:162020. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Zhang DD, Liu JB, Yang XL, Xin R, Jia CY, Wang HM, Lu GX, Wang PY, Liu Y, et al: Comprehensive analysis to identify DLEU2L/TAOK1 axis as a prognostic biomarker in hepatocellular carcinoma. Mol Ther Nucleic Acids. 23:702–718. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bai W, Peng H, Zhang J, Zhao Y, Li Z, Feng X, Zhang J, Liang F, Wang L, Zhang N, et al: LINC00589-dominated ceRNA networks regulate multiple chemoresistance and cancer stem cell-like properties in HER2+breast cancer. NPJ Breast Cancer. 8:1152022. View Article : Google Scholar | |
Lu Y, Zhao X, Liu Q, Li C, Graves-Deal R, Cao Z, Singh B, Franklin JL, Wang J, Hu H, et al: lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling. Nat Med. 23:1331–1341. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Guo Z, Fang N, Jiang W, Fan Y, He Y, Ma Z and Chen Y: hsa_circ_0006168 sponges miR-100 and regulates mTOR to promote the proliferation, migration and invasion of esophageal squamous cell carcinoma. Biomed Pharmacother. 117:1091512019. View Article : Google Scholar : PubMed/NCBI | |
Yuan F, Zhang S, Sun Q, Ye L, Xu Y, Xu Z, Deng G, Zhang S, Liu B and Chen Q: Hsa_circ_0072309 enhances autophagy and TMZ sensitivity in glioblastoma. CNS Neurosci Ther. 28:897–912. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yao T, Yao Y, Chen Z, Peng Y, Zhong G, Huang C, Li J and Li R: CircCASC15-miR-100-mTOR may influence the cervical cancer radioresistance. Cancer Cell Int. 22:1652022. View Article : Google Scholar : PubMed/NCBI | |
Hill M and Tran N: miRNA interplay: Mechanisms and consequences in cancer. Dis Model Mech. 14:dmm0476622021. View Article : Google Scholar : PubMed/NCBI | |
Silkenstedt E, Linton K and Dreyling M: Mantle cell lymphoma-advances in molecular biology, prognostication and treatment approaches. Br J Haematol. 195:162–173. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lin L, Huang Y, Zhuang W, Lin P and Ma X: miR-100 inhibits cell proliferation in mantle cell lymphoma by targeting mTOR. Exp Hematol Oncol. 9:252020. View Article : Google Scholar : PubMed/NCBI | |
Nepstad I, Hatfield KJ, Grønningsæter IS and Reikvam H: The PI3K-Akt-mTOR signaling pathway in human acute myeloid leukemia (AML) cells. Int J Mol Sci. 21:29072020. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Wang H and Luo C: MiR-100 regulates cell viability and apoptosis by targeting ATM in pediatric acute myeloid leukemia. Biochem Biophys Res Commun. 522:855–861. 2020. View Article : Google Scholar | |
Zheng YS, Zhang H, Zhang XJ, Feng DD, Luo XQ, Zeng CW, Lin KY, Zhou H, Qu LH, Zhang P and Chen YQ: MiR-100 regulates cell differentiation and survival by targeting RBSP3, a phosphatase-like tumor suppressor in acute myeloid leukemia. Oncogene. 31:80–92. 2012. View Article : Google Scholar : | |
Chang JH, Poppe MM, Hua CH, Marcus KJ and Esiashvili N: Acute lymphoblastic leukemia. Pediatr Blood Cancer. 68(Suppl 2): e283712021. View Article : Google Scholar : PubMed/NCBI | |
Li XJ, Luo XQ, Han BW, Duan FT, Wei PP and Chen YQ: MicroRNA-100/99a, deregulated in acute lymphoblastic leukaemia, suppress proliferation and promote apoptosis by regulating the FKBP51 and IGF1R/mTOR signalling pathways. Br J Cancer. 109:2189–2198. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ou A, Yung WKA and Majd N: Molecular mechanisms of treatment resistance in glioblastoma. Int J Mol Sci. 22:3512020. View Article : Google Scholar | |
Alrfaei BM, Clark P, Vemuganti R and Kuo JS: MicroRNA miR-100 decreases glioblastoma growth by targeting SMARCA5 and ErbB3 in tumor-initiating cells. Technol Cancer Res Treat. 19:15330338209607482020. View Article : Google Scholar : PubMed/NCBI | |
Alrfaei BM, Vemuganti R and Kuo JS: microRNA-100 targets SMRT/NCOR2, reduces proliferation, and improves survival in glioblastoma animal models. PLoS One. 8:e808652013. View Article : Google Scholar : PubMed/NCBI | |
Guo R, Mao YP, Tang LL, Chen L, Sun Y and Ma J: The evolution of nasopharyngeal carcinoma staging. Br J Radiol. 92:201902442019. View Article : Google Scholar : PubMed/NCBI | |
Lee HM, Okuda KS, González FE and Patel V: Current perspectives on nasopharyngeal carcinoma. Adv Exp Med Biol. 1164:11–34. 2019. View Article : Google Scholar : PubMed/NCBI | |
Peng Q, Zhang L, Li J, Wang W, Cai J, Ban Y, Zhou Y, Hu M, Mei Y, Zeng Z, et al: FOXA1 suppresses the growth, migration, and invasion of nasopharyngeal carcinoma cells through repressing miR-100-5p and miR-125b-5p. J Cancer. 11:2485–2495. 2020. View Article : Google Scholar : PubMed/NCBI | |
He W, Huang Y, Jiang CC, Zhu Y, Wang L, Zhang W, Huang W, Zhou T and Tang S: miR-100 inhibits cell growth and proliferation by targeting HOXA1 in nasopharyngeal carcinoma. Onco Targets Ther. 13:593–602. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Liu X, Wang Y, Yang S, Chen Y and Yuan T: miR-100 inhibits the migration and invasion of nasopharyngeal carcinoma by targeting IGF1R. Oncol Lett. 15:8333–8338. 2018.PubMed/NCBI | |
Shi W, Alajez NM, Bastianutto C, Hui AB, Mocanu JD, Ito E, Busson P, Lo KW, Ng R, Waldron J, et al: Significance of Plk1 regulation by miR-100 in human nasopharyngeal cancer. Int J Cancer. 126:2036–2048. 2010. View Article : Google Scholar | |
Alexander M, Kim SY and Cheng H: Update 2020: Management of non-small cell lung cancer. Lung. 198:897–907. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Lu KH, Liu ZL, Sun M, De W and Wang ZX: MicroRNA-100 is a potential molecular marker of non-small cell lung cancer and functions as a tumor suppressor by targeting polo-like kinase 1. BMC Cancer. 12:5192012. View Article : Google Scholar : PubMed/NCBI | |
Han W, Ren X, Yang Y, Li H, Zhao L and Lin Z: microRNA-100 functions as a tumor suppressor in non-small cell lung cancer via regulating epithelial-mesenchymal transition and Wnt/β-catenin by targeting HOXA1. Thorac Cancer. 11:1679–1688. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nagata Y, Yamamoto S and Kato K: Immune checkpoint inhibitors in esophageal cancer: Clinical development and perspectives. Hum Vaccin Immunother. 18:21431772022. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Fu H, Song L, Ding Y, Wang X, Zhao C and Zhao Y, Jiao F and Zhao Y: MicroRNA-100 promotes migration and invasion through mammalian target of rapamycin in esophageal squamous cell carcinoma. Oncol Rep. 32:1409–1418. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou F, Tan F, Gao Y, Sun N, Xu X, Shao K and He J: MicroRNA-99a/100 promotes apoptosis by targeting mTOR in human esophageal squamous cell carcinoma. Med Oncol. 30:4112013. View Article : Google Scholar : PubMed/NCBI | |
Zhou SM, Zhang F, Chen XB, Jun CM, Jing X, Wei DX, Xia Y, Zhou YB, Xiao XQ, Jia RQ, et al: miR-100 suppresses the proliferation and tumor growth of esophageal squamous cancer cells via targeting CXCR7. Oncol Rep. 35:3453–3459. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou S, Yang B, Zhao Y, Xu S, Zhang H and Li Z: Prognostic value of microRNA-100 in esophageal squamous cell carcinoma. J Surg Res. 192:515–520. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nagaraju GP, Dariya B, Kasa P, Peela S and El-Rayes BF: Epigenetics in hepatocellular carcinoma. Semin Cancer Biol. 86:622–632. 2022. View Article : Google Scholar | |
Ren Z, Ma X, Duan Z and Chen X: Diagnosis, therapy, and prognosis for hepatocellular carcinoma. Anal Cell Pathol (Amst). 2020:81574062020.PubMed/NCBI | |
Ge Y, Shu J, Shi G, Yan F, Li Y and Ding H: miR-100 suppresses the proliferation, invasion, and migration of hepatocellular carcinoma cells via targeting CXCR7. J Immunol Res. 2021:99207862021. View Article : Google Scholar : PubMed/NCBI | |
Zhou HC, Fang JH, Shang LR, Zhang ZJ, Sang Y, Xu L, Yuan Y, Chen MS, Zheng L, Zhang Y and Zhuang S: MicroRNAs miR-125b and miR-100 suppress metastasis of hepatocellular carcinoma by disrupting the formation of vessels that encapsulate tumour clusters. J Pathol. 240:450–460. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Zhao X and Ma L: Downregulation of microRNA-100 correlates with tumor progression and poor prognosis in hepatocellular carcinoma. Mol Cell Biochem. 383:49–58. 2013. View Article : Google Scholar : PubMed/NCBI | |
Machlowska J, Baj J, Sitarz M, Maciejewski R and Sitarz R: Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int J Mol Sci. 21:40122020. View Article : Google Scholar : PubMed/NCBI | |
Wei L, Sun J, Zhang N, Zheng Y, Wang X, Lv L, Liu J, Xu Y, Shen Y and Yang M: Noncoding RNAs in gastric cancer: Implications for drug resistance. Mol Cancer. 19:622020. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Song J, Ge J, Song Z, Chen J and Wu C: MicroRNA-100 suppresses human gastric cancer cell proliferation by targeting CXCR7. Oncol Lett. 15:453–458. 2018.PubMed/NCBI | |
Chen Z, Liu X, Hu Z, Wang Y, Liu M, Liu X, Li H, Ji R, Guo Q and Zhou Y: Identification and characterization of tumor suppressor and oncogenic miRNAs in gastric cancer. Oncol Lett. 10:329–336. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Hu X, Du Y and Du J: The role of miRNAs in colorectal cancer progression and chemoradiotherapy. Biomed Pharmacother. 134:1110992021. View Article : Google Scholar | |
Zhao W, Dai S, Yue L, Xu F, Gu J, Dai X and Qian X: Emerging mechanisms progress of colorectal cancer liver metastasis. Front Endocrinol (Lausanne). 13:10815852022. View Article : Google Scholar : PubMed/NCBI | |
Czauderna C, Luley K, von Bubnoff N and Marquardt JU: Tailored systemic therapy for colorectal cancer liver metastases. Int J Mol Sci. 22:117802021. View Article : Google Scholar : PubMed/NCBI | |
Peng H, Luo J, Hao H, Hu J, Xie SK, Ren D and Rao B: MicroRNA-100 regulates SW620 colorectal cancer cell proliferation and invasion by targeting RAP1B. Oncol Rep. 31:2055–2062. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fujino Y, Takeishi S, Nishida K, Okamoto K, Muguruma N, Kimura T, Kitamura S, Miyamoto H, Fujimoto A, Higashijima J, et al: Downregulation of micro RNA-100/micro RNA-125b is associated with lymph node metastasis in early colorectal cancer with submucosal invasion. Cancer Sci. 108:390–397. 2017. View Article : Google Scholar : | |
Wood LD, Canto MI, Jaffee EM and Simeone DM: Pancreatic cancer: Pathogenesis, screening, diagnosis, and treatment. Gastroenterology. 163:386–402.e1. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jiang S, Fagman JB, Ma Y, Liu J, Vihav C, Engstrom C, Liu B and Chen C: A comprehensive review of pancreatic cancer and its therapeutic challenges. Aging (Albany NY). 14:7635–7649. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang JS, Egger ME, Grizzle WE and McNally LR: MicroRNA-100 regulates IGF1-receptor expression in metastatic pancreatic cancer cells. Biotech Histochem. 88:397–402. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dobre M, Herlea V, Vlăduţ C, Ciocîrlan M, Balaban VD, Constantinescu G, Diculescu M and Milanesi E: Dysregulation of miRNAs targeting the IGF-1R pathway in pancreatic ductal adenocarcinoma. Cells. 10:18562021. View Article : Google Scholar : PubMed/NCBI | |
Deleuze A, Saout J, Dugay F, Peyronnet B, Mathieu R, Verhoest G, Bensalah K, Crouzet L, Laguerre B, Belaud-Rotureau MA, et al: Immunotherapy in renal cell carcinoma: The future is now. Int J Mol Sci. 21:25322020. View Article : Google Scholar : PubMed/NCBI | |
Li F, Aljahdali IAM, Zhang R, Nastiuk KL, Krolewski JJ and Ling X: Kidney cancer biomarkers and targets for therapeutics: Survivin (BIRC5), XIAP, MCL-1, HIF1α, HIF2α, NRF2, MDM2, MDM4, p53, KRAS and AKT in renal cell carcinoma. J Exp Clin Cancer Res. 40:2542021. View Article : Google Scholar | |
Chen P, Lin C, Quan J, Lai Y, He T, Zhou L, Pan X, Wu X, Wang Y, Ni L, et al: Oncogenic miR-100-5p is associated with cellular viability, migration and apoptosis in renal cell carcinoma. Mol Med Rep. 16:5023–5030. 2017. View Article : Google Scholar : PubMed/NCBI | |
Adamaki M and Zoumpourlis V: Prostate cancer biomarkers: From diagnosis to prognosis and precision-guided therapeutics. Pharmacol Ther. 228:1079322021. View Article : Google Scholar : PubMed/NCBI | |
Leite KR, Tomiyama A, Reis ST, Sousa-Canavez JM, Sañudo A, Dall'Oglio MF, Camara-Lopes LH and Srougi M: MicroRNA-100 expression is independently related to biochemical recurrence of prostate cancer. J Urol. 185:1118–1122. 2011. View Article : Google Scholar : PubMed/NCBI | |
Leite KR, Morais DR, Reis ST, Viana N, Moura C, Florez MG, Silva IA, Dip N and Srougi M: MicroRNA 100: A context dependent miRNA in prostate cancer. Clinics (Sao Paulo). 68:797–802. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Ren D, Guo W, Wang Z, Huang S, Du H, Song L and Peng X: Loss of miR-100 enhances migration, invasion, epithelial-mesenchymal transition and stemness properties in prostate cancer cells through targeting Argonaute 2. Int J Oncol. 45:362–372. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nabavi N, Saidy NRN, Venalainen E, Haegert A, Parolia A, Xue H, Wang Y, Wu R, Dong X, Collins C, et al: miR-100-5p inhibition induces apoptosis in dormant prostate cancer cells and prevents the emergence of castration-resistant prostate cancer. Sci Rep. 7:40792017. View Article : Google Scholar : PubMed/NCBI | |
Ye Y, Li SL and Wang JJ: miR-100-5p downregulates mTOR to suppress the proliferation, migration, and invasion of prostate cancer cells. Front Oncol. 10:5789482020. View Article : Google Scholar : PubMed/NCBI | |
Chen DW, Lang BHH, McLeod DSA, Newbold K and Haymart MR: Thyroid cancer. Lancet. 401:1531–1544. 2023. View Article : Google Scholar : PubMed/NCBI | |
Şah Ünal FT, Gökçay Canpolat A, Elhan AH, Sevim S, Sak SD, Emral R, Demir Ö, Güllü S, Erdoğan MF, Çorapçıoğlu D and Şahin M: Cancer rates and characteristics of thyroid nodules with macrocalcification. Endocrine. 84:1021–1029. 2024. View Article : Google Scholar | |
Ma P and Han J: Overexpression of miR-100-5p inhibits papillary thyroid cancer progression via targeting FZD8. Open Med (Wars). 17:1172–1182. 2022. View Article : Google Scholar : PubMed/NCBI | |
Trapani D, Ginsburg O, Fadelu T, Lin NU, Hassett M, Ilbawi AM, Anderson BO and Curigliano G: Global challenges and policy solutions in breast cancer control. Cancer Treat Rev. 104:1023392022. View Article : Google Scholar : PubMed/NCBI | |
Xie H, Xiao R, He Y, He L, Xie C, Chen J and Hong Y: MicroRNA-100 inhibits breast cancer cell proliferation, invasion and migration by targeting FOXA1. Oncol Lett. 22:8162021. View Article : Google Scholar : PubMed/NCBI | |
Gebeshuber CA and Martinez J: miR-100 suppresses IGF2 and inhibits breast tumorigenesis by interfering with proliferation and survival signaling. Oncogene. 32:3306–3310. 2013. View Article : Google Scholar | |
Li X, Ren Y, Liu D, Yu X and Chen K: Role of miR-100-5p and CDC25A in breast carcinoma cells. PeerJ. 9:e122632022. View Article : Google Scholar : PubMed/NCBI | |
Gong Y, He T, Yang L, Yang G, Chen Y and Zhang X: The role of miR-100 in regulating apoptosis of breast cancer cells. Sci Rep. 5:116502015. View Article : Google Scholar : PubMed/NCBI | |
Throwba H PK, Unnikrishnan L, Pangath M, Vasudevan K, Jayaraman S, Li M, Iyaswamy A, Palaniyandi K and Gnanasampanthapandian D: The epigenetic correlation among ovarian cancer, endometriosis and PCOS: A review. Crit Rev Oncol Hematol. 180:1038522022. View Article : Google Scholar : PubMed/NCBI | |
Volkova LV, Pashov AI and Omelchuk NN: Cervical carcinoma: Oncobiology and biomarkers. Int J Mol Sci. 22:125712021. View Article : Google Scholar : PubMed/NCBI | |
Schoutrop E, Moyano-Galceran L, Lheureux S, Mattsson J, Lehti K, Dahlstrand H and Magalhaes I: Molecular, cellular and systemic aspects of epithelial ovarian cancer and its tumor microenvironment. Semin Cancer Biol. 86:207–223. 2022. View Article : Google Scholar : PubMed/NCBI | |
Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, Kim JW and Kim S: MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res. 14:2690–2695. 2008. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Qin X, Zhao N, Jin H, Zhang S and Yang H: Erratum: MicroRNA-100 functions as a tumor suppressor in cervical cancer via downregulating the SATB1 expression and regulating AKT/mTOR signaling pathway and epithelial-to-mesenchymal transition. Oncol Lett. 22:7412021. View Article : Google Scholar : PubMed/NCBI | |
Li BH, Zhou JS, Ye F, Cheng XD, Zhou CY, Lu WG and Xie X: Reduced miR-100 expression in cervical cancer and precursors and its carcinogenic effect through targeting PLK1 protein. Eur J Cancer. 47:2166–2174. 2011. View Article : Google Scholar : PubMed/NCBI | |
Crosbie EJ, Kitson SJ, McAlpine JN, Mukhopadhyay A, Powell ME and Singh N: Endometrial cancer. Lancet. 399:1412–1428. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Zhang Q and Kong B: miRNA-576-5p promotes endometrial cancer cell growth and metastasis by targeting ZBTB4. Clin Transl Oncol. 25:706–720. 2023. View Article : Google Scholar : | |
Takebayashi K, Nasu K, Okamoto M, Aoyagi Y, Hirakawa T and Narahara H: hsa-miR-100-5p, an overexpressed miRNA in human ovarian endometriotic stromal cells, promotes invasion through attenuation of SMARCD1 expression. Reprod Biol Endocrinol. 18:312020. View Article : Google Scholar : PubMed/NCBI | |
Valihrach L, Androvic P and Kubista M: Circulating miRNA analysis for cancer diagnostics and therapy. Mol Aspects Med. 72:1008252020. View Article : Google Scholar | |
O'Neill RS and Stoita A: Biomarkers in the diagnosis of pancreatic cancer: Are we closer to finding the golden ticket? World J Gastroenterol. 27:4045–40875. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Meng Q, Qian J, Li M, Gu C and Yang Y: RNA-based diagnostic markers discovery and therapeutic targets development in cancer. Pharmacol Ther. 234:1081232022. View Article : Google Scholar | |
Wang S, Li L, Yang M, Wang X, Zhang H, Wu N, Jia K, Wang J, Li M, Wei L and Liu J: Identification of three circulating MicroRNAs in plasma as clinical biomarkers for breast cancer detection. J Clin Med. 12:3222022. View Article : Google Scholar | |
Fuso P, Di Salvatore M, Santonocito C, Guarino D, Autilio C, Mulè A, Arciuolo D, Rinninella A, Mignone F, Ramundo M, et al: Let-7a-5p, miR-100-5p, miR-101-3p, and miR-199a-3p hyperexpression as potential predictive biomarkers in early breast cancer patients. J Pers Med. 11:8162021. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Wong YS, Goh BKP, Chan CY, Cheow PC, Chow PKH, Lim TKH, Goh GBB, Krishnamoorthy TL, Kumar R, et al: Circulating microRNAs as potential diagnostic and prognostic biomarkers in hepatocellular carcinoma. Sci Rep. 9:104642019. View Article : Google Scholar : PubMed/NCBI | |
Qureshi A, Fahim A, Kazi N, Farsi Kazi SA and Nadeem F: Expression of miR-100 as a novel ancillary non-invasive biomarker for early detection of bladder carcinoma. J Pak Med Assoc. 68:759–763. 2018.PubMed/NCBI | |
Ludwig N, Nourkami-Tutdibi N, Backes C, Lenhof HP, Graf N, Keller A and Meese E: Circulating serum miRNAs as potential biomarkers for nephroblastoma. Pediatr Blood Cancer. 62:1360–1367. 2015. View Article : Google Scholar : PubMed/NCBI | |
Blanca A, Sanchez-Gonzalez A, Requena MJ, Carrasco-Valiente J, Gomez-Gomez E, Cheng L, Cimadamore A, Montironi R and Lopez-Beltran A: Expression of miR-100 and miR-138 as prognostic biomarkers in non-muscle-invasive bladder cancer. APMIS. 127:545–553. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yamanaka Z, Sasaki T, Yamanaka A, Kato K and Nishi H: Circulating and tissue miR-100 acts as a potential diagnostic biomarker for cervical cancer. Cancer Biomark. 32:551–558. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bahnassy AA, Salem SE, El-Sayed M, Khorshid O, Abdellateif MS, Youssef AS, Mohanad M, Hussein M, Zekri AN and Ali NM: MiRNAs as molecular biomarkers in stage II egyptian colorectal cancer patients. Exp Mol Pathol. 105:260–271. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Chen L, Jin H, Wang S, Zhang Y, Tang X and Tang G: Screening miRNAs for early diagnosis of colorectal cancer by small RNA deep sequencing and evaluation in a Chinese patient population. Onco Targets Ther. 9:1159–1166. 2016.PubMed/NCBI | |
Gong Y, Yang G, Wang Q, Wang Y and Zhang X: NME2 is a master suppressor of apoptosis in gastric cancer cells via transcriptional regulation of miR-100 and other survival factors. Mol Cancer Res. 18:287–299. 2020. View Article : Google Scholar | |
Damodaran M, Chinambedu Dandapani M, Raj Simon Durai, Sundaram Sandhya, VenkatRamanan S, Ramachandran I and Venkatesan V: Differentially expressed miR-20, miR-21, miR-100, miR-125a and miR-146a as a potential biomarker for prostate cancer. Mol Biol Rep. 48:3349–3356. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jakob M, Mattes LM, Küffer S, Unger K, Hess J, Bertlich M, Haubner F, Ihler F, Canis M, Weiss BG and Kitz J: MicroRNA expression patterns in oral squamous cell carcinoma: Hsa-mir-99b-3p and hsa-mir-100-5p as novel prognostic markers for oral cancer. Head Neck. 41:3499–3515. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao JY, Wang F, Li Y, Zhang XB, Yang L, Wang W, Xu H, Liu DZ and Zhang LY: Five miRNAs considered as molecular targets for predicting esophageal cancer. Med Sci Monit. 21:32222015. View Article : Google Scholar : PubMed/NCBI | |
Zhang HC and Tang KF: Clinical value of integrated-signature miRNAs in esophageal cancer. Cancer Med. 6:1893–1903. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Chen L, Meng J, Chen M, Zhuang L and Zhang L: Overexpression of microRNA-100 predicts an unfavorable prognosis in renal cell carcinoma. Int Urol Nephrol. 45:373–379. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu HT, Wang YW, Xing AY, Shi DB, Zhang H, Guo XY, Xu J and Gao P: Prognostic value of microRNA signature in patients with gastric cancers. Sci Rep. 7:428062017. View Article : Google Scholar : PubMed/NCBI | |
He QL, Qin SY, Tao L, Ning HJ and Jiang HX: Prognostic value and prospective molecular mechanism of miR-100-5p in hepatocellular carcinoma: A comprehensive study based on 1,258 samples. Oncol Lett. 18:6126–6142. 2019.PubMed/NCBI | |
Hassan NM, Refaat LA, Ismail GN, Abdellateif M, Fadel SA and AbdelAziz RS: Diagnostic, prognostic and predictive values of miR-100 and miR-210 in pediatric acute lymphoblastic Leukemia. Hematology. 25:405–413. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nussinov R, Tsai CJ and Jang H: Anticancer drug resistance: An update and perspective. Drug Resist Updat. 59:1007962021. View Article : Google Scholar : PubMed/NCBI | |
Bukowski K, Kciuk M and Kontek R: Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. 21:32332020. View Article : Google Scholar : PubMed/NCBI | |
Luan Y, Zhang S, Zuo L and Zhou L: Overexpression of miR-100 inhibits cell proliferation, migration, and chemosensitivity in human glioblastoma through FGFR3. Onco Targets Ther. 8:3391–3400. 2015.PubMed/NCBI | |
Xiao F, Bai Y, Chen Z, Li Y, Luo L, Huang J, Yang J, Liao H and Guo L: Downregulation of HOXA1 gene affects small cell lung cancer cell survival and chemoresistance under the regulation of miR-100. Eur J Cancer. 50:1541–1554. 2014. View Article : Google Scholar : PubMed/NCBI | |
Feng B, Wang R and Chen LB: MiR-100 resensitizes docetaxel-resistant human lung adenocarcinoma cells (SPC-A1) to docetaxel by targeting Plk1. Cancer Lett. 317:184–191. 2012. View Article : Google Scholar | |
Guo P, Xiong X, Zhang S and Peng D: miR-100 resensitizes resistant epithelial ovarian cancer to cisplatin. Oncol Rep. 36:3552–3558. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zhu ST, Wang X, Deng J, Li WH, Zhang P and Liu BS: MiR-100 inhibits osteosarcoma cell proliferation, migration, and invasion and enhances chemosensitivity by targeting IGFIR. Technol Cancer Res Treat. 15:NP40–NP48. 2016. View Article : Google Scholar | |
Lai Y, Kacal M, Kanony M, Stukan I, Jatta K, Kis L, Norberg E, Vakifahmetoglu-Norberg H, Lewensohn R, Hydbring P and Ekman S: miR-100-5p confers resistance to ALK tyrosine kinase inhibitors Crizotinib and Lorlatinib in EML4-ALK positive NSCLC. Biochem Biophys Res Commun. 511:260–265. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lobert S, Jefferson B and Morris K: Regulation of β-tubulin isotypes by micro-RNA 100 in MCF7 breast cancer cells. Cytoskeleton. 68:355–362. 2011. View Article : Google Scholar | |
Moqadam FA, Lange-Turenhout EAM, Ariës IM, Pieters R and den Boer ML: MiR-125b, miR-100 and miR-99a co-regulate vincristine resistance in childhood acute lymphoblastic leukemia. Leuk Res. 37:1315–1321. 2013. View Article : Google Scholar | |
Ng WL, Yan D, Zhang X, Mo YY and Wang Y: Over-expression of miR-100 is responsible for the low-expression of ATM in the human glioma cell line: M059J. DNA Repair (Amst). 9:1170–1175. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou B, Lin W, Long Y, Yang Y, Zhang H, Wu K and Chu Q: Notch signaling pathway: Architecture, disease, and therapeutics. Signal Transduct Target Ther. 7:952022. View Article : Google Scholar : PubMed/NCBI | |
Lee YJ, Kim WR, Park EG, Lee DH, Kim JM, Shin HJ, Jeong HS, Roh HY and Kim HS: Exploring the key signaling pathways and ncRNAs in colorectal cancer. Int J Mol Sci. 25:45482024. View Article : Google Scholar : PubMed/NCBI | |
Peng WX, Koirala P and Mo YY: LncRNA-mediated regulation of cell signaling in cancer. Oncogene. 36:5661–5667. 2017. View Article : Google Scholar : PubMed/NCBI | |
Park JH, Pyun WY and Park HW: Cancer metabolism: Phenotype, signaling and therapeutic targets. Cells. 9:23082020. View Article : Google Scholar : PubMed/NCBI | |
Song SK, Jung WY, Park SK, Chung CW and Park Y: Significantly different expression levels of microRNAs associated with vascular invasion in hepatocellular carcinoma and their prognostic significance after surgical resection. PLoS One. 14:e02168472019. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Sun Y, Yuan Y, Han Z, Zhang P, Zhang J, You MJ, Teruya-Feldstein J, Wang M, Gupta S, et al: miR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion. PLoS Genet. 10:e10041772014. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Chen Z, Wang X, Xu M, Fang H, Li F, Liu Y, Jiang Y, Ding Y, Li J and Wang S: Inactivation of miR-100 combined with arsenic treatment enhances the malignant transformation of BEAS-2B cells via stimulating epithelial-mesenchymal transition. Cancer Biol Ther. 18:965–973. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Qin X, Zhao N, Jin H, Zhang S and Yang H: (Corrigendum) MicroRNA-100 functions as a tumor suppressor in cervical cancer via downregulating the SATB1 expression and regulating AKT/mTOR signaling pathway and epithelial-to-mesenchymal transition. Oncol Lett. 22:2021. View Article : Google Scholar | |
Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, et al: PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer. 22:1382023. View Article : Google Scholar : PubMed/NCBI | |
Song P, Gao Z, Bao Y, Chen L, Huang Y, Liu Y, Dong Q and Wei X: Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J Hematol Oncol. 17:462024. View Article : Google Scholar | |
Peng CW, Yue LX, Zhou YQ, Tang S, Kan C, Xia LM, Yang F and Wang SY: miR-100-3p inhibits cell proliferation and induces apoptosis in human gastric cancer through targeting to BMPR2. Cancer Cell Int. 19:3542019. View Article : Google Scholar : | |
Yang G, Gong Y, Wang Q, Wang Y and Zhang X: The role of miR-100-mediated Notch pathway in apoptosis of gastric tumor cells. Cell Signal. 27:1087–1101. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Qin X, Zhao N, Jin H, Zhang S and Yang H: MicroRNA-100 functions as a tumor suppressor in cervical cancer via downregulating the SATB1 expression and regulating AKT/mTOR signaling pathway and epithelial-to-mesenchymal transition. Oncol Lett. 20:1336–1344. 2020. View Article : Google Scholar : PubMed/NCBI | |
Morgos DT, Stefani C, Miricescu D, Greabu M, Stanciu S, Nica S, Stanescu-Spinu II, Balan DG, Balcangiu-Stroescu AE, Coculescu EC, et al: Targeting PI3K/AKT/mTOR and MAPK signaling pathways in gastric cancer. Int J Mol Sci. 25:18482024. View Article : Google Scholar : PubMed/NCBI | |
Qin C, Huang RY and Wang ZX: Potential role of miR-100 in cancer diagnosis, prognosis, and therapy. Tumour Biol. 36:1403–1409. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wei X, Feng Y, Fu Y, Liu F, Chen Q, Zhang W, Zhao Y, Huang X, Chen Y, Li Q and Zhang Q: miR-100-5p is upregulated in multiple myeloma and involves in the pathogenesis of multiple myeloma through targeting MTMR3. Hematology. 28:21968572023. View Article : Google Scholar : PubMed/NCBI | |
Eniafe J and Jiang S: MicroRNA-99 family in cancer and immunity. Wiley Interdiscip Rev RNA. 12:e16352021. View Article : Google Scholar | |
Gu L, Li H, Chen L, Ma X, Gao Y, Li X, Zhang Y, Fan Y and Zhang X: MicroRNAs as prognostic molecular signatures in renal cell carcinoma: A systematic review and meta-analysis. Oncotarget. 6:32545–32560. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ghafouri-Fard S, Glassy MC, Abak A, Hussen BM, Niazi V and Taheri M: The interaction between miRNAs/lncRNAs and Notch pathway in human disorders. Biomed Pharmacother. 138:1114962021. View Article : Google Scholar : PubMed/NCBI | |
Servín-González LS, Granados-López AJ and López JA: Families of microRNAs expressed in clusters regulate cell signaling in cervical cancer. Int J Mol Sci. 16:12773–12790. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shemesh R, Laufer-Geva S, Gorzalczany Y, Anoze A, Sagi-Eisenberg R, Peled N and Roisman LC: The interaction of mast cells with membranes from lung cancer cells induces the release of extracellular vesicles with a unique miRNA signature. Sci Rep. 13:215442023. View Article : Google Scholar : PubMed/NCBI | |
Jamali L, Tofigh R, Tutunchi S, Panahi G, Borhani F, Akhavan S, Nourmohammadi P, Ghaderian SMH, Rasouli M and Mirzaei H: Circulating microRNAs as diagnostic and therapeutic biomarkers in gastric and esophageal cancers. J Cell Physiol. 233:8538–8550. 2018. View Article : Google Scholar : PubMed/NCBI | |
Farasati Far B, Vakili K, Fathi M, Yaghoobpoor S, Bhia M and Naimi-Jamal MR: The role of microRNA-21 (miR-21) in pathogenesis, diagnosis, and prognosis of gastrointestinal cancers: A review. Life Sci. 316:1213402023. View Article : Google Scholar : PubMed/NCBI | |
Grimaldi AM, Nuzzo S, Condorelli G, Salvatore M and Incoronato M: Prognostic and clinicopathological significance of miR-155 in breast cancer: A systematic review. Int J Mol Sci. 21:58342020. View Article : Google Scholar : PubMed/NCBI | |
Seyhan AA: Trials and tribulations of microRNA therapeutics. Int J Mol Sci. 25:14692024. View Article : Google Scholar : PubMed/NCBI | |
Qian H, Maghsoudloo M, Kaboli PJ, Babaeizad A, Cui Y, Fu J, Wang Q and Imani S: Decoding the promise and challenges of miRNA-based cancer therapies: An essential update on miR-21, miR-34, and miR-155. Int J Med Sci. 21:2781–2798. 2024. View Article : Google Scholar : PubMed/NCBI |