Cell survival and radiosensitisation: modulation of the linear and quadratic parameters of the LQ model (Review)
- Authors:
- Nicolaas A.P. Franken
- Arlene L. Oei
- H. Petra Kok
- Hans M. Rodermond
- Peter Sminia
- Johannes Crezee
- Lukas J.A. Stalpers
- Gerrit W. Barendsen
-
Affiliations: Department of Radiotherapy, Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands, Department of Radiation Oncology, VU Medical Center, Amsterdam, The Netherlands - Published online on: March 13, 2013 https://doi.org/10.3892/ijo.2013.1857
- Pages: 1501-1515
This article is mentioned in:
Abstract
Barendsen GW: Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys. 8:1981–1997. 1982. View Article : Google Scholar : PubMed/NCBI | |
Barendsen GW: Mechanisms of cell reproductive death and shapes of radiation dose-survival curves of mammalian cells. Int J Radiat Biol. 57:885–896. 1990. View Article : Google Scholar : PubMed/NCBI | |
Barendsen GW: The relationships between RBE and LET for different types of lethal damage in mammalian cells: biophysical and molecular mechanisms. Radiat Res. 139:257–270. 1994. View Article : Google Scholar : PubMed/NCBI | |
Barendsen GW: Parameters of linear-quadratic radiation dose-effect relationships: dependence on LET and mechanisms of reproductive cell death. Int J Radiat Biol. 71:649–655. 1997. View Article : Google Scholar : PubMed/NCBI | |
Barendsen GW, van Bree C and Franken NAP: Importance of cell proliferative state and potentially lethal damage repair on radiation effectiveness: Implications for combined tumor treatments (Review). Int J Oncol. 19:257–256. 2001. | |
Franken NAP, van Bree C, Kipp JB and Barendsen GW: Modification of potentially lethal damage in irradiated Chinese hamster V79 cells after incorporation of halogenated pyrimidines. Int J Radiat Biol. 72:101–109. 1997. View Article : Google Scholar | |
Franken NAP, Ten Cate R, van Bree C and Haveman J: Induction of the early response protein EGR-1 in human tumour cells after ionizing radiation is correlated with a reduction of repair of lethal lesions and an increase of repair of sublethal lesions. Int J Oncol. 24:1027–1031. 2004. | |
Franken NAP, van Bree C, Veltmaat MA, Ludwików G, Kipp JB and Barendsen GW: Increased chromosome exchange frequencies in iodo-deoxyuridine-sensitized human SW-1573 cells after γ-irradiation. Oncol Rep. 6:59–63. 1999.PubMed/NCBI | |
Franken NAP, Rodermond HM, Stap J, Haveman J and van Bree C: Clonogenic assay of cells in vitro. Nature Protoc. 1:2315–2319. 2006. View Article : Google Scholar | |
van Nifterik KA, van den Berg J, Stalpers LJA, Lafleur MV, Leenstra S, Slotman BJ, Hulsebos TJ and Sminia P: Differential radiosensitizing potential of temozolomide in MGMT promoter methylated glioblastoma multiforme cell lines. Int J Radiat Oncol Biol Phys. 69:1246–1253. 2007.PubMed/NCBI | |
van Bree C, Franken NAP, Bakker PJ, Klomp-Tukker LJ, Barendsen GW and Kipp JB: Hyperthermia and incorporation of halogenated pyrimidines: radiosensitization in cultured rodent and human tumor cells. Int J Radiat Oncol Biol Phys. 39:489–496. 1997.PubMed/NCBI | |
González González D, Van Dijk JD and Blank LE: Radiotherapy and hyperthermia. Eur J Cancer. 31A:1351–1355. 1995. | |
van der Zee J, González González D, van Rhoon GC, van Dijk JD, van Putten WL and Hart AA: Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet. 355:1119–1125. 2000. | |
van der Zee J, Treurniet-Donker AD, The SK, Helle PA, Seldenrath JJ, Meerwaldt JH, Wijnmalen AJ, van de Berg AP, van Rhoon GC, Broekmeyer-Reurink MP, et al: Low dose reirradiation in combination with hyperthermia: a palliative treatment for patients with breast cancer recurring in previously irradiated areas. Int J Radiat Oncol Biol Phys. 15:1407–1413. 1988.PubMed/NCBI | |
van der Zee J and González GD: The Dutch Deep Hyperthermia Trial: results in cervical cancer. Int J Hyperthermia. 18:1–12. 2002.Erratum in: Int J Hyperthermia 19:213, 2003. | |
Crezee J, Barendsen GW, Westermann AM, Hulshof MC, Haveman J, Stalpers LJ, Geijsen ED and Franken NAP: Quantification of the contribution of hyperthermia to results of cervical cancer trials: in regard to Plataniotis and Dale (Int J Radiat Oncol Biol Phys 73: 1538–1544, 2009). Int J Radiat Oncol Biol Phys. 75:6342009.PubMed/NCBI | |
Dewey WC, Sapareto SA and Betten DA: Hyperthermic radio-sensitization of synchronous Chinese hamster cells: relationship between lethality and chromosomal aberrations. Radiat Res. 76:48–59. 1978. View Article : Google Scholar | |
Roti Roti JL: Introduction: radiosensitization by hyperthermia. Int J Hyperthermia. 20:109–114. 2004.PubMed/NCBI | |
Raaphorst GP, Feeley MM, Danjoux CE, DaSilva V and Gerig LH: Hyperthermia enhancement of radiation response and inhibition of recovery from radiation damage in human glioma cells. Int J Hyperthermia. 7:629–641. 1991. View Article : Google Scholar : PubMed/NCBI | |
Kampinga HH and Dikomey E: Hyperthermic radiosensitization: mode of action and clinical relevance. Int J Radiat Biol. 77:399–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R and Riess H: The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol. 43:33–56. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hall EJ and Giaccia AJ: Hyperthermia. Radiobiology for the Radiologist. Chapter 28.6th edition. Lippincott Williams & Wilkins; Philadelphia, PA: pp. 469–490. 2006 | |
Dewhirst MW, Vujaskovic Z, Jones E and Thrall D: Re-setting the biologic rationale for thermal therapy. Int J Hyperthermia. 21:779–790. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bergs JWJ: Hyperthermia, cisplatin and radiation trimodality treatment: In vitro studies on interaction mechanisms. PhD Thesis, University of Amsterdam. 2007 | |
Bergs JWJ, Haveman J, Ten Cate R, Medema JP, Franken NAP and van Bree C: Effect of 41°C and 43°C on cisplatin radio-sensitization in two human carcinoma cell lines with different sensitivities for cisplatin. Oncol Rep. 18:219–226. 2007. | |
Bergs JWJ, Franken NAP, Haveman J, Geijsen ED, Crezee J and van Bree C: Hyperthermia, cisplatin and radiation trimodality treatment: a promising cancer treatment? A review from preclinical studies to clinical application. Int J Hyperthermia. 23:329–341. 2007. View Article : Google Scholar | |
Krawczyk PM, Eppink B, Essers J, Stap J, Rodermond H, Odijk H, Zelensky A, van Bree C, Stalpers LJ, Buist MR, Soullié T, Rens J, Verhagen HJ, O’Connor MJ, Franken NAP, Ten Hagen TL, Kanaar R and Aten JA: Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly(ADP-ribose) polymerase-1 inhibition. Proc Natl Acad Sci USA. 108:9851–9856. 2011. View Article : Google Scholar | |
Franken NAP, van Bree C, Ten Cate R, van Oven CH and Haveman J: Importance of TP53 and RB in the repair of potentially lethal damage and induction of color junctions after exposure to ionizing radiation. Radiat Res. 158:707–714. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gorodetsky R, Levy-Agababa F, Mou X and Vexler AM: Combination of cisplatin and radiation in cell culture: effect of duration of exposure to drug and timing of irradiation. Int J Cancer. 75:635–642. 1998. View Article : Google Scholar : PubMed/NCBI | |
Dueñas-Gonzalez A, Cetina L, Mariscal I and de la Garza J: Modern management of locally advanced cervical carcinoma. Cancer Treat Rev. 29:389–399. 2003. | |
Loprevite M, Favoni RE, de Cupis A, Pirani P, Pietra G, Bruno S, Grossi F, Scolaro T and Ardizzoni A: Interaction between novel anticancer agents and radiation in non-small cell lung cancer cell lines. Lung Cancer. 33:27–39. 2001. View Article : Google Scholar : PubMed/NCBI | |
Begg AC, van der Kolk PJ, Dewit L and Bartelink H: Radiosensitization by cisplatin of RIF1 tumour cells in vitro. Int J Radiat Biol Relat Stud Phys Chem Med. 50:871–884. 1986. View Article : Google Scholar : PubMed/NCBI | |
Nakamoto S, Mitsuhashi N, Takahashi T, Sakurai H and Niibe H: An interaction of cisplatin and radiation in two rat yolk sac tumour cell lines with different radiosensitivities in vitro. Int J Radiat Biol. 70:747–753. 1996. View Article : Google Scholar : PubMed/NCBI | |
Bergs JWJ, Franken NAP, Ten Cate R, van Bree C and Haveman J: Effects of cisplatin and gamma-irradiation on cell survival, the induction of chromosomal aberrations and apoptosis in SW-1573 cells. Mutat Res. 594:148–154. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fehlauer F, Barten-Van Rijbroek AD, Stalpers LJ, Leenstra S, Lindeman J, Tjahja I, Troost D, Wolbers JG, van der Valk P and Sminia P: Additive cytotoxic effect of cisplatin and X-irradiation on human glioma cell cultures derived from biopsy-tissue. J Cancer Res Clin Oncol. 126:711–716. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rabik CA and Dolan ME: Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev. 33:9–23. 2007. View Article : Google Scholar : PubMed/NCBI | |
Crul M, van Waardenburg RC, Beijnen JH and Schellens JH: DNA-based drug interactions of cisplatin. Cancer Treat Rev. 28:291–303. 2002. View Article : Google Scholar : PubMed/NCBI | |
Myint WK, Ng C and Raaphorst GP: Examining the nonhomologous repair process following cisplatin and radiation treatments. Int J Radiat Biol. 78:417–424. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lawrence TS, Blackstock AW and McGinn C: The mechanism of action of radiosensitization of conventional chemotherapeutic agents. Semin Radiat Oncol. 13:13–21. 2003. View Article : Google Scholar : PubMed/NCBI | |
Haveman J, Castro Kreder N, Rodermond HM, van Bree C, Franken NAP, Stalpers LJ, Zdzienicka MZ and Peters GJ: Cellular response of X-ray sensitive hamster mutant cell lines to gemcitabine, cisplatin and 5-fluorouracil. Oncol Rep. 12:187–192. 2004.PubMed/NCBI | |
De Silva IU, McHugh PJ, Clingen PH and Hartley JA: Defects in interstrand cross-link uncoupling do not account for the extreme sensitivity of ERCC1 and XPF cells to cisplatin. Nucleic Acids Res. 30:3848–3856. 2002.PubMed/NCBI | |
Dronkert ML and Kanaar R: Repair of DNA interstrand cross-links. Mutat Res. 486:217–247. 2001. View Article : Google Scholar : PubMed/NCBI | |
Dolling JA, Boreham DR, Brown DL, Raaphorst GP and Mitchel RE: Cisplatin-modification of DNA repair and ionizing radiation lethality in yeast, Saccharomyces cerevisiae. Mutat Res. 433:127–136. 1999. View Article : Google Scholar : PubMed/NCBI | |
Fossella FV, Lipmann SM, Shin DM, Tarassoff P, Calayag-Jung M, Perez-Soler R, Lee JS, Murphy WK, Glisson B, Rivera E and Hong WK: Maximum-tolerated dose defined for single-agent gemcitabine: a phase I dose-escalation study in chemotherapy-naive patients with advanced non-small-cell lung cancer. J Clin Oncol. 15:310–316. 1997.PubMed/NCBI | |
Manegold C, Zatloukal P, Krejcy K and Blatter J: Gemcitabine in non-small lung cancer (NSCLC). Invest New Drugs. 18:29–42. 2000. View Article : Google Scholar | |
Shewach DS and Lawrence TS: Gemcitabine and radiosensitization in human tumor cells. Invest New Drugs. 14:257–263. 1996. View Article : Google Scholar : PubMed/NCBI | |
Castro Kreder N, van Bree C, Franken NAP and Havenman J: Effects of gemcitabine on cell survival and chromosome aberrations after pulsed low dose-rate irradiation. J Radiat Res. 45:111–118. 2004.PubMed/NCBI | |
Heinemann V, Xu YZ, Chubb S, Sen A, Hertel LW, Grindey GB and Plunkett W: Cellular elimination of 2′,2′-difluorodeoxycytidine 5′-triphosphate: a mechanism of self-potentiation. Cancer Res. 52:533–539. 1992. | |
Shewach DS, Hahn TM, Chang E, Hertel LW and Lawrence TS: Metabolism of 2′,2′-difluoro-2′-deoxycytidine and radiation sensitization of human colon carcinoma cells. Cancer Res. 54:3218–3223. 1994. | |
Plunkett W, Huang P and Gandhi V: Preclinical characteristics of gemcitabine. Anticancer Drugs. 6(Suppl 6): 7–13. 1995. View Article : Google Scholar | |
Auer H, Oehler R, Lindner R, Kowalski H, Sliutz G, Orel L, Kucera E, Simon MM and Glössl J: Characterisation of genotoxic properties of 2′,2′-difluorodeoxycytidine. Mutat Res. 393:165–173. 1997. | |
Rockwell S and Grindey GB: Effect of 2′,2′-difluorodeoxycytidine on the viability and radiosensitivity of EMT6 cells in vitro. Oncol Res. 4:151–155. 1992. | |
Shewach DS and Lawrence TS: Radiosensitization of human solid tumor cell lines with gemcitabine. Semin Oncol. 23(Suppl 10): 65–71. 1996.PubMed/NCBI | |
Latz D, Fleckenstein K, Eble M, Blatter J, Wannenmacher M and Weber KJ: Radiosensitizing potential of gemcitabine (2′,2′-difluoro-2′-deoxycytidine) within the cell cycle in vitro. Int J Radiat Oncol Biol Phys. 41:875–882. 1998. | |
Gregoire V, Hittelman WN, Rosier JF and Milas L: Chemoradiotherapy: Radiosensitizing nucleoside analogues (Review). Oncol Rep. 6:949–957. 1999.PubMed/NCBI | |
Milas L, Fujii T, Hunter N, Elshaikh M, Mason K, Plunkett W, Ang KK and Hittelman W: Enhancement of tumor radioresponse in vivo by gemcitabine. Cancer Res. 59:107–114. 1999.PubMed/NCBI | |
van Putten JWG, Groen HJM, Smid K, Peters GJ and Kampinga HH: End-joining deficiency and radiosensitization induced by gemcitabine. Cancer Res. 61:1585–1591. 2001.PubMed/NCBI | |
Wachters FM, van Putten JWG, Maring JG, Zdzienicka MZ, Groen HJ and Kampinga HH: Selective targeting of homologous DNA recombination repair by gemcitabine. Int J Radiat Oncol Biol Phys. 57:553–562. 2002. View Article : Google Scholar : PubMed/NCBI | |
Castro Kreder N, van Bree C, Franken NAP and Haveman J: Colour junctions as predictors of radiosensitivity: X-irradiation combined with gemcitabine in a lung carcinoma cell line. J Cancer Res Clin Oncol. 129:597–603. 2003.PubMed/NCBI | |
Scalliet P, Goor C, Galdermans J, et al: Gemzar (gemcitabine) with thoracic radiotherapy - a phase II pilot study in chemo-naive patients with advanced non-small-cell lung cancer (NSCLC) (Abstract). Proc ASCO. 17:499a1998. | |
Blackstock AW, Lesser GJ, Fletcher-Steede J, Case LD, Tucker RW, Russo SM, White DR and Miller A: Phase I study of twice-weekly gemcitabine and concurrent thoracic radiation for patients with locally advanced non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 51:1281–1289. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bergman AM, Giaccone G, van Moorsel CJ, Mauritz R, Noordhuis P, Pinedo HM and Peters GJ: Cross-resistance in the 2′,2′-difluorodeoxycytidine (gemcitabine)-resistant human ovarian cancer cell line AG6000 to standard and investigational drugs. Eur J Cancer. 36:1974–1983. 2000. | |
Bergman AM, Pinedo HM, Jongsma AP, Brouwer M, Ruiz van Haperen VW, Veerman G, Leyva A, Eriksson S and Peters GJ: Decreased resistance to gemcitabine (2′,2′-difluorodeoxycitidine) of cytosine arabinoside-resistant myeloblastic murine and rat leukemia cell lines: role of altered activity and substrate specificity of deoxycytidine kinase. Biochem Pharmacol. 57:397–406. 1999. | |
van Bree C, Castro Kreder N, Loves WJ, Franken NAP, Peters GJ and Haveman J: Sensitivity to ionizing radiation and chemotherapeutic agents in gemcitabine-resistant human tumor cell lines. Int J Radiat Oncol Biol Phys. 54:237–244. 2002.PubMed/NCBI | |
Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E and Mirimanoff RO; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI | |
Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al: Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10:459–466. 2009. | |
Hegi ME, Diserens AC, Godard S, Dietrich PY, Regli L, Ostermann S, Otten P, Van Melle G, de Tribolet N and Stupp R: Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res. 10:1871–1874. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC and Stupp R: MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 352:997–1003. 2005. View Article : Google Scholar : PubMed/NCBI | |
Brennand J and Margison GP: Reduction of the toxicity and mutagenicity of alkylating agents in mammalian cells harboring the Escherichia coli alkyltransferase gene. Proc Natl Acad Sci USA. 83:6292–6296. 1986. View Article : Google Scholar : PubMed/NCBI | |
Wedge SR, Porteus JK, May BL and Newlands ES: Potentiation of temozolomide and BCNU cytotoxicity by O(6)-benzylguanine: a comparative study in vitro. Br J Cancer. 73:482–490. 1996. View Article : Google Scholar : PubMed/NCBI | |
Karran P, Macpherson P, Ceccotti S, Ceccotti S, Dogliotti E, Griffin S and Bignami M: O6-methylguanine residues elicit DNA repair synthesis by human cell extracts. J Biol Chem. 268:15878–15886. 1993. | |
Ochs K and Kaina B: Apoptosis induced by DNA damage O6-methylguanine is Bcl-2 and caspase-9/3 regulated and Fas/caspase-8 independent. Cancer Res. 60:5815–5824. 2000.PubMed/NCBI | |
Gerson SL: MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer. 4:296–307. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hotta T, Saito Y, Fujita H, Mikami T, Kurisu K, Kiya K, Uozumi T, Isowa G, Ishizaki K and Ikenaga M: O6-alkylguanine-DNA alkyltransferase activity of human malignant glioma and its clinical implications. J Neurooncol. 21:135–140. 1994. | |
Qian XC and Brent TP: Methylation hot spots in the 5′ flanking region denote silencing of the O6-methylguanine-DNA methyltransferase gene. Cancer Res. 57:3672–3677. 1997. | |
Watts GS, Pieper RO, Costello JF, Peng YM, Dalton WS and Futscher BW: Methylation of discrete regions of the O6-methylguanine DNA methyltransferase (MGMT) CpG island is associated with heterochromatinization of the MGMT transcription start site and silencing of the gene. Mol Cell Biol. 17:5612–5619. 1997.PubMed/NCBI | |
Paz MF, Yaya-Tur R, Rojas-Marcos I, Reynes G, Pollan M, Aguirre-Cruz L, García-Lopez JL, Piquer J, Safont MJ, Balaña C, Sanchez-Cespedes M, García-Villanueva M, Arribas L and Esteller M: CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas. Clin Cancer Res. 10:4933–4938. 2004. View Article : Google Scholar : PubMed/NCBI | |
Donson AM, Addo-Yobo SO, Handler MH, Gore L and Foreman NK: MGMT promoter methylation correlates with survival benefit and sensitivity to temozolomide in pediatric glioblastoma. Pediatr Blood Cancer. 48:403–407. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chalmers AJ, Ruff EM, Martindale C, Lovegrove N and Short SC: Cytotoxic effects of temozolomide and radiation are additive- and schedule-dependent. Int J Radiat Oncol Biol Phys. 75:1511–1519. 2009. View Article : Google Scholar : PubMed/NCBI | |
Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, Baylin SB and Herman JG: Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 343:1350–1354. 2000. View Article : Google Scholar | |
Chakravarti A, Erkkinen MG, Nestler U, Stupp R, Mehta M, Aldape K, Gilbert MR, Black PM and Loeffler JS: Temozolomide-mediated radiation enhancement in glioblastoma: a report on underlying mechanisms. Clin Cancer Res. 12:4738–4746. 2006. View Article : Google Scholar : PubMed/NCBI | |
van Rijn J, Heimans JJ, van den Berg J, van der Valk P and Slotman BJ: Survival of human glioma cells treated with various combinations of temozolomide and X-rays. Int J Radiat Oncol Biol Phys. 47:779–784. 2000.PubMed/NCBI | |
Wedge SR, Porteous JK, Glaser MG, Marcus K and Newlands ES: In vitro evaluation of temozolomide combined with X-irradiation. Anticancer Drugs. 8:92–97. 1997. View Article : Google Scholar : PubMed/NCBI | |
van Nifterik KA, van den Berg J, van der Meide WF, Ameziane N, Wedekind LE, Steenbergen RD, Leenstra S, Lafleur MV, Slotman BJ, Stalpers LJ and Sminia P: Absence of the MGMT protein as well as methylation of the MGMT promoter predict the sensitivity for temozolomide. Br J Cancer. 103:29–35. 2010.PubMed/NCBI | |
van Nifterik KA, van den Berg J, Slotman BJ, Lafleur MV, Sminia P and Stalpers LJ: Valproic acid sensitizes human glioma cells for temozolomide and γ-radiation. J Neurooncol. 107:61–67. 2012. | |
Franken NAP, van Bree C, Streefkerk J, Kuper I, Rodermond H, Kipp JB and Barendsen GW: Radiosensitization by iodo-deoxyuridine in cultured SW-1573 human lung tumor cells: Effects on α and β of the linear-quadratic model. Oncol Rep. 4:1073–1076. 1997.PubMed/NCBI | |
Franken NAP, Ruurs P, Ludwików G, van Bree C, Kipp JB, Darroudi F and Barendsen GW: Correlation between cell reproductive death and chromosome aberrations assessed by FISH for low and high doses of radiation and sensitization by iododeoxyuridine in human SW-1573 cells. Int J Radiat Biol. 75:293–299. 1999. View Article : Google Scholar | |
Iliakis G, Kurtzman S, Pantelias G and Okayasu R: Mechanism of radiosensitisation by halogenated pyrimidines: effect of BrdU on radiation induction of DNA and chromosome damage and its correlation with cell killing. Radiat Res. 119:286–304. 1989. View Article : Google Scholar : PubMed/NCBI | |
Iliakis G, Wang Y, Pantelias GE and Metzger L: Mechanism of radiosensitisation of halogenated pyrimidines: effect of BrdU on repair of DNA breaks, interphase chromatin breaks and potentially lethal damage in plateau-phase CHO cells. Radiat Res. 129:202–211. 1992. View Article : Google Scholar | |
Iliakis G, Wright E and Ngo FQ: Possible importance of PLD repair in the modulation of BrdUrd and IdUrd-mediated radiosensitisation in plateau-phase C3H10T1/2 mouse embryo cells. Int J Radiat Biol Relat Stud Phys Chem Med. 51:541–548. 1987. View Article : Google Scholar | |
Iliakis G, Pantelias G and Kurtzman S: Mechanism of radiosensitisation by halogenated pyrimidines: effect of BrdU on cell killing and interphase chromosome breakage in radiation-sensitive cells. Radiat Res. 25:56–64. 1991. View Article : Google Scholar : PubMed/NCBI | |
Miller EM, Fowler JF and Kinsella TJ: Linear-quadratic analysis of radiosensitisation by halogenated pyrimidines. I Radiosensitisation of human colon cancer cells by iododeoxyuridine. Radiat Res. 131:81–89. 1992. View Article : Google Scholar | |
Miller EM, Fowler JF and Kinsella TJ: Linear-quadratic analysis of radiosensitisation by halogenated pyrimidines. II Radiosensitisation of human colon cancer cells by bromodeoxyuridine. Radiat Res. 131:90–97. 1992. View Article : Google Scholar : PubMed/NCBI | |
Jones GD, Ward JF, Limoli CL, Moyer DJ and Aguilera JA: Mechanisms of radiosensitization in iododeoxyuridine-substituted cells. Int J Radiat Biol. 67:647–653. 1995. View Article : Google Scholar : PubMed/NCBI | |
Bouchard VJ, Rouleau M and Poirier GG: PARP-1, a determinant of cell survival in response to DNA damage. Exp Hematol. 31:446–454. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rouleau M, Patel A, Hendzel MJ, Kaufmann SH and Poirier GG: PARP inhibition: PARP1 and beyond. Nat Rev Cancer. 10:293–301. 2010. View Article : Google Scholar : PubMed/NCBI | |
Löser DA, Shibata A, Shibata AK, Woodbine LJ, Jeggo PA and Chalmers AJ: Sensitization to radiation and alkylating agents by inhibitors of poly(ADP-ribose) polymerase is enhanced in cells deficient in DNA double-strand break repair. Mol Cancer Ther. 9:1775–1787. 2010.PubMed/NCBI | |
Cate RT, Krawczyk P, Stap J, Aten JA and Franken NAP: Radiosensitizing effect of the histone acetyltransferase inhibitor anacardic acid on various mammalian cell lines. Oncol Lett. 1:765–769. 2010.PubMed/NCBI | |
Rodermond HM, Ten Cate R, Haveman J, van Kuilenburg A, Medema JP, van Bree C and Franken NAP: Cyclopentenylcytosine does not enhance cisplatin-induced radiosensitization in human lung tumour cells. Oncol Lett. 1:537–540. 2010.PubMed/NCBI | |
Ryu S, Brown SL, Kim SH, Khil MS and Kim JH: Preferential radiosensitization of human prostatic carcinoma cells by mild hyperthermia. Int J Radiat Oncol Biol Phys. 34:133–138. 1996. View Article : Google Scholar : PubMed/NCBI | |
Bergs JWJ, Ten Cate R, Haveman J, Medema JP, Franken NAP and van Bree C: Chromosome fragments have the potential to predict hyperthermia-induced radio-sensitization in two different human tumor cell lines. J Radiat Res. 49:465–472. 2008. View Article : Google Scholar : PubMed/NCBI | |
van Bree C, Savonije JH, Franken NAP, Haveman J and Bakker PJ: The effect of p53-function on the sensitivity to paclitaxel with or without hyperthermia in human colorectal carcinoma cells. Int J Oncol. 16:739–744. 2000.PubMed/NCBI | |
van Bree C, van der Maat B, Ceha HM, Franken NAP, Haveman J and Bakker PJ: Inactivation of p53 and of pRb protects human colorectal carcinoma cells against hyperthermia-induced cytotoxicity and apoptosis. J Cancer Res Clin Oncol. 125:549–555. 1992.PubMed/NCBI | |
Larsson C and Ng CE: p21+/+ (CDKN1A+/+) and p21−/− (CDKN1A−/−) human colorectal carcinoma cells display equivalent amounts of thermal radiosensitization. Radiat Res. 160:205–209. 2003. | |
Murthy AK, Harris JR and Belli JA: Hyperthermia and radiation response of plateau phase cells. Potentiation and radiation damage repair. Radiat Res. 70:241–247. 1977. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Myerson RJ, Xia Y, Whitehead T, Moros EG, Straube WL and Roti Roti JL: The effects of 41 degrees C hyperthermia on the DNA repair protein, MRE11, correlate with radiosensitization in four human tumor cell lines. Int J Hyperthermia. 23:343–351. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Wright WD, Higashikubo R, Wang LL and Roti Roti JL: Thermal radiosensitization of human tumour cell lines with different sensitivities to 41.1 degrees C. Int J Hyperthermia. 15:279–290. 1999. View Article : Google Scholar : PubMed/NCBI | |
Vujaskovic Z and Song CW: Physiological mechanisms underlying heat-induced radiosensitization. Int J Hyperthermia. 20:163–174. 2004. View Article : Google Scholar : PubMed/NCBI | |
Oleson JR: Eugene Robertson Special Lecture. Hyperthermia from the clinic to the laboratory: a hypothesis. Int J Hyperthermia. 11:315–322. 1995. View Article : Google Scholar : PubMed/NCBI | |
Song CW, Shakil A, Osborn JL and Iwata K: Tumour oxygenation is increased by hyperthermia at mild temperatures. Int J Hyperthermia. 12:367–373. 1996. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Myerson RJ, Straube WL, Moros EG, Lagroye I, Wang LL, Lee JT and Roti Roti JL: Radiosensitization of heat resistant human tumour cells by 1 hour at 41.1 degrees C and its effect on DNA repair. Int J Hyperthermia. 18:385–403. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mackey MA and Ianzini F: Enhancement of radiation-induced mitotic catastrophe by moderate hyperthermia. Int J Radiat Biol. 76:273–280. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wilkins DE, Ng CE and Raaphorst GP: Cisplatin and low dose rate irradiation in cisplatin resistant and sensitive human glioma cells. Int J Radiat Oncol Biol Phys. 36:105–111. 1996. View Article : Google Scholar : PubMed/NCBI | |
Wilkins DE, Heller DP and Raaphorst GP: Inhibition of potentially lethal damage recovery by cisplatin in a brain tumor cell line. Anticancer Res. 13:2137–2142. 1993.PubMed/NCBI | |
Huang H, Huang SY, Chen TT, Chen JC, Chiou CL and Huang TM: Cisplatin restores p53 function and enhances the radiosensitivity in HPV16 E6 containing SiHa cells. J Cell Biochem. 91:756–765. 2004. View Article : Google Scholar : PubMed/NCBI | |
Britten RA, Peacock J and Warenius HM: Collateral resistance to photon and neutron irradiation is associated with acquired cis-platinum resistance in human ovarian tumour cells. Radiother Oncol. 23:170–175. 1992. View Article : Google Scholar : PubMed/NCBI | |
Britten RA, Evans AJ, Allalunis-Turner MJ and Pearcey RG: Effect of cisplatin on the clinically relevant radiosensitivity of human cervical carcinoma cell lines. Int J Radiat Oncol Biol Phys. 34:367–374. 1996. View Article : Google Scholar : PubMed/NCBI | |
Monk BJ, Burger RA, Parker R, Radany EH, Redpath L and Fruehauf JP: Development of an in vitro chemo-radiation response assay for cervical carcinoma. Gynecol Oncol. 87:193–199. 2002. View Article : Google Scholar : PubMed/NCBI | |
Meyn RE, Meistrich ML and White RA: Cycle-dependent anticancer drug cytotoxicity in mammalian cells synchronized by centrifugal elutriation. J Natl Cancer Inst. 64:1215–1219. 1980.PubMed/NCBI | |
Krishnaswamy G and Dewey WC: Cisplatin induced cell killing and chromosomal aberrations in CHO cells: treated during G1 or S phase. Mutat Res. 293:161–172. 1993. View Article : Google Scholar : PubMed/NCBI | |
Turchi JJ, Henkels KM and Zhou Y: Cisplatin-DNA adducts inhibit translocation of the Ku subunits of DNA-PK. Nucleic Acids Res. 28:4634–4641. 2000. View Article : Google Scholar : PubMed/NCBI | |
Muggia FM and Fojo T: Platinums: extending their therapeutic spectrum. J Chemother. 16(Suppl 4): 77–82. 2004. View Article : Google Scholar | |
Dewit L: Combined treatment of radiation and cisdiamminedichloroplatinum (II): a review of experimental and clinical data. Int J Radiat Oncol Biol Phys. 13:403–426. 1987. View Article : Google Scholar : PubMed/NCBI | |
Kumala S, Niemiec P, Widel M, Hancock R and Rzeszowska-Wolny J: Apoptosis and clonogenic survival in three tumour cell lines exposed to gamma rays or chemical genotoxic agents. Cell Mol Biol Lett. 8:655–665. 2003.PubMed/NCBI | |
Guchelaar HJ, Vermes I, Koopmans RP, Reutelingsperger CP and Haanen C: Apoptosis- and necrosis-inducing potential of cladribine, cytarabine, cisplatin, and 5-fluorouracil in vitro: a quantitative pharmacodynamic model. Cancer Chemother Pharmacol. 42:77–83. 1998. View Article : Google Scholar : PubMed/NCBI | |
Fujita M, Fujita T, Kodama T, Tsuchida T and Higashino K: The inhibitory effect of cisplatin in combination with irradiation on lung tumor cell growth is due to induction of tumor cell apoptosis. Int J Oncol. 17:393–397. 2000.PubMed/NCBI | |
Ostruszka LJ and Shewach DS: The role of cell cycle progression in radiosensitization by 2′,2′-difluoro-2′-deoxycytidine. Cancer Res. 60:6080–6088. 2000. | |
Ruiz van Haperen VW, Veerman G, Eriksson S, Boven E, Stegmann AP, Hermsen M, Vermorken JB, Pinedo HM and Peters GJ: Development and molecular characterization of a 2′,2′-difluorodeoxycytidine-resistant variant of the human ovarian carcinoma cell line A2780. Cancer Res. 54:4138–4143. 1994. | |
Peters GJ, Ruiz van Haperen VW, Bergman AM, Veerman G, Smitskamp-Wilms E, van Moorsel CJ, Kuiper CM and Braakhuis BJ: Preclinical combination therapy with gemcitabine and mechanisms of resistance. Sem Oncology. 23(Suppl 10): 16–24. 1996.PubMed/NCBI | |
Wang Y, Pantelias GE and Iliakis G: Mechanism of radiosensitization by halogenated pyrimidines: the contribution of excess DNA and chromosome damage in BrdU radiosensitization may be minimal in plateau-phase cells. Int J Radiat Biol. 66:133–142. 1994. View Article : Google Scholar : PubMed/NCBI | |
Webb CF, Jones GD, Ward JF, Moyer DJ, Aguilera JA and Ling LL: Mechanisms of radiosensitisation in bromodeoxyuridine-substituted cells. Int J Radiat Biol. 64:695–705. 1993. View Article : Google Scholar : PubMed/NCBI | |
Albert JM, Cao C, Kim KW, Willey CD, Geng L, Xiao D, Wang H, Sandler A, Johnson DH, Colevas AD, Low J, Rothenberg ML and Lu B: Inhibition of poly(ADP-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin Cancer Res. 13:3033–3042. 2007. View Article : Google Scholar : PubMed/NCBI | |
Douglas BG and Fowler JF: The effect of multiple small doses of x-rays on skin reactions in the mouse and a basic interpretation. Radiat Res. 66:401–426. 1976. View Article : Google Scholar |