
Role of GLP‑1 receptor agonists in sepsis and their therapeutic potential in sepsis‑induced muscle atrophy (Review)
- Authors:
- Xuan Zhao
- Yukun Liu
- Dongfang Wang
- Tonghan Li
- Zhikai Xu
- Zhanfei Li
- Xiangjun Bai
- Yuchang Wang
-
Affiliations: Trauma Center, Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China, Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China - Published online on: March 5, 2025 https://doi.org/10.3892/ijmm.2025.5515
- Article Number: 74
-
Copyright: © Zhao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al: The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mushtaq A and Kazi F: Updates in sepsis management. Lancet Infect Dis. 22:242022. View Article : Google Scholar | |
Vincent JL, Jones G, David S, Olariu E and Cadwell KK: Frequency and mortality of septic shock in Europe and North America: A systematic review and meta-analysis. Crit Care. 23:1962019. View Article : Google Scholar : PubMed/NCBI | |
Abraham E: New definitions for sepsis and septic shock: Continuing evolution but with much still to be done. JAMA. 315:757–759. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bracht H, Hafner S and Weiß M: Sepsis update: Definition and epidemiology. Anasthesiol Intensivmed Notfallmed Schmerzther. 54:10–20. 2019.In German. View Article : Google Scholar : PubMed/NCBI | |
Vincent JL: Current sepsis therapeutics. EBioMedicine. 86:1043182022. View Article : Google Scholar : PubMed/NCBI | |
Leviner S: Post-sepsis syndrome. Crit Care Nurs Q. 44:182–186. 2021. View Article : Google Scholar : PubMed/NCBI | |
Callahan LA and Supinski GS: Sepsis-induced myopathy. Crit Care Med. 37(10 Suppl): S354–S367. 2009. View Article : Google Scholar | |
Gardner AK, Ghita GL, Wang Z, Ozrazgat-Baslanti T, Raymond SL, Mankowski RT, Brumback BA, Efron PA, Bihorac A, Moore FA, et al: The development of chronic critical illness determines physical function, quality of life, and long-term survival among early survivors of sepsis in surgical ICUs. Crit Care Med. 47:566–573. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wang D, Li T, Xu L, Li Z, Bai X, Tang M and Wang Y: Melatonin: A potential adjuvant therapy for septic myopathy. Biomed Pharmacother. 158:1142092023. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Hu C and Zhao S: Sarcopenia and mortality risk of patients with sepsis: A meta-analysis. Int J Clin Pract. 2022:49744102022. View Article : Google Scholar : PubMed/NCBI | |
Mankowski RT, Laitano O, Clanton TL and Brakenridge SC: Pathophysiology and treatment strategies of acute myopathy and muscle wasting after sepsis. J Clin Med. 10:18742021. View Article : Google Scholar : PubMed/NCBI | |
Chen J and Huang M: Intensive care unit-acquired weakness: Recent insights. J Intensive Med. 4:73–80. 2023. View Article : Google Scholar | |
Piva S, Fagoni N and Latronico N: Intensive care unit-acquired weakness: Unanswered questions and targets for future research. F1000Res. 8:F1000Faculty Rev-508. 2019. View Article : Google Scholar : PubMed/NCBI | |
Latronico N, Herridge M, Hopkins RO, Angus D, Hart N, Hermans G, Iwashyna T, Arabi Y, Citerio G, Ely EW, et al: The ICM research agenda on intensive care unit-acquired weakness. Intensive Care Med. 43:1270–1281. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schefold JC, Bierbrauer J and Weber-Carstens S: Intensive care unit-acquired weakness (ICUAW) and muscle wasting in critically ill patients with severe sepsis and septic shock. J Cachexia Sarcopenia Muscle. 1:147–157. 2010. View Article : Google Scholar | |
Farhan H, Moreno-Duarte I, Latronico N, Zafonte R and Eikermann M: Acquired muscle weakness in the surgical intensive care unit: Nosology, epidemiology, diagnosis, and prevention. Anesthesiology. 124:207–234. 2016. View Article : Google Scholar | |
Graaf Cd, Donnelly D, Wootten D, Lau J, Sexton PM, Miller LJ, Ahn JM, Liao J, Fletcher MM, Yang D, et al: Glucagon-like peptide-1 and its class B G protein-coupled receptors: A long march to therapeutic successes. Pharmacol Rev. 68:954–1013. 2016. View Article : Google Scholar : PubMed/NCBI | |
Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, Dagogo-Jack S, Davidson MB, Einhorn D, Garvey WT, et al: AACE comprehensive diabetes management algorithm 2013. Endocr Pract. 19:327–336. 2013. View Article : Google Scholar : PubMed/NCBI | |
Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews DR, et al: Management of hyperglycemia in type 2 diabetes: A patient-centered approach: position statement of the American diabetes association (ADA) and the European association for the study of diabetes (EASD). Diabetes Care. 35:1364–1379. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gutzwiller JP, Drewe J, Göke B, Schmidt H, Rohrer B, Lareida J and Beglinger C: Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol. 276:R1541–R1544. 1999.PubMed/NCBI | |
Zhao X, Wang M, Wen Z, Lu Z, Cui L, Fu C, Xue H, Liu Y and Zhang Y: GLP-1 receptor agonists: Beyond their pancreatic effects. Front Endocrinol (Lausanne). 12:7211352021.PubMed/NCBI | |
Yang F, Zeng F, Luo X, Lei Y, Li J, Lu S, Huang X, Lan Y and Liu R: GLP-1 receptor: A new target for sepsis. Front Pharmacol. 12:7069082021.PubMed/NCBI | |
Iwai S, Kaji K, Nishimura N, Kubo T, Tomooka F, Shibamoto A, Suzuki J, Tsuji Y, Fujinaga Y, Kitagawa K, et al: Glucagon-like peptide-1 receptor agonist, semaglutide attenuates chronic liver disease-induced skeletal muscle atrophy in diabetic mice. Biochim Biophys Acta Mol Basis Dis. 1869:1667702023.PubMed/NCBI | |
Sandoval DA and D'Alessio DA: Physiology of proglucagon peptides: Role of glucagon and GLP-1 in health and disease. Physiol Rev. 95:513–548. 2015.PubMed/NCBI | |
Nian M, Drucker DJ and Irwin D: Divergent regulation of human and rat proglucagon gene promoters in vivo. Am J Physiol. 277:G829–G837. 1999.PubMed/NCBI | |
Jin SL, Han VK, Simmons JG, Towle AC, Lauder JM and Lund PK: Distribution of glucagonlike peptide I (GLP-I), glucagon, and glicentin in the rat brain: An immunocytochemical study. J Comp Neurol. 271:519–532. 1988.PubMed/NCBI | |
Han VK, Hynes MA, Jin C, Towle AC, Lauder JM and Lund PK: Cellular localization of proglucagon/glucagon-like peptide I messenger RNAs in rat brain. J Neurosci Res. 16:97–107. 1986.PubMed/NCBI | |
Drucker DJ and Nauck MA: The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 368:1696–1705. 2006.PubMed/NCBI | |
Sharma D, Verma S, Vaidya S, Kalia K and Tiwari V: Recent updates on GLP-1 agonists: Current advancements & challenges. Biomed Pharmacother. 108:952–962. 2018.PubMed/NCBI | |
Kreymann B, Williams G, Ghatei MA and Bloom SR: Glucagon-like peptide-1 7-36: A physiological incretin in man. Lancet. 2:1300–1304. 1987. View Article : Google Scholar : PubMed/NCBI | |
Deacon CF, Johnsen AH and Holst JJ: Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab. 80:952–957. 1995.PubMed/NCBI | |
Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, et al: Glucagon-like peptide 1 (GLP-1). Mol Metab. 30:72–130. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hansen L, Deacon CF, Orskov C and Holst JJ: Glucagon-like peptide-1-(7-36)amide is transformed to glucagon-like peptide-1-(9-36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology. 140:5356–5363. 1999. View Article : Google Scholar : PubMed/NCBI | |
Meier JJ, Nauck MA, Kranz D, Holst JJ, Deacon CF, Gaeckler D, Schmidt WE and Gallwitz B: Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes. 53:654–662. 2004. View Article : Google Scholar : PubMed/NCBI | |
Leech CA, Chepurny OG and Holz GG: Epac2-dependent rap1 activation and the control of islet insulin secretion by glucagon-like peptide-1. Vitam Horm. 84:279–302. 2010. View Article : Google Scholar : PubMed/NCBI | |
Göke R, Larsen PJ, Mikkelsen JD and Sheikh SP: Distribution of GLP-1 binding sites in the rat brain: Evidence that exendin-4 is a ligand of brain GLP-1 binding sites. Eur J Neurosci. 7:2294–2300. 1995. View Article : Google Scholar : PubMed/NCBI | |
Campos RV, Lee YC and Drucker DJ: Divergent tissue-specific and developmental expression of receptors for glucagon and glucagon-like peptide-1 in the mouse. Endocrinology. 134:2156–2164. 1994. View Article : Google Scholar : PubMed/NCBI | |
Cantini G, Mannucci E and Luconi M: Perspectives in GLP-1 research: New targets, new receptors. Trends Endocrinol Metab. 27:427–438. 2016. View Article : Google Scholar : PubMed/NCBI | |
Holz GG: Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes. 53:5–13. 2004. View Article : Google Scholar | |
Drucker DJ, Philippe J, Mojsov S, Chick WL and Habener JF: Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci USA. 84:3434–3438. 1987. View Article : Google Scholar : PubMed/NCBI | |
Fehmann HC and Habener JF: Galanin inhibits proinsulin gene expression stimulated by the insulinotropic hormone glucagon-like peptide-I(7-37) in mouse insulinoma beta TC-1 cells. Endocrinology. 130:2890–2896. 1992. View Article : Google Scholar : PubMed/NCBI | |
Arakawa M, Ebato C, Mita T, Hirose T, Kawamori R, Fujitani Y and Watada H: Effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation depend on treatment dose, treatment duration and meal contents. Biochem Biophys Res Commun. 390:809–814. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hare KJ, Vilsbøll T, Asmar M, Deacon CF, Knop FK and Holst JJ: The glucagonostatic and insulinotropic effects of glucagon-like peptide 1 contribute equally to its glucose-lowering action. Diabetes. 59:1765–1770. 2010. View Article : Google Scholar : PubMed/NCBI | |
Beiroa D, Imbernon M, Gallego R, Senra A, Herranz D, Villarroya F, Serrano M, Fernø J, Salvador J, Escalada J, et al: GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes. 63:3346–3358. 2014. View Article : Google Scholar : PubMed/NCBI | |
Halim MA, Degerblad M, Sundbom M, Karlbom U, Holst JJ, Webb DL and Hellström PM: Glucagon-like peptide-1 inhibits prandial gastrointestinal motility through myenteric neuronal mechanisms in humans. J Clin Endocrinol Metab. 103:575–585. 2018. View Article : Google Scholar | |
McKay NJ, Kanoski SE, Hayes MR and Daniels D: Glucagon-like peptide-1 receptor agonists suppress water intake independent of effects on food intake. Am J Physiol Regul Integr Comp Physiol. 301:R1755–R1764. 2011. View Article : Google Scholar : PubMed/NCBI | |
Herman JP: Regulation of hypothalamo-pituitary-adrenocortical responses to stressors by the nucleus of the solitary tract/dorsal vagal complex. Cell Mol Neurobiol. 38:25–35. 2018. View Article : Google Scholar : | |
Ghosal S, Packard AEB, Mahbod P, McKlveen JM, Seeley RJ, Myers B, Ulrich-Lai Y, Smith EP, D'Alessio DA and Herman JP: Disruption of glucagon-like peptide 1 signaling in sim1 neurons reduces physiological and behavioral reactivity to acute and chronic stress. J Neurosci. 37:184–193. 2017.PubMed/NCBI | |
Perry T, Lahiri DK, Chen D, Zhou J, Shaw KT, Egan JM and Greig NH: A novel neurotrophic property of glucagon-like peptide 1: A promoter of nerve growth factor-mediated differentiation in PC12 cells. J Pharmacol Exp Ther. 300:958–966. 2002. View Article : Google Scholar : PubMed/NCBI | |
During MJ, Cao L, Zuzga DS, Francis JS, Fitzsimons HL, Jiao X, Bland RJ, Klugmann M, Banks WA, Drucker DJ and Haile CN: Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med. 9:1173–1179. 2003.PubMed/NCBI | |
Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS, et al: Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 375:311–322. 2016.PubMed/NCBI | |
Mann JFE, Ørsted DD, Brown-Frandsen K, Marso SP, Poulter NR, Rasmussen S, Tornøe K, Zinman B and Buse JB; LEADER Steering Committee and Investigators: Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med. 377:839–848. 2017.PubMed/NCBI | |
Teramoto S, Miyamoto N, Yatomi K, Tanaka Y, Oishi H, Arai H, Hattori N and Urabe T: Exendin-4, a glucagon-like peptide-1 receptor agonist, provides neuroprotection in mice transient focal cerebral ischemia. J Cereb Blood Flow Metab. 31:1696–1705. 2011.PubMed/NCBI | |
Aravindhan K, Bao W, Harpel MR, Willette RN, Lepore JJ and Jucker BM: Cardioprotection resulting from glucagon-like peptide-1 administration involves shifting metabolic substrate utilization to increase energy efficiency in the rat heart. PLoS One. 10:e01308942015.PubMed/NCBI | |
Lebrun LJ, Lenaerts K, Kiers D, Pais de Barros JP, Le Guern N, Plesnik J, Thomas C, Bourgeois T, Dejong CHC, Kox M, et al: Enteroendocrine L cells sense LPS after gut barrier injury to enhance GLP-1 secretion. Cell Rep. 21:1160–1168. 2017.PubMed/NCBI | |
Guo J, Zhang X, Pan R, Zheng Y, Chen W and Wang L: Liraglutide alleviates sepsis-induced acute lung injury by regulating pulmonary surfactant through inhibiting autophagy. Immunopharmacol Immunotoxicol. 46:573–582. 2024.PubMed/NCBI | |
Armstrong MJ, Gaunt P, Aithal GP, Barton D, Hull D, Parker R, Hazlehurst JM, Guo K; LEAN trial team; Abouda G, et al: Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): A multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. 387:679–690. 2016. | |
Pan HC, Chen JY, Chen HY, Yeh FY, Sun CY, Huang TT and Wu VC: GLP-1 receptor agonists' impact on cardio-renal outcomes and mortality in T2D with acute kidney disease. Nat Commun. 15:59122024.PubMed/NCBI | |
Guo J, Chen X, Wang C, Ruan F, Xiong Y, Wang L, Abdel-Razek O, Meng Q, Shahbazov R, Cooney RN and Wang G: Liraglutide alleviates acute lung injury and mortality in pneumonia-induced sepsis through regulating surfactant protein expression and secretion. Shock. 61:601–610. 2024. | |
Yi H, Duan Y, Song R, Zhou Y, Cui Y, Liu C, Mao Z, Hu J and Zhou F: Activation of glucagon-like peptide-1 receptor in microglia exerts protective effects against sepsis-induced encephalopathy via attenuating endoplasmic reticulum stress-associated inflammation and apoptosis in a mouse model of sepsis. Exp Neurol. 363:1143482023. View Article : Google Scholar : PubMed/NCBI | |
Atef MM, Abou Hashish NA, Hafez YM, Selim AF, Ibrahim HA, Eltabaa EF, Rizk FH, Shalaby AM, Ezzat N, Alabiad MA and Elshamy AM: The potential protective effect of liraglutide on valproic acid induced liver injury in rats: Targeting HMGB1/RAGE axis and RIPK3/MLKL mediated necroptosis. Cell Biochem Funct. 41:1209–1219. 2023. View Article : Google Scholar : PubMed/NCBI | |
Seufert J and Gallwitz B: The extra-pancreatic effects of GLP-1 receptor agonists: A focus on the cardiovascular, gastrointestinal and central nervous systems. Diabetes Obes Metab. 16:673–688. 2014. View Article : Google Scholar : PubMed/NCBI | |
Glorie LLF, Verhulst A, Matheeussen V, Baerts L, Magielse J, Hermans N, D'Haese PC, De Meester I and De Beuf A: DPP4 inhibition improves functional outcome after renal ischemia-reperfusion injury. Am J Physiol Renal Physiol. 303:F681–F688. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, et al: Sarcopenia: European consensus on definition and diagnosis: Report of the European working group on sarcopenia in older people. Age Ageing. 39:412–423. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cohen S, Nathan JA and Goldberg AL: Muscle wasting in disease: Molecular mechanisms and promising therapies. Nat Rev Drug Discov. 14:58–74. 2015. View Article : Google Scholar : PubMed/NCBI | |
Preiser JC, Ichai C, Orban JC and Groeneveld AB: Metabolic response to the stress of critical illness. Br J Anaesth. 113:945–954. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bloch S, Polkey MI, Griffiths M and Kemp P: Molecular mechanisms of intensive care unit-acquired weakness. Eur Respir J. 39:1000–1011. 2012. View Article : Google Scholar | |
Kanova M and Kohout P: Molecular mechanisms underlying intensive care unit-acquired weakness and sarcopenia. Int J Mol Sci. 23:83962022. View Article : Google Scholar : PubMed/NCBI | |
Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, et al: Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 294:1704–1708. 2001. View Article : Google Scholar : PubMed/NCBI | |
Csibi A, Cornille K, Leibovitch MP, Poupon A, Tintignac LA, Sanchez AM and Leibovitch SA: The translation regulatory subunit eIF3f controls the kinase-dependent mTOR signaling required for muscle differentiation and hypertrophy in mouse. PLoS One. 5:e89942010. View Article : Google Scholar : PubMed/NCBI | |
Tintignac LA, Lagirand J, Batonnet S, Sirri V, Leibovitch MP and Leibovitch SA: Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J Biol Chem. 280:2847–2856. 2005. View Article : Google Scholar | |
Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ and Shoelson SE: IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell. 119:285–298. 2004. View Article : Google Scholar : PubMed/NCBI | |
Klaude M, Fredriksson K, Tjäder I, Hammarqvist F, Ahlman B, Rooyackers O and Wernerman J: Proteasome proteolytic activity in skeletal muscle is increased in patients with sepsis. Clin Sci (Lond). 112:499–506. 2007. View Article : Google Scholar | |
Supinski GS and Callahan LA: Calpain activation contributes to endotoxin-induced diaphragmatic dysfunction. Am J Respir Cell Mol Biol. 42:80–87. 2010. View Article : Google Scholar : | |
Smith IJ, Lecker SH and Hasselgren PO: Calpain activity and muscle wasting in sepsis. Am J Physiol Endocrinol Metab. 295:E762–E771. 2008. View Article : Google Scholar : PubMed/NCBI | |
Supinski GS and Callahan LA: Caspase activation contributes to endotoxin-induced diaphragm weakness. J Appl Physiol (1985). 100:1770–1777. 2006. View Article : Google Scholar : PubMed/NCBI | |
Levine B and Kroemer G: Autophagy in the pathogenesis of disease. Cell. 132:27–42. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hussain SN, Mofarrahi M, Sigala I, Kim HC, Vassilakopoulos T, Maltais F, Bellenis I, Chaturvedi R, Gottfried SB, Metrakos P, et al: Mechanical ventilation-induced diaphragm disuse in humans triggers autophagy. Am J Respir Crit Care Med. 182:1377–1386. 2010. View Article : Google Scholar : PubMed/NCBI | |
Franco-Romero A and Sandri M: Role of autophagy in muscle disease. Mol Aspects Med. 82:1010412021. View Article : Google Scholar : PubMed/NCBI | |
Latres E, Amini AR, Amini AA, Griffiths J, Martin FJ, Wei Y, Lin HC, Yancopoulos GD and Glass DJ: Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem. 280:2737–2744. 2005. View Article : Google Scholar | |
Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH and Goldberg AL: Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 117:399–412. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lang CH and Frost RA: Role of growth hormone, insulin-like growth factor-I, and insulin-like growth factor binding proteins in the catabolic response to injury and infection. Curr Opin Clin Nutr Metab Care. 5:271–279. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nystrom G, Pruznak A, Huber D, Frost RA and Lang CH: Local insulin-like growth factor I prevents sepsis-induced muscle atrophy. Metabolism. 58:787–797. 2009. View Article : Google Scholar : PubMed/NCBI | |
Showkat M, Beigh MA and Andrabi KI: mTOR signaling in protein translation regulation: Implications in cancer genesis and therapeutic interventions. Mol Biol Int. 2014:6869842014. View Article : Google Scholar : PubMed/NCBI | |
Lang CH, Frost RA and Vary TC: Regulation of muscle protein synthesis during sepsis and inflammation. Am J Physiol Endocrinol Metab. 293:E453–E459. 2007. View Article : Google Scholar : PubMed/NCBI | |
Frost RA and Lang CH: mTor signaling in skeletal muscle during sepsis and inflammation: Where does it all go wrong? Physiology (Bethesda). 26:83–96. 2011.PubMed/NCBI | |
Ferri E, Marzetti E, Calvani R, Picca A, Cesari M and Arosio B: Role of age-related mitochondrial dysfunction in sarcopenia. Int J Mol Sci. 21:52362020. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Yao YM and Lu ZQ: Mitochondrial quality control mechanisms as potential therapeutic targets in sepsis-induced multiple organ failure. J Mol Med (Berl). 97:451–462. 2019. View Article : Google Scholar : PubMed/NCBI | |
Preau S, Vodovar D, Jung B, Lancel S, Zafrani L, Flatres A, Oualha M, Voiriot G, Jouan Y, Joffre J, et al: Energetic dysfunction in sepsis: A narrative review. Ann Intensive Care. 11:1042021. View Article : Google Scholar : PubMed/NCBI | |
Friedrich O, Hund E, Weber C, Hacke W and Fink RH: Critical illness myopathy serum fractions affect membrane excitability and intracellular calcium release in mammalian skeletal muscle. J Neurol. 251:53–65. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zink W, Kaess M, Hofer S, Plachky J, Zausig YA, Sinner B, Weigand MA, Fink RH and Graf BM: Alterations in intracellular Ca2+-homeostasis of skeletal muscle fibers during sepsis. Crit Care Med. 36:1559–1563. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bolton CF: Neuromuscular manifestations of critical illness. Muscle Nerve. 32:140–163. 2005. View Article : Google Scholar : PubMed/NCBI | |
Friedrich O, Reid MB, Van den Berghe G, Vanhorebeek I, Hermans G, Rich MM and Larsson L: The sick and the weak: Neuropathies/myopathies in the critically Ill. Physiol Rev. 95:1025–1109. 2015. View Article : Google Scholar : PubMed/NCBI | |
Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, Machado FR, Mcintyre L, Ostermann M, Prescott HC, et al: Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 47:1181–1247. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bos LDJ and Ware LB: Acute respiratory distress syndrome: Causes, pathophysiology, and phenotypes. Lancet. 400:1145–1156. 2022. View Article : Google Scholar : PubMed/NCBI | |
Baer B, Putz ND, Riedmann K, Gonski S, Lin J, Ware LB, Toki S, Peebles RS Jr, Cahill KN and Bastarache JA: Liraglutide pretreatment attenuates sepsis-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 325:L368–L384. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Xu L, Liu Y, Wang C, Qi S, Li Z, Bai X, Liao Y and Wang Y: Role of mesenchymal stem cells in sepsis and their therapeutic potential in sepsis-associated myopathy (Review). Int J Mol Med. 54:922024. View Article : Google Scholar : | |
Martin GS and Bernard GR; International Sepsis Forum: Airway and lung in sepsis. Intensive Care Med. 27(Suppl 1): S63–S79. 2001. View Article : Google Scholar : PubMed/NCBI | |
Mazeraud A, Righy C, Bouchereau E, Benghanem S, Bozza FA and Sharshar T: Septic-associated encephalopathy: A comprehensive review. Neurotherapeutics. 17:392–403. 2020. View Article : Google Scholar : PubMed/NCBI | |
Catarina AV, Branchini G, Bettoni L, De Oliveira JR and Nunes FB: Sepsis-associated encephalopathy: From pathophysiology to progress in experimental studies. Mol Neurobiol. 58:2770–2779. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Yin L, Fan Z, Su B, Chen Y, Ma Y, Zhong Y, Hou W, Fang Z and Zhang X: Microglia: A potential therapeutic target for sepsis-associated encephalopathy and sepsis-associated chronic pain. Front Pharmacol. 11:6004212020. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Jiang D, Wang Y, Wang Q, Lv D, Liu J and Liu C: Neuroprotection of rhGLP-1 in diabetic rats with cerebral ischemia/reperfusion injury via regulation of oxidative stress, EAAT2, and apoptosis. Drug Dev Res. 79:249–259. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bi CF, Liu J, Yang LS and Zhang JF: Research progress on the mechanism of sepsis induced myocardial injury. J Inflamm Res. 15:4275–4290. 2022. View Article : Google Scholar : PubMed/NCBI | |
Aneman A and Vieillard-Baron A: Cardiac dysfunction in sepsis. Intensive Care Med. 42:2073–2076. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sharma A and Verma S: Mechanisms by which glucagon-like-peptide-1 receptor agonists and sodium-glucose cotransporter-2 inhibitors reduce cardiovascular risk in adults with type 2 diabetes mellitus. Can J Diabetes. 44:93–102. 2020. View Article : Google Scholar | |
Noyan-Ashraf MH, Momen MA, Ban K, Sadi AM, Zhou YQ, Riazi AM, Baggio LL, Henkelman RM, Husain M and Drucker DJ: GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes. 58:975–983. 2009. View Article : Google Scholar : PubMed/NCBI | |
Timmers L, Henriques JP, de Kleijn DP, Devries JH, Kemperman H, Steendijk P, Verlaan CW, Kerver M, Piek JJ, Doevendans PA, et al: Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol. 53:501–510. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bose AK, Mocanu MM, Carr RD, Brand CL and Yellon DM: Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 54:146–151. 2005. View Article : Google Scholar | |
Chang G, Zhang D, Yu H, Zhang P, Wang Y, Zheng A and Qin S: Cardioprotective effects of exenatide against oxidative stress-induced injury. Int J Mol Med. 32:1011–1020. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gómez H and Kellum JA: Sepsis-induced acute kidney injury. Curr Opin Crit Care. 22:546–553. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zarjou A and Agarwal A: Sepsis and acute kidney injury. J Am Soc Nephrol. 22:999–1006. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wan L, Bagshaw SM, Langenberg C, Saotome T, May C and Bellomo R: Pathophysiology of septic acute kidney injury: What do we really know? Crit Care Med. 36(4 Suppl): S198–S203. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xiang L, Thompson MS, Clemmer JS, Mittwede PN, Khan T and Hester RL: Early treatment with GLP-1 after severe trauma preserves renal function in obese Zucker rats. Am J Physiol Regul Integr Comp Physiol. 316:R621–R627. 2019. View Article : Google Scholar : PubMed/NCBI | |
Elkhoely A: Liraglutide ameliorates gentamicin-induced acute kidney injury in rats via PGC-1α-mediated mitochondrial biogenesis: Involvement of PKA/CREB and Notch/Hes-1 signaling pathways. Int Immunopharmacol. 114:1095782023. View Article : Google Scholar | |
Xu C, Lu C, Wang Z, Hu X, Li S, Xie Y, Qiu Y, Cao R, Li Y and Yang J: Liraglutide abrogates nephrotoxic effects of chemotherapies. Pharmacol Res. 189:1066802023. View Article : Google Scholar : PubMed/NCBI | |
Li YK, Ma DX, Wang ZM, Hu XF, Li SL, Tian HZ, Wang MJ, Shu YW and Yang J: The glucagon-like peptide-1 (GLP-1) analog liraglutide attenuates renal fibrosis. Pharmacol Res. 131:102–111. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kasper P, Tacke F, Steffen HM and Michels G: Hepatic dysfunction in sepsis. Med Klin Intensivmed Notfmed. 115:609–619. 2020.In German. View Article : Google Scholar : PubMed/NCBI | |
Horvatits T, Drolz A, Trauner M and Fuhrmann V: Liver injury and failure in critical illness. Hepatology. 70:2204–2215. 2019. View Article : Google Scholar : PubMed/NCBI | |
Strnad P, Tacke F, Koch A and Trautwein C: Liver-guardian, modifier and target of sepsis. Nat Rev Gastroenterol Hepatol. 14:55–66. 2017. View Article : Google Scholar | |
Milani L, Galindo CM, Turin de Oliveira NM, Corso CR, Adami ER, Stipp MC, Beltrame OC and Acco A: The GLP-1 analog liraglutide attenuates acute liver injury in mice. Ann Hepatol. 18:918–928. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang WY, Hu XF, Wan N, Zhang JF, Yang P, Wen Q, Chen WJ, Zhu F, Liang ML, Cheng LX and Shu YW: Protective effect of the glucagon-like peptide-1 analogue liraglutide on carbon tetrachloride-induced acute liver injury in mice. Biochem Biophys Res Commun. 514:386–392. 2019. View Article : Google Scholar : PubMed/NCBI | |
Abdelaziz AI, Mantawy EM, Gad AM, Fawzy HM and Azab SS: Activation of pCREB/Nrf-2 signaling mediates re-positioning of liraglutide as hepato-protective for methotrexate-induced liver injury (MILI). Food Chem Toxicol. 132:1107192019. View Article : Google Scholar | |
Zhu CG, Luo Y, Wang H, Li JY, Yang J, Liu YX, Qu HQ, Wang BL and Zhu M: Liraglutide ameliorates lipotoxicity-induced oxidative stress by activating the NRF2 pathway in HepG2 cells. Horm Metab Res. 52:532–539. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fay KT, Ford ML and Coopersmith CM: The intestinal microenvironment in sepsis. Biochim Biophys Acta Mol Basis Dis. 1863:2574–2583. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mittal R and Coopersmith CM: Redefining the gut as the motor of critical illness. Trends Mol Med. 20:214–223. 2014. View Article : Google Scholar : | |
Haseeb MA and Salwen MJ: Collateral damage: Sepsis-induced gut injury. Crit Care Med. 33:2439–2440. 2005. View Article : Google Scholar : PubMed/NCBI | |
Deniz M, Atasoy BM, Dane F, Can G, Erzik C, Çetinel Ş and Yeğen BÇ: Radiation-induced oxidative injury of the ileum and colon is alleviated by glucagon-like peptide-1 and -2. J Radiat Res Appl Sci. 8:234–242. 2015. | |
Semeraro N, Ammollo CT, Semeraro F and Colucci M: Coagulopathy of acute sepsis. Semin Thromb Hemost. 41:650–658. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bonetti PO, Lerman LO and Lerman A: Endothelial dysfunction: A marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 23:168–175. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gaspari T, Liu H, Welungoda I, Hu Y, Widdop RE, Knudsen LB, Simpson RW and Dear AE: A GLP-1 receptor agonist liraglutide inhibits endothelial cell dysfunction and vascular adhesion molecule expression in an ApoE−/− mouse model. Diab Vasc Dis Res. 8:117–124. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shiraki A, Oyama J, Komoda H, Asaka M, Komatsu A, Sakuma M, Kodama K, Sakamoto Y, Kotooka N, Hirase T and Node K: The glucagon-like peptide 1 analog liraglutide reduces TNF-α-induced oxidative stress and inflammation in endothelial cells. Atherosclerosis. 221:375–382. 2012. View Article : Google Scholar : PubMed/NCBI | |
Erdogdu Ö, Eriksson L, Nyström T, Sjöholm Å and Zhang Q: Exendin-4 restores glucolipotoxicity-induced gene expression in human coronary artery endothelial cells. Biochem Biophys Res Commun. 419:790–795. 2012. View Article : Google Scholar : PubMed/NCBI | |
Steven S, Jurk K, Kopp M, Kröller-Schön S, Mikhed Y, Schwierczek K, Roohani S, Kashani F, Oelze M, Klein T, et al: Glucagon-like peptide-1 receptor signalling reduces microvascular thrombosis, nitro-oxidative stress and platelet activation in endotoxaemic mice. Br J Pharmacol. 174:1620–1632. 2017. View Article : Google Scholar | |
Gurjar AA, Kushwaha S, Chattopadhyay S, Das N, Pal S, China SP, Kumar H, Trivedi AK, Guha R, Chattopadhyay N and Sanyal S: Long acting GLP-1 analog liraglutide ameliorates skeletal muscle atrophy in rodents. Metabolism. 103:1540442020. View Article : Google Scholar | |
Hong Y, Lee JH, Jeong KW, Choi CS and Jun HS: Amelioration of muscle wasting by glucagon-like peptide-1 receptor agonist in muscle atrophy. J Cachexia Sarcopenia Muscle. 10:903–918. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bonaldo P and Sandri M: Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech. 6:25–39. 2013. View Article : Google Scholar : | |
Choi DH, Yang J and Kim YS: Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway. Biochem Biophys Rep. 17:182–190. 2019.PubMed/NCBI | |
Lee SJ and McPherron AC: Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA. 98:9306–9311. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sartori R, Milan G, Patron M, Mammucari C, Blaauw B, Abraham R and Sandri M: Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol. 296:C1248–C1257. 2009. View Article : Google Scholar : PubMed/NCBI | |
Amirouche A, Durieux AC, Banzet S, Koulmann N, Bonnefoy R, Mouret C, Bigard X, Peinnequin A and Freyssenet D: Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology. 150:286–294. 2009. View Article : Google Scholar | |
Silveira WA, Gonçalves DA, Graça FA, Andrade-Lopes AL, Bergantin LB, Zanon NM, Godinho RO, Kettelhut IC and Navegantes LC: Activating cAMP/PKA signaling in skeletal muscle suppresses the ubiquitin-proteasome-dependent proteolysis: Implications for sympathetic regulation. J Appl Physiol (1985). 117:11–19. 2014. View Article : Google Scholar : PubMed/NCBI | |
Le Grand F and Rudnicki MA: Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol. 19:628–633. 2007. View Article : Google Scholar : PubMed/NCBI | |
Stewart R, Flechner L, Montminy M and Berdeaux R: CREB is activated by muscle injury and promotes muscle regeneration. PLoS One. 6:e247142011. View Article : Google Scholar : PubMed/NCBI | |
Fan D, Wang Y, Liu B and Yin F: Hypoglycemic drug liraglutide alleviates low muscle mass by inhibiting the expression of MuRF1 and MAFbx in diabetic muscle atrophy. J Chin Med Assoc. 86:166–175. 2023. | |
Sandireddy R, Yerra VG, Areti A, Komirishetty P and Kumar A: Neuroinflammation and oxidative stress in diabetic neuropathy: Futuristic strategies based on these targets. Int J Endocrinol. 2014:6749872014. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Shi M, Zhang X, Liu X, Chen J, Zhang R, Wang X and Zhang H: GLP-1R agonists ameliorate peripheral nerve dysfunction and inflammation via p38 MAPK/NF-κB signaling pathways in streptozotocin-induced diabetic rats. Int J Mol Med. 41:2977–2985. 2018.PubMed/NCBI | |
Krasner NM, Ido Y, Ruderman NB and Cacicedo JM: Glucagon-like peptide-1 (GLP-1) analog liraglutide inhibits endothelial cell inflammation through a calcium and AMPK dependent mechanism. PLoS One. 9:e975542014. View Article : Google Scholar : PubMed/NCBI | |
Mitchell PD, Salter BM, Oliveria JP, El-Gammal A, Tworek D, Smith SG, Sehmi R, Gauvreau GM, Butler M and O'Byrne PM: Glucagon-like peptide-1 receptor expression on human eosinophils and its regulation of eosinophil activation. Clin Exp Allergy. 47:331–338. 2017. View Article : Google Scholar | |
Yanay O, Bailey AL, Kernan K, Zimmerman JJ and Osborne WR: Effects of exendin-4, a glucagon like peptide-1 receptor agonist, on neutrophil count and inflammatory cytokines in a rat model of endotoxemia. J Inflamm Res. 8:129–135. 2015. View Article : Google Scholar : PubMed/NCBI | |
Powers SK, Hudson MB, Nelson WB, Talbert EE, Min K, Szeto HH, Kavazis AN and Smuder AJ: Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med. 39:1749–1759. 2011. View Article : Google Scholar : PubMed/NCBI | |
Romanello V, Guadagnin E, Gomes L, Roder I, Sandri C, Petersen Y, Milan G, Masiero E, Del Piccolo P, Foretz M, et al: Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J. 29:1774–1785. 2010. View Article : Google Scholar : PubMed/NCBI | |
Luna-Marco C, Iannantuoni F, Hermo-Argibay A, Devos D, Salazar JD, Víctor VM and Rovira-Llopis S: Cardiovascular benefits of SGLT2 inhibitors and GLP-1 receptor agonists through effects on mitochondrial function and oxidative stress. Free Radic Biol Med. 213:19–35. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xie S, Zhang M, Shi W, Xing Y, Huang Y, Fang WX, Liu SQ, Chen MY, Zhang T, Chen S, et al: Long-term activation of glucagon-like peptide-1 receptor by dulaglutide prevents diabetic heart failure and metabolic remodeling in type 2 diabetes. J Am Heart Assoc. 11:e0267282022. View Article : Google Scholar : PubMed/NCBI | |
Helmstädter J, Frenis K, Filippou K, Grill A, Dib M, Kalinovic S, Pawelke F, Kus K, Kröller-Schön S, Oelze M, et al: Endothelial GLP-1 (glucagon-like peptide-1) receptor mediates cardiovascular protection by liraglutide in mice with experimental arterial hypertension. Arterioscler Thromb Vasc Biol. 40:145–158. 2020. View Article : Google Scholar : | |
Timper K, Del Río-Martín A, Cremer AL, Bremser S, Alber J, Giavalisco P, Varela L, Heilinger C, Nolte H, Trifunovic A, et al: GLP-1 receptor signaling in astrocytes regulates fatty acid oxidation, mitochondrial integrity, and function. Cell Metab. 31:1189–1205.e13. 2020. View Article : Google Scholar : PubMed/NCBI | |
Menconi M, Fareed M, O'Neal P, Poylin V, Wei W and Hasselgren PO: Role of glucocorticoids in the molecular regulation of muscle wasting. Crit Care Med. 35(9 Suppl): S602–S608. 2007. View Article : Google Scholar : PubMed/NCBI | |
Combaret L, Taillandier D, Dardevet D, Béchet D, Rallière C, Claustre A, Grizard J and Attaix D: Glucocorticoids regulate mRNA levels for subunits of the 19 S regulatory complex of the 26 S proteasome in fast-twitch skeletal muscles. Biochem J. 378:239–246. 2004. View Article : Google Scholar | |
Turturici G, Sconzo G and Geraci F: Hsp70 and its molecular role in nervous system diseases. Biochem Res Int. 2011:6181272011. View Article : Google Scholar : PubMed/NCBI | |
Petry ÉR, Dresch DF, Carvalho C, Medeiros PC, Rosa TG, de Oliveira CM, Martins LAM, Schemitt E, Bona S, Guma FCR, et al: Oral glutamine supplementation attenuates inflammation and oxidative stress-mediated skeletal muscle protein content degradation in immobilized rats: Role of 70 kDa heat shock protein. Free Radic Biol Med. 145:87–102. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hutchison KA, Dittmar KD, Stancato LF and Pratt WB: Ability of various members of the hsp70 family of chaperones to promote assembly of the glucocorticoid receptor into a functional heterocomplex with hsp90. J Steroid Biochem Mol Biol. 58:251–258. 1996. View Article : Google Scholar : PubMed/NCBI | |
Senf SM, Dodd SL, McClung JM and Judge AR: Hsp70 overexpression inhibits NF-kappaB and Foxo3a transcriptional activities and prevents skeletal muscle atrophy. FASEB J. 22:3836–3845. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sadek MA, Kandil EA, El Sayed NS, Sayed HM and Rabie MA: Semaglutide, a novel glucagon-like peptide-1 agonist, amends experimental autoimmune encephalomyelitis-induced multiple sclerosis in mice: Involvement of the PI3K/Akt/GSK-3β pathway. Int Immunopharmacol. 115:1096472023. View Article : Google Scholar | |
Ribeiro CB, Christofoletti DC, Pezolato VA, de Cássia Marqueti Durigan R, Prestes J, Tibana RA, Pereira EC, de Sousa Neto IV, Durigan JL and da Silva CA: Leucine minimizes denervation-induced skeletal muscle atrophy of rats through akt/mtor signaling pathways. Front Physiol. 6:732015. View Article : Google Scholar : PubMed/NCBI | |
Mohiuddin MS, Himeno T, Inoue R, Miura-Yura E, Yamada Y, Nakai-Shimoda H, Asano S, Kato M, Motegi M, Kondo M, et al: Glucagon-like peptide-1 receptor agonist protects dorsal root ganglion neurons against oxidative insult. J Diabetes Res. 2019:94260142019. View Article : Google Scholar : PubMed/NCBI | |
Bell KE, von Allmen MT, Devries MC and Phillips SM: Muscle disuse as a pivotal problem in sarcopenia-related muscle loss and dysfunction. J Frailty Aging. 5:33–41. 2016.PubMed/NCBI | |
Govers R: Molecular mechanisms of GLUT4 regulation in adipocytes. Diabetes Metab. 40:400–410. 2014. View Article : Google Scholar : PubMed/NCBI | |
Andreozzi F, Raciti GA, Nigro C, Mannino GC, Procopio T, Davalli AM, Beguinot F, Sesti G, Miele C and Folli F: The GLP-1 receptor agonists exenatide and liraglutide activate glucose transport by an AMPK-dependent mechanism. J Transl Med. 14:2292016. View Article : Google Scholar : PubMed/NCBI | |
Purves T, Middlemas A, Agthong S, Jude EB, Boulton AJ, Fernyhough P and Tomlinson DR: A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy. FASEB J. 15:2508–2514. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lluís F, Perdiguero E, Nebreda AR and Muñoz-Cánoves P: Regulation of skeletal muscle gene expression by p38 MAP kinases. Trends Cell Biol. 16:36–44. 2006. View Article : Google Scholar | |
Montessuit C, Rosenblatt-Velin N, Papageorgiou I, Campos L, Pellieux C, Palma T and Lerch R: Regulation of glucose transporter expression in cardiac myocytes: p38 MAPK is a strong inducer of GLUT4. Cardiovasc Res. 64:94–104. 2004. View Article : Google Scholar : PubMed/NCBI | |
Guebre-Egziabher F, Alix PM, Koppe L, Pelletier CC, Kalbacher E, Fouque D and Soulage CO: Ectopic lipid accumulation: A potential cause for metabolic disturbances and a contributor to the alteration of kidney function. Biochimie. 95:1971–1979. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ruderman N and Prentki M: AMP kinase and malonyl-CoA: Targets for therapy of the metabolic syndrome. Nat Rev Drug Discov. 3:340–351. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cao HY, Xu F, Chen ZL, Lin BS, Zheng XB, Yuan SH, Liang H and Weng JP: Effect of exendin-4 on lipid deposition in skeletal muscle of diet-induced obese mice and its underlying mechanism. Zhonghua Yi Xue Za Zhi. 97:131–136. 2017.In Chinese. PubMed/NCBI | |
Smits MM, Muskiet MH, Tonneijck L, Kramer MH, Diamant M, van Raalte DH and Serné EH: GLP-1 receptor agonist exenatide increases capillary perfusion independent of nitric oxide in healthy overweight men. Arterioscler Thromb Vasc Biol. 35:1538–1543. 2015. View Article : Google Scholar : PubMed/NCBI | |
Montagnani M, Chen H, Barr VA and Quon MJ: Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser(1179). J Biol Chem. 276:30392–30398. 2001. View Article : Google Scholar : PubMed/NCBI | |
Subaran SC, Sauder MA, Chai W, Jahn LA, Fowler DE, Aylor KW, Basu A and Liu Z: GLP-1 at physiological concentrations recruits skeletal and cardiac muscle microvasculature in healthy humans. Clin Sci (Lond). 127:163–170. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chai W, Dong Z, Wang N, Wang W, Tao L, Cao W and Liu Z: Glucagon-like peptide 1 recruits microvasculature and increases glucose use in muscle via a nitric oxide-dependent mechanism. Diabetes. 61:888–896. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tobaiqy M: A review of serious adverse events linked with GLP-1 agonists in type 2 diabetes mellitus and obesity treatment. Pharmacol Rep. 76:981–990. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF, Lingvay I, McGowan BM, Rosenstock J, Tran MTD, Wadden TA, et al: Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med. 384:989–1002. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang HH, Wang YJ, Jiang HY, Yu HW, Chen YQ, Chiou A and Kuo JC: Sarcopenia-related changes in serum GLP-1 level affect myogenic differentiation. J Cachexia Sarcopenia Muscle. 15:1708–1721. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sargeant JA, Henson J, King JA, Yates T, Khunti K and Davies MJ: A review of the effects of glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors on lean body mass in humans. Endocrinol Metab (Seoul). 34:247–262. 2019. View Article : Google Scholar : PubMed/NCBI |