Decreased tissue plasminogen activator and increased plasminogen activator inhibitors and increased activator protein-1 and specific promoter 1 are associated with inhibition of invasion in human A375 melanoma deprived of tyrosine and phenylalanine
- Authors:
- Published online on: April 1, 2001 https://doi.org/10.3892/ijo.18.4.877
- Pages: 877-883
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
We previously found that dietary tyrosine (Tyr) and phenylalanine (Phe) restriction significantly decreased the metastatic phenotype of the pigmented murine B16BL6 melanoma in vivo and decreased the in vitro invasion of these cells. Here we report that invasion and chemoinvasion through GFR Matrigel of the human amelanotic A375 melanoma also is significantly inhibited by Tyr and Phe deprivation in vitro. Deprivation of these two amino acids decreased the secretion and protein expression of tissue-type plasminogen activator (tPA) while expression and secretion of plasminogen activator inhibitor (PAI-1 and PAI-2) were increased. Moreover, nuclear extracts of Tyr- and Phe-deprived cells exhibited increased binding of the transcription factors, activator protein-1 (AP-1) and specific promoter-1 (Sp1), to consensus oligonucleotides as determined by electrophoretic mobility shift assay. Nuclear binding activity to the oligonucleotide consensus sequence for AP-1 was inhibited by antibody against c-Fos and more effectively inhibited by an antibody against c-Jun. We conclude that decreased invasion and chemoinvasion of A375 melanoma cells deprived of Tyr and Phe are related to decreased secretion of tPA and increased secretion of PAIs. Increased AP-1 and Sp1 binding implicates these transcription factors in the regulation of PAI expression.