Photodynamic therapy induced Fas-mediated apoptosis in human carcinoma cells
- Authors:
- Published online on: March 1, 2002 https://doi.org/10.3892/ijmm.9.3.257
- Pages: 257-270
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
Photodynamic therapy (PDT) is a clinical approach that utilizes light-activated drugs for the treatment of a variety of pathologic conditions. Human poorly (CNE2) and moderately differentiated (TW0-1) human nasopharyngeal carcinoma (NPC) cells undergo rapid apoptosis when treated with PDT sensitized with Hypocrellin A (HA) and Hypocrellin B (HB). It has been shown that these compounds have a strong photodynamic effect on tumors and viruses. The initiating events of PDT sensitized HA and HB-induced apoptosis are poorly defined. In the current study, we sought to determine whether Fas/FasL upregulation and involvement of mitochondrial events are an early event in HA and HB-treated PDT induced apoptosis. Loss of mitochondrial transmembrane potential, release of cytochrome c, involvement of caspases-8 and -3 and the status caspase-3 specific substrate PARP, were evaluated in PDT treated tumor cells. Photoactivation of HA and HB enhanced both CD95/CD95L expression and induced CD95-signaling dependent cell death in all tumor cell lines studied. CD95/ CD95L expression appeared within 2 h following light activation and appeared to be a primary event in PDT induced apoptosis. Furthermore, these results indicate that release of mitochondrial cytochrome c into the cytoplasm is a secondary event following the activation of initiator caspase-8 preceding caspase-3 activation, cleavage of PARP and DNA fragmentation. Cytochrome c appeared in the cytosol within 2-3 h post PDT. Cleavage of PARP was observed at 3-4 h following PDT and caspase-3 specific inhibitor DEVD-CHO and broad-spectrum caspases inhibitor z-VAD-fmk blocked caspase-3 activation and PARP cleavage suggesting that caspase-3 plays an important role in HA and HB-induced apoptosis.