Signaling pathways in follicular cell-derived thyroid carcinomas (Review)
- Authors:
- Mírian Romitti
- Lucieli Ceolin
- Débora Rodrigues Siqueira
- Carla Vaz Ferreira
- Simone Magagnin Wajner
- Ana Luiza Maia
-
Affiliations: Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil - Published online on: October 29, 2012 https://doi.org/10.3892/ijo.2012.1681
- Pages: 19-28
This article is mentioned in:
Abstract
Hegedus L: Clinical practice. The thyroid nodule N Engl J Med. 351:1764–1771. 2004. | |
Howlader N, Noone AM, Krapcho M, et al: SEER Cancer Statistics Review, 1975–2009 (Vintage 2009 Populations). National Cancer Institute; Bethesda, MD: http://seer.cancer.gov/csr/1975_2009_pops09/. Based on November 2011 SEER data submission, posted to the SEER web site, April 2012. | |
Wiseman SM, Loree TR, Rigual NR, et al: Anaplastic transformation of thyroid cancer: review of clinical, pathologic, and molecular evidence provides new insights into disease biology and future therapy. Head Neck. 25:662–670. 2003. View Article : Google Scholar | |
DeLellis R, Lloyd R, Heitz P and Eng C: Pathology and genetics of tumours of endocrine origin. World Health Organization Classification of Tumours. IARC Press; Lyon: pp. 3202004 | |
Harach HR and Ceballos GA: Thyroid cancer, thyroiditis and dietary iodine: a review based on the Salta, Argentina model. Endocr Pathol. 19:209–220. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nikiforov YE: Is ionizing radiation responsible for the increasing incidence of thyroid cancer? Cancer. 116:1626–1628. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE and Fagin JA: High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 63:1454–1457. 2003. | |
Frattini M, Ferrario C, Bressan P, et al: Alternative mutations of BRAF, RET and NTRK1 are associated with similar but distinct gene expression patterns in papillary thyroid cancer. Oncogene. 23:7436–7440. 2004. View Article : Google Scholar : PubMed/NCBI | |
Adeniran AJ, Zhu Z, Gandhi M, et al: Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol. 30:216–222. 2006. View Article : Google Scholar | |
Nikiforova MN, Lynch RA, Biddinger PW, et al: RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab. 88:2318–2326. 2003. View Article : Google Scholar | |
Garcia-Rostan G, Costa AM, Pereira-Castro I, et al: Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res. 65:10199–10207. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kondo T, Ezzat S and Asa SL: Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer. 6:292–306. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ricarte-Filho JC, Ryder M, Chitale DA, et al: Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 69:4885–4893. 2009. View Article : Google Scholar | |
Liu Z, Hou P, Ji M, et al: Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J Clin Endocrinol Metab. 93:3106–3116. 2008. View Article : Google Scholar | |
Nikiforov YE: Thyroid carcinoma: molecular pathways and therapeutic targets. Mod Pathol. 21(Suppl 2): S37–S43. 2008. View Article : Google Scholar : PubMed/NCBI | |
Paes JE and Ringel MD: Dysregulation of the phosphatidylinositol 3-kinasepathway in thyroid neoplasia. Endocrinol Metab Clin North Am. 37:375–387. 2008. View Article : Google Scholar : PubMed/NCBI | |
Davies L and Welch HG: Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA. 295:2164–2167. 2006. | |
Franceschi S, Boyle P, Maisonneuve P, et al: The epidemiology of thyroid carcinoma. Crit Rev Oncog. 4:25–52. 1993. | |
Pacini F, Cetani F, Miccoli P, et al: Outcome of 309 patients with metastatic differentiated thyroid carcinoma treated with radioiodine. World J Surg. 18:600–604. 1994. View Article : Google Scholar : PubMed/NCBI | |
Cohen Y, Rosenbaum E, Clark DP, et al: Mutational analysis of BRAF in fine needle aspiration biopsies of the thyroid: a potential application for the preoperative assessment of thyroid nodules. Clin Cancer Res. 10:2761–2765. 2004. View Article : Google Scholar : PubMed/NCBI | |
Xing M: BRAF mutation in thyroid cancer. Endocr Relat Cancer. 12:245–262. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gutkind JS: Regulation of mitogen-activated protein kinase signaling networks by G protein-coupled receptors. Sci STKE. 2000:re12000.PubMed/NCBI | |
McKay MM and Morrison DK: Integrating signals from RTKs to ERK/MAPK. Oncogene. 26:3113–3121. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ciampi R, Knauf JA, Kerler R, et al: Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest. 115:94–101. 2005. View Article : Google Scholar : PubMed/NCBI | |
Carta C, Moretti S, Passeri L, et al: Genotyping of an Italian papillary thyroid carcinoma cohort revealed high prevalence of BRAF mutations, absence of RAS mutations and allowed the detection of a new mutation of BRAF oncoprotein (BRAF(V599lns)). Clin Endocrinol (Oxf). 64:105–109. 2006. View Article : Google Scholar | |
Hou P, Liu D and Xing M: Functional characterization of the T1799-1801del and A1799-1816ins BRAF mutations in papillary thyroid cancer. Cell Cycle. 6:377–379. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lupi C, Giannini R, Ugolini C, et al: Association of BRAF V600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma. J Clin Endocrinol Metab. 92:4085–4090. 2007. View Article : Google Scholar : PubMed/NCBI | |
Basolo F, Torregrossa L, Giannini R, et al: Correlation between the BRAF V600E mutation and tumor invasiveness in papillary thyroid carcinomas smaller than 20 millimeters: analysis of 1060 cases. J Clin Endocrinol Metab. 95:4197–4205. 2010. View Article : Google Scholar : PubMed/NCBI | |
Knauf JA, Ma X, Smith EP, et al: Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res. 65:4238–4245. 2005. View Article : Google Scholar : PubMed/NCBI | |
Franco AT, Malaguarnera R, Refetoff S, et al: Thyrotrophin receptor signaling dependence of Braf-induced thyroid tumor initiation in mice. Proc Natl Acad Sci USA. 108:1615–1620. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chakravarty D, Santos E, Ryder M, Knauf JA, Liao XH, West BL, Bollag G, Kolesnick R, Thin TH, Rosen N, Zanzonico P, Larson SM, Refetoff S, Ghossein R and Fagin JA: Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest. 121:4700–4711. 2011. View Article : Google Scholar : PubMed/NCBI | |
Romitti M, Wajner SM, Zennig N, Goemann IM, Bueno AL, Meyer EL and Maia AL: Increased type 3 deiodinase expression in papillary thyroid carcinoma. Thyroid. 22:897–904. 2012. View Article : Google Scholar : PubMed/NCBI | |
Meyer EL, Dora JM, Wagner MS and Maia AL: Decreased type 1 iodothyronine deiodinase expression might be an early and discrete event in thyroid cell dedifferentiation towards papillary carcinoma. Clin Endocrinol (Oxf). 62:672–678. 2005. View Article : Google Scholar | |
Xing M, Westra WH, Tufano RP, et al: BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab. 90:6373–6379. 2005. View Article : Google Scholar : PubMed/NCBI | |
Handkiewicz-Junak D, Czarniecka A and Jarzab B: Molecular prognostic markers in papillary and follicular thyroid cancer: current status and future directions. Mol Cell Endocrinol. 322:8–28. 2010. View Article : Google Scholar : PubMed/NCBI | |
Motti ML, De Marco C, Califano D, et al: Loss of p27 expression through RAS-->BRAF-->MAP kinase-dependent pathway in human thyroid carcinomas. Cell Cycle. 6:2817–2825. 2007. | |
Mesa C Jr, Mirza M, Mitsutake N, et al: Conditional activation of RET/PTC3 and BRAFV600E in thyroid cells is associated with gene expression profiles that predict a preferential role of BRAF in extracellular matrix remodeling. Cancer Res. 66:6521–6529. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ahmed M, Uddin S, Hussain AR, et al: FoxM1 and its association with matrix metalloproteinases (MMP) signaling pathway in papillary thyroid carcinoma. J Clin Endocrinol Metab. 97:E1–E13. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bommarito A, Richiusa P, Carissimi E, et al: BRAFV600E mutation, TIMP-1 upregulation, and NF-kappaB activation: closing the loop on the papillary thyroid cancer trilogy. Endocr Relat Cancer. 18:669–685. 2011. View Article : Google Scholar : PubMed/NCBI | |
Palona I, Namba H, Mitsutake N, et al: BRAFV600E promotes invasiveness of thyroid cancer cells through nuclear factor kappaB activation. Endocrinology. 147:5699–5707. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lee SJ, Lee MH, Kim DW, et al: Cross-regulation between oncogenic BRAF(V600E) kinase and the MST1 pathway in papillary thyroid carcinoma. PLoS One. 6:e161802011. View Article : Google Scholar : PubMed/NCBI | |
Ceolin L, Siqueira DR, Romitti M, Ferreira CV and Maia AL: Molecular basis of medullary thyroid carcinoma: the role of RET polymorphisms. Int J Mol Sci. 13:221–239. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fugazzola L, Pilotti S, Pinchera A, et al: Oncogenic rearrangements of the RET proto-oncogene in papillary thyroid carcinomas from children exposed to the Chernobyl nuclear accident. Cancer Res. 55:5617–5620. 1995.PubMed/NCBI | |
Nikiforov YE: RET/PTC rearrangement in thyroid tumors. Endocr Pathol. 13:3–16. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhu Z, Ciampi R, Nikiforova MN, Gandhi M and Nikiforov YE: Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity. J Clin Endocrinol Metab. 91:3603–3610. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tallini G and Asa SL: RET oncogene activation in papillary thyroid carcinoma. Adv Anat Pathol. 8:345–354. 2001. View Article : Google Scholar : PubMed/NCBI | |
Grieco M, Santoro M, Berlingieri MT, et al: PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell. 60:557–563. 1990. View Article : Google Scholar : PubMed/NCBI | |
Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H and Fagin JA: Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 57:1690–1694. 1997. | |
Tallini G, Santoro M, Helie M, et al: RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin Cancer Res. 4:287–294. 1998. | |
Smyth P, Finn S, Cahill S, et al: ret/PTC and BRAF act as distinct molecular, time-dependant triggers in a sporadic Irish cohort of papillary thyroid carcinoma. Int J Surg Pathol. 13:1–8. 2005. View Article : Google Scholar : PubMed/NCBI | |
Viglietto G, Chiappetta G, Martinez-Tello FJ, et al: RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene. 11:1207–1210. 1995.PubMed/NCBI | |
Sugg SL, Ezzat S, Rosen IB, Freeman JL and Asa SL: Distinct multiple RET/PTC gene rearrangements in multifocal papillary thyroid neoplasia. J Clin Endocrinol Metab. 83:4116–4122. 1998.PubMed/NCBI | |
Jhiang SM, Sagartz JE, Tong Q, et al: Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology. 137:375–378. 1996.PubMed/NCBI | |
Powell DJ Jr, Russell J, Nibu K, et al: The RET/PTC3 oncogene: metastatic solid-type papillary carcinomas in murine thyroids. Cancer Res. 58:5523–5528. 1998.PubMed/NCBI | |
Kawamoto Y, Takeda K, Okuno Y, et al: Identification of RET autophosphorylation sites by mass spectrometry. J Biol Chem. 279:14213–14224. 2004. View Article : Google Scholar : PubMed/NCBI | |
Salvatore D, Barone MV, Salvatore G, et al: Tyrosines 1015 and 1062 are in vivo autophosphorylation sites in ret and ret-derived oncoproteins. J Clin Endocrinol Metab. 85:3898–3907. 2000.PubMed/NCBI | |
Knauf JA, Kuroda H, Basu S and Fagin JA: RET/PTC-induced dedifferentiation of thyroid cells is mediated through Y1062 signaling through SHC-RAS-MAP kinase. Oncogene. 22:4406–4412. 2003. View Article : Google Scholar : PubMed/NCBI | |
Vasko V, Saji M, Hardy E, et al: Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer. J Med Genet. 41:161–170. 2004. View Article : Google Scholar : PubMed/NCBI | |
Melillo RM, Castellone MD, Guarino V, et al: The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. J Clin Invest. 115:1068–1081. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gujral TS, van Veelen W, Richardson DS, et al: A novel RET kinase-beta-catenin signaling pathway contributes to tumorigenesis in thyroid carcinoma. Cancer Res. 68:1338–1346. 2008. View Article : Google Scholar : PubMed/NCBI | |
Castellone MD, De Falco V, Rao DM, et al: The beta-catenin axis integrates multiple signals downstream from RET/papillary thyroid carcinoma leading to cell proliferation. Cancer Res. 69:1867–1876. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pradeep A, Sharma C, Sathyanarayana P, et al: Gastrin-mediated activation of cyclin D1 transcription involves beta-catenin and CREB pathways in gastric cancer cells. Oncogene. 23:3689–3699. 2004. View Article : Google Scholar : PubMed/NCBI | |
Peifer M and Polakis P: Wnt signaling in oncogenesis and embryogenesis-a look outside the nucleus. Science. 287:1606–1609. 2000. View Article : Google Scholar : PubMed/NCBI | |
Esapa CT, Johnson SJ, Kendall-Taylor P, Lennard TW and Harris PE: Prevalence of Ras mutations in thyroid neoplasia. Clin Endocrinol (Oxf). 50:529–535. 1999. View Article : Google Scholar : PubMed/NCBI | |
Zhu Z, Gandhi M, Nikiforova MN, Fischer AH and Nikiforov YE: Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol. 120:71–77. 2003. View Article : Google Scholar : PubMed/NCBI | |
Santarpia L, Myers JN, Sherman SI, Trimarchi F, Clayman GL and El-Naggar AK: Genetic alterations in the RAS/RAF/mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways in the follicular variant of papillary thyroid carcinoma. Cancer. 116:2974–2983. 2010. View Article : Google Scholar | |
Hara H, Fulton N, Yashiro T, Ito K, DeGroot LJ and Kaplan EL: N-ras mutation: an independent prognostic factor for aggressiveness of papillary thyroid carcinoma. Surgery. 116:1010–1016. 1994.PubMed/NCBI | |
Djakiew D, Delsite R, Pflug B, Wrathall J, Lynch JH and Onoda M: Regulation of growth by a nerve growth factor-like protein which modulates paracrine interactions between a neoplastic epithelial cell line and stromal cells of the human prostate. Cancer Res. 51:3304–3310. 1991. | |
Bongarzone I, Vigneri P, Mariani L, Collini P, Pilotti S and Pierotti MA: RET/NTRK1 rearrangements in thyroid gland tumors of the papillary carcinoma family: correlation with clinicopathological features. Clin Cancer Res. 4:223–228. 1998.PubMed/NCBI | |
Musholt TJ, Musholt PB, Khaladj N, Schulz D, Scheumann GF and Klempnauer J: Prognostic significance of RET and NTRK1 rearrangements in sporadic papillary thyroid carcinoma. Surgery. 128:984–993. 2000. View Article : Google Scholar : PubMed/NCBI | |
Martin-Zanca D, Mitra G, Long LK and Barbacid M: Molecular characterization of the human trk oncogene. Cold Spring Harb Symp Quant Biol. 51:983–992. 1986. View Article : Google Scholar | |
Russell JP, Powell DJ, Cunnane M, et al: The TRK-T1 fusion protein induces neoplastic transformation of thyroid epithelium. Oncogene. 19:5729–5735. 2000. View Article : Google Scholar : PubMed/NCBI | |
Fedele M, Palmieri D, Chiappetta G, et al: Impairment of the p27kip1 function enhances thyroid carcinogenesis in TRK-T1 transgenic mice. Endocr Relat Cancer. 16:483–490. 2009. View Article : Google Scholar : PubMed/NCBI | |
Passler C, Scheuba C, Prager G, et al: Prognostic factors of papillary and follicular thyroid cancer: differences in an iodine-replete endemic goiter region. Endocr Relat Cancer. 11:131–139. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gulcelik MA, Gulcelik NE, Kuru B, Camlibel M and Alagol H: Prognostic factors determining survival in differentiated thyroid cancer. J Surg Oncol. 96:598–604. 2007. View Article : Google Scholar : PubMed/NCBI | |
Verburg FA, Mader U, Luster M and Reiners C: Histology does not influence prognosis in differentiated thyroid carcinoma when accounting for age, tumour diameter, invasive growth and metastases. Eur J Endocrinol. 160:619–624. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lemoine NR, Mayall ES, Wyllie FS, et al: High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene. 4:159–164. 1989.PubMed/NCBI | |
Garcia-Rostan G, Zhao H, Camp RL, et al: ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol. 21:3226–3235. 2003. View Article : Google Scholar : PubMed/NCBI | |
Namba H, Rubin SA and Fagin JA: Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol. 4:1474–1479. 1990. View Article : Google Scholar : PubMed/NCBI | |
Bond JA, Wyllie FS, Rowson J, Radulescu A and Wynford-Thomas D: In vitro reconstruction of tumour initiation in a human epithelium. Oncogene. 9:281–290. 1994.PubMed/NCBI | |
Vitagliano D, Portella G, Troncone G, et al: Thyroid targeting of the N-ras(Gln61Lys) oncogene in transgenic mice results in follicular tumors that progress to poorly differentiated carcinomas. Oncogene. 25:5467–5474. 2006. View Article : Google Scholar | |
Kiaris H and Spandidos DA: Mutations of ras genes in human tumours. Int J Oncol. 7:413–429. 1995. | |
Malumbres M and Barbacid M: RAS oncogenes: the first 30 years. Nat Rev Cancer. 3:459–465. 2003.PubMed/NCBI | |
Miller KA, Yeager N, Baker K, Liao XH, Refetoff S and Di Cristofano A: Oncogenic Kras requires simultaneous PI3K signaling to induce ERK activation and transform thyroid epithelial cells in vivo. Cancer Res. 69:3689–3694. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vojtek AB and Der CJ: Increasing complexity of the Ras signaling pathway. J Biol Chem. 273:19925–19928. 1998. View Article : Google Scholar : PubMed/NCBI | |
Krasilnikov MA: Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry (Mosc). 65:59–67. 2000.PubMed/NCBI | |
Damante G, Tell G and Di Lauro R: A unique combination of transcription factors controls differentiation of thyroid cells. Prog Nucleic Acid Res Mol Biol. 66:307–356. 2001. View Article : Google Scholar : PubMed/NCBI | |
Desvergne B and Wahli W: Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev. 20:649–688. 1999.PubMed/NCBI | |
Kroll TG, Sarraf P, Pecciarini L, et al: PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science. 289:1357–1360. 2000. | |
Cheung L, Messina M, Gill A, et al: Detection of the PAX8-PPAR gamma fusion oncogene in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab. 88:354–357. 2003. View Article : Google Scholar : PubMed/NCBI | |
Marques AR, Espadinha C, Catarino AL, et al: Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab. 87:3947–3952. 2002.PubMed/NCBI | |
Lacroix L, Mian C, Barrier T, et al: PAX8 and peroxisome proliferator-activated receptor gamma 1 gene expression status in benign and malignant thyroid tissues. Eur J Endocrinol. 151:367–374. 2004. View Article : Google Scholar : PubMed/NCBI | |
Klemke M, Drieschner N, Belge G, Burchardt K, Junker K and Bullerdiek J: Detection of PAX8-PPARG fusion transcripts in archival thyroid carcinoma samples by conventional RT-PCR. Genes Chromosomes Cancer. 51:402–408. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gregory Powell J, Wang X, Allard BL, et al: The PAX8/PPARgamma fusion oncoprotein transforms immortalized human thyrocytes through a mechanism probably involving wild-type PPARgamma inhibition. Oncogene. 23:3634–3641. 2004. | |
Lui WO, Foukakis T, Liden J, et al: Expression profiling reveals a distinct transcription signature in follicular thyroid carcinomas with a PAX8-PPAR(gamma) fusion oncogene. Oncogene. 24:1467–1476. 2005. View Article : Google Scholar : PubMed/NCBI | |
Reddi HV, McIver B, Grebe SK and Eberhardt NL: The paired box-8/peroxisome proliferator-activated receptor-gamma oncogene in thyroid tumorigenesis. Endocrinology. 148:932–935. 2007. View Article : Google Scholar : PubMed/NCBI | |
Farrow B and Evers BM: Activation of PPARgamma increases PTEN expression in pancreatic cancer cells. Biochem Biophys Res Commun. 301:50–53. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chinnadurai G: CtBP, an unconventional transcriptional core-pressor in development and oncogenesis. Mol Cell. 9:213–224. 2002. View Article : Google Scholar : PubMed/NCBI | |
Neff RL, Farrar WB, Kloos RT and Burman KD: Anaplastic thyroid cancer. Endocrinol Metab Clin North Am. 37:525–538. 2008. View Article : Google Scholar | |
Ain KB: Anaplastic thyroid carcinoma: behavior, biology, and therapeutic approaches. Thyroid. 8:715–726. 1998. View Article : Google Scholar : PubMed/NCBI | |
Giuffrida D and Gharib H: Anaplastic thyroid carcinoma: current diagnosis and treatment. Ann Oncol. 11:1083–1089. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kitamura Y, Shimizu K, Nagahama M, et al: Immediate causes of death in thyroid carcinoma: clinicopathological analysis of 161 fatal cases. J Clin Endocrinol Metab. 84:4043–4049. 1999. View Article : Google Scholar | |
Smallridge RC, Marlow LA and Copland JA: Anaplastic thyroid cancer: molecular pathogenesis and emerging therapies. Endocr Relat Cancer. 16:17–44. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim TY, Kim KW, Jung TS, et al: Prognostic factors for Korean patients with anaplastic thyroid carcinoma. Head Neck. 29:765–772. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nikiforov YE: Genetic alterations involved in the transition from well-differentiated to poorly differentiated and anaplastic thyroid carcinomas. Endocr Pathol. 15:319–327. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hou P, Liu D, Shan Y, et al: Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin Cancer Res. 13:1161–1170. 2007. View Article : Google Scholar | |
Nikiforova MN, Kimura ET, Gandhi M, et al: BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 88:5399–5404. 2003. View Article : Google Scholar | |
Costa AM, Herrero A, Fresno MF, et al: BRAF mutation associated with other genetic events identifies a subset of aggressive papillary thyroid carcinoma. Clin Endocrinol (Oxf). 68:618–634. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sobrinho-Simoes M, Maximo V, Rocha AS, et al: Intragenic mutations in thyroid cancer. Endocrinol Metab Clin North Am. 37:333–362. 2008. View Article : Google Scholar : PubMed/NCBI | |
Begum S, Rosenbaum E, Henrique R, Cohen Y, Sidransky D and Westra WH: BRAF mutations in anaplastic thyroid carcinoma: implications for tumor origin, diagnosis and treatment. Mod Pathol. 17:1359–1363. 2004. View Article : Google Scholar : PubMed/NCBI | |
Santarpia L, El-Naggar AK, Cote GJ, Myers JN and Sherman SI: Phosphatidylinositol 3-kinase/akt and ras/raf-mitogen-activated protein kinase pathway mutations in anaplastic thyroid cancer. J Clin Endocrinol Metab. 93:278–284. 2008. View Article : Google Scholar : PubMed/NCBI | |
Saavedra HI, Knauf JA, Shirokawa JM, et al: The RAS oncogene induces genomic instability in thyroid PCCL3 cells via the MAPK pathway. Oncogene. 19:3948–3954. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sansal I and Sellers WR: The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol. 22:2954–2963. 2004. View Article : Google Scholar : PubMed/NCBI | |
Frisk T, Foukakis T, Dwight T, et al: Silencing of the PTEN tumor-suppressor gene in anaplastic thyroid cancer. Genes Chromosomes Cancer. 35:74–80. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hou P, Ji M and Xing M: Association of PTEN gene methylation with genetic alterations in the phosphatidylinositol 3-kinase/AKT signaling pathway in thyroid tumors. Cancer. 113:2440–2447. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ringel MD, Hayre N, Saito J, et al: Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res. 61:6105–6111. 2001.PubMed/NCBI | |
Petitjean A, Mathe E, Kato S, et al: Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 28:622–629. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ito T, Seyama T, Mizuno T, et al: Unique association of p53 mutations with undifferentiated but not with differentiated carcinomas of the thyroid gland. Cancer Res. 52:1369–1371. 1992.PubMed/NCBI | |
Cerrato A, Fulciniti F, Avallone A, Benincasa G, Palombini L and Grieco M: Beta- and gamma-catenin expression in thyroid carcinomas. J Pathol. 185:267–272. 1998. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Rostan G, Tallini G, Herrero A, D’Aquila TG, Carcangiu ML and Rimm DL: Frequent mutation and nuclear localization of beta-catenin in anaplastic thyroid carcinoma. Cancer Res. 59:1811–1815. 1999.PubMed/NCBI | |
Motti ML, Califano D, Baldassarre G, et al: Reduced E-cadherin expression contributes to the loss of p27kip1-mediated mechanism of contact inhibition in thyroid anaplastic carcinomas. Carcinogenesis. 26:1021–1034. 2005. View Article : Google Scholar : PubMed/NCBI | |
Naito A, Iwase H, Kuzushima T, Nakamura T and Kobayashi S: Clinical significance of E-cadherin expression in thyroid neoplasms. J Surg Oncol. 76:176–180. 2001. View Article : Google Scholar : PubMed/NCBI | |
Von Wasielewski R, Rhein A, Werner M, et al: Immunohistochemical detection of E-cadherin in differentiated thyroid carcinomas correlates with clinical outcome. Cancer Res. 57:2501–2507. 1997.PubMed/NCBI | |
Maia AL, Ward LS, Carvalho GA, Graf H, Maciel RM, Maciel LM, Rosário PW and Vaisman M: Thyroid nodules and differentiated thyroid cancer: Brazilian consensus. Arq Bras Endocrinol Metabol. 51:867–893. 2007.PubMed/NCBI | |
Cooper DS, Doherty GM, Haugen BR, et al: Revised American thyroid association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 19:1167–1214. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fernandes JK, Day TA, Richardson MS and Sharma AK: Overview of the management of differentiated thyroid cancer. Curr Treat Options Oncol. 6:47–57. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kloos RT, Ringel MD, Knopp MV, et al: Phase II trial of soafenib in metastatic thyroid cancer. J Clin Oncol. 27:1675–1684. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hoftijzer H, Heemstra KA, Morreau H, et al: Beneficial effects of sorafenib on tumor progression, but not on radioiodine uptake, in patients with differentiated thyroid carcinoma. Eur J Endocrinol. 161:923–931. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gupta-Abramson V, Troxel AB, Nellore A, et al: Phase II trial of sorafenib inadvanced thyroid cancer. J Clin Oncol. 26:4714–4719. 2008. View Article : Google Scholar : PubMed/NCBI | |
Flaherty KT, Puzanov I, Kim KB, et al: Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 363:809–819. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cohen EE, Rosen LS, Vokes EE, et al: Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J Clin Oncol. 26:4708–4713. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bible KC, Suman VJ, Molina JR, et al: Efficacy of pazopanib in progressive, radioiodine-refractory, metastatic differentiated thyroid cancers: results of a phase 2 consortium study. Lancet Oncol. 11:962–972. 2010. View Article : Google Scholar | |
Sherman SI, Wirth LJ, Droz JP, et al: Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med. 359:31–42. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pennell NA, Daniels GH, Haddad RI, et al: A phase II study of gefitinib in patients with advanced thyroid cancer. Thyroid. 18:317–323. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hayes DN, Lucas AS, Tanvetyanon T, et al: Phase II efficacy and pharmacogenomic study of Selumetinib (AZD6244; ARRY-142886) in iodine-131 refractory papillary thyroid carcinoma with or without follicular elements. Clin Cancer Res. 18:2056–2065. 2012. View Article : Google Scholar : PubMed/NCBI |