Antitumor effect of the vascular-disrupting agent ZD6126 in a murine renal cell carcinoma model
- Authors:
- Published online on: December 7, 2010 https://doi.org/10.3892/ijo.2010.867
- Pages: 455-464
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
ZD6126 is a vascular-disrupting agent that affects the endothelial tubulin cytoskeleton causing selective occlusion of tumor vasculature and extensive tumor cell necrosis. The present study evaluated the antitumor and antivascular activities of ZD6126 in the clinically relevant murine renal cell carcinoma (RENCA) model and also evaluated biological response to therapy using color Doppler imaging as biomarker. Mice were implanted with RENCA tumor cells (day 0) and established tumors were treated with ZD6126 (100 mg/kg i.p.) or vehicle with repeated intermittent doses on day 10, 14 and 18. ZD6126 treatment led to a significant reduction in tumor size and was associated with extensive tumor necrosis and a reduction in tumor blood flow versus controls. MVD increased with intermittent treatment (day 10, 14 and 18). In an additional study, animals were treated at day 19 and quantitative three-dimensional microvascular corrosion casting was performed to enable detailed assessment of the tumor vascular architecture. Corrosion casting showed that tumor vessel architecture is affected by treatment, whereas pre-existing vessels in control tissues are practically not affected. Inter-vessel and inter-branch distances as well as vessel diameters are influenced by treatment. In conclusion, ZD6126 showed potent antitumor efficacy in the RENCA model and our data suggest that decrease in tumor blood flow may be a useful surrogate marker of treatment effect.