Roles of F‑box proteins in human digestive system tumors (Review)
- Authors:
- Jian Gong
- Liang Lv
- Jirong Huo
-
Affiliations: Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China - Published online on: September 29, 2014 https://doi.org/10.3892/ijo.2014.2684
- Pages: 2199-2207
This article is mentioned in:
Abstract
Genschik P, Sumara I and Lechner E: The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications. EMBO J. 32:2307–2320. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ciechanover A, Orian A and Schwartz AL: Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays. 22:442–451. 2000. View Article : Google Scholar : PubMed/NCBI | |
Smalle J and Vierstra RD: The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol. 55:555–590. 2004. View Article : Google Scholar : PubMed/NCBI | |
Crusio KM, King B, Reavie LB and Aifantis I: The ubiquitous nature of cancer: the role of the SCF(Fbw7) complex in development and transformation. Oncogene. 29:4865–4873. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hershko A: The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ. 12:1191–1197. 2005. View Article : Google Scholar | |
Pickart CM and Rose IA: Functional heterogeneity of ubiquitin carrier proteins. J Biol Chem. 260:1573–1581. 1985.PubMed/NCBI | |
Jadhav T and Wooten MW: Defining an embedded code for protein ubiquitination. J Proteomics Bioinform. 2:3162009. View Article : Google Scholar : PubMed/NCBI | |
Nakayama KI and Nakayama K: Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer. 6:369–381. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jackson S and Xiong Y: CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci. 34:562–570. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Liu P, Inuzuka H and Wei W: Roles of F-box proteins in cancer. Nat Rev Cancer. 14:233–247. 2014. View Article : Google Scholar | |
Hicke L, Schubert HL and Hill CP: Ubiquitin-binding domains. Nat Rev Mol Cell Biol. 6:610–621. 2005. View Article : Google Scholar | |
Cardozo T and Pagano M: The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol. 5:739–751. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nandi D, Tahiliani P, Kumar A and Chandu D: The ubiquitin-proteasome system. J Biosci. 31:137–155. 2006. View Article : Google Scholar | |
Zheng N, Schulman BA, Song L, et al: Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature. 416:703–709. 2002. View Article : Google Scholar : PubMed/NCBI | |
Cenciarelli C, Chiaur DS, Guardavaccaro D, et al: Identification of a family of human F-box proteins. Curr Biol. 9:1177–1179. 1999. View Article : Google Scholar : PubMed/NCBI | |
Winston JT, Koepp DM, Zhu C, et al: A family of mammalian F-box proteins. Curr Biol. 9:1180–1182. 1999. View Article : Google Scholar : PubMed/NCBI | |
Jin J, Cardozo T, Lovering RC, et al: Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev. 18:2573–2580. 2004. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Han L, Li B, et al: F-box only protein 31 (FBXO31) negatively regulates p38 mitogen-activated protein (MAPK) signaling by mediating lysine 48-linked ubiquitination and degradation of MAP kinase kinase 6 (MKK6). J Biol Chem. 289:21508–21518. 2014. View Article : Google Scholar : PubMed/NCBI | |
Santra MK, Wajapeyee N and Green MR: F-box protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest after DNA damage. Nature. 459:722–725. 2009. View Article : Google Scholar : PubMed/NCBI | |
Koepp DM, Schaefer LK, Ye X, et al: Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science. 294:173–177. 2001. View Article : Google Scholar : PubMed/NCBI | |
Minella AC, Welcker M and Clurman BE: Ras activity regulates cyclin E degradation by the Fbw7 pathway. Proc Natl Acad Sci USA. 102:9649–9654. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yada M, Hatakeyama S, Kamura T, et al: Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 23:2116–2125. 2004. View Article : Google Scholar : PubMed/NCBI | |
Welcker M, Orian A, Jin J, et al: The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA. 101:9085–9090. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wei W, Jin J, Schlisio S, et al: The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell. 8:25–33. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hoeck JD, Jandke A, Blake SM, et al: Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nat Neurosci. 13:1365–1372. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tetzlaff MT, Yu W, Li M, et al: Defective cardiovascular development and elevated cyclin E and Notch proteins in mice lacking the Fbw7 F-box protein. Proc Natl Acad Sci USA. 101:3338–3345. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tan M, Zhao Y, Kim SJ, et al: SAG/RBX2/ROC2 E3 ubiquitin ligase is essential for vascular and neural development by targeting NF1 for degradation. Dev Cell. 21:1062–1076. 2011. View Article : Google Scholar : PubMed/NCBI | |
Akhoondi S, Sun D, von der Lehr N, et al: FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 67:9006–9012. 2007. View Article : Google Scholar : PubMed/NCBI | |
Miyaki M, Yamaguchi T, Iijima T, et al: Somatic mutations of the CDC4 (FBXW7) gene in hereditary colorectal tumors. Oncology. 76:430–434. 2009. | |
Iwatsuki M, Mimori K, Ishii H, et al: Loss of FBXW7, a cell cycle regulating gene, in colorectal cancer: clinical significance. Int J Cancer. 126:1828–1837. 2010.PubMed/NCBI | |
Kemp Z, Rowan A, Chambers W, et al: CDC4 mutations occur in a subset of colorectal cancers but are not predicted to cause loss of function and are not associated with chromosomal instability. Cancer Res. 65:11361–11366. 2005. View Article : Google Scholar : PubMed/NCBI | |
Enkhbold C, Utsunomiya T, Morine Y, et al: Loss of FBXW7 expression is associated with poor prognosis in intrahepatic cholangiocarcinoma. Hepatol Res. Feb 19–2014.(Epub ahead of print). | |
Lee JW, Soung YH, Kim HJ, et al: Mutational analysis of the hCDC4 gene in gastric carcinomas. Eur J Cancer. 42:2369–2373. 2006. | |
Sterian A, Kan T, Berki AT, et al: Mutational and LOH analyses of the chromosome 4q region in esophageal adenocarcinoma. Oncology. 70:168–172. 2006. View Article : Google Scholar : PubMed/NCBI | |
Calhoun ES, Jones JB, Ashfaq R, et al: BRAF and FBXW7 (CDC4, FBW7, AGO, SEL10) mutations in distinct subsets of pancreatic cancer: potential therapeutic targets. Am J Pathol. 163:1255–1260. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cassia R, Moreno-Bueno G, Rodríguez-Perales S, et al: Cyclin E gene (CCNE) amplification and hCDC4 mutations in endometrial carcinoma. J Pathol. 201:589–595. 2003. | |
Woo LJ, Hwa SY, Young KS, et al: Somatic mutation of hCDC4 gene is rare in lung adenocarcinomas. Acta Oncol. 45:487–488. 2006. | |
Yan T, Wunder JS, Gokgoz N, et al: hCDC4 variation in osteo-sarcoma. Cancer Genet Cytogenet. 169:138–142. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kwak EL, Moberg KH, Wahrer DC, et al: Infrequent mutations of Archipelago (hAGO, hCDC4, Fbw7) in primary ovarian cancer. Gynecol Oncol. 98:124–128. 2005. | |
Inuzuka H, Fukushima H, Shaik S, et al: Mcl-1 ubiquitination and destruction. Oncotarget. 2:239–244. 2011. | |
Inuzuka H, Shaik S, Onoyama I, et al: SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature. 471:104–109. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wertz IE, Kusam S, Lam C, et al: Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature. 471:110–114. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tsunematsu R, Nakayama K, Oike Y, et al: Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development. J Biol Chem. 279:9417–9423. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gstaiger M, Jordan R, Lim M, et al: Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci USA. 98:5043–5048. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Kobayashi R, Galaktionov K and Beach D: p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell. 82:915–925. 1995. View Article : Google Scholar | |
Bai C, Sen P, Hofmann K, et al: Skp1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell. 86:263–274. 1996. View Article : Google Scholar | |
Carrano AC, Eytan E, Hershko A and Pagano M: Skp2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol. 1:193–199. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kudo Y, Kitajima S, Sato S, et al: High expression of S-phase kinase-interacting protein 2, human F-box protein, correlates with poor prognosis in oral squamous cell carcinomas. Cancer Res. 61:7044–7047. 2001.PubMed/NCBI | |
Hershko D, Bornstein G, Ben-Izhak O, et al: Inverse relation between levels of p27(Kip1) and of its ubiquitin ligase subunit Skp2 in colorectal carcinomas. Cancer. 91:1745–1751. 2001. View Article : Google Scholar : PubMed/NCBI | |
Mori M, Mimori K, Shiraishi T, et al: p27 expression and gastric carcinoma. Nat Med. 3:5931997. View Article : Google Scholar | |
Fukuchi M, Masuda N, Nakajima M, et al: Inverse correlation between expression levels of p27 and the ubiquitin ligase subunit Skp2 in early esophageal squamous cell carcinoma. Anticancer Res. 24:777–783. 2004. | |
Masuda TA, Inoue H, Sonoda H, et al: Clinical and biological significance of S-phase kinase-associated protein 2 (Skp2) gene expression in gastric carcinoma: modulation of malignant phenotype by Skp2 overexpression, possibly via p27 proteolysis. Cancer Res. 62:3819–3825. 2002. | |
Yang G, Ayala G, De Marzo A, et al: Elevated Skp2 protein expression in human prostate cancer: association with loss of the cyclin-dependent kinase inhibitor p27 and PTEN and with reduced recurrence-free survival. Clin Cancer Res. 8:3419–3426. 2002. | |
Timmerbeul I, Garrett-Engele CM, Kossatz U, et al: Testing the importance of p27 degradation by the SCFSkp2 pathway in murine models of lung and colon cancer. Proc Natl Acad Sci USA. 103:14009–14014. 2006. View Article : Google Scholar : PubMed/NCBI | |
Frescas D and Pagano M: Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer. 8:438–449. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kim CJ, Song JH, Cho YG, et al: Somatic mutations of the beta-TrCP gene in gastric cancer. APMIS. 115:127–133. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pisani P, Parkin DM and Ferlay J: Estimates of the worldwide mortality from eighteen major cancers in 1985. Implications for prevention and projections of future burden. Int J Cancer. 55:891–903. 1993. View Article : Google Scholar : PubMed/NCBI | |
Sarbia M, Verreet P, Bittinger F, et al: Basaloid squamous cell carcinoma of the esophagus: diagnosis and prognosis. Cancer. 79:1871–1878. 1997. View Article : Google Scholar : PubMed/NCBI | |
Berger B and Belka C: Evidence-based radiation oncology: oesophagus. Radiother Oncol. 92:276–290. 2009. View Article : Google Scholar | |
Jemal A, Siegel R, Ward E, et al: Cancer statistics, 2008. CA Cancer J Clin. 58:71–96. 2008. View Article : Google Scholar | |
Bai P, Xiao X, Zou J, et al: Expression of p14 (ARF), p15 (INK4b), p16 (INK4a) and Skp2 increases during esophageal squamous cell cancer progression. Exp Ther Med. 3:1026–1032. 2012.PubMed/NCBI | |
Wang XC, Tian LL, Tian J and Jiang XY: Overexpression of SKP2 promotes the radiation resistance of esophageal squamous cell carcinoma. Radiat Res. 177:52–58. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dong S, Zhao J, Wei J, et al: F-box protein complex FBXL19 regulates TGFβ1-induced E-cadherin down-regulation by mediating Rac3 ubiquitination and degradation. Mol Cancer. 13:762014.PubMed/NCBI | |
Engers R, Ziegler S, Mueller M, et al: Prognostic relevance of increased Rac GTPase expression in prostate carcinomas. Endocr Relat Cancer. 14:245–256. 2007. View Article : Google Scholar : PubMed/NCBI | |
Walker MP, Zhang M, Le TP, et al: RAC3 is a pro-migratory co-activator of ERα. Oncogene. 30:1984–1994. 2011.PubMed/NCBI | |
van Roy F and Berx G: The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 65:3756–3788. 2008. | |
Rodriguez FJ, Lewis-Tuffin LJ and Anastasiadis PZ: E-cadherin’s dark side: possible role in tumor progression. Biochim Biophys Acta. 1826:23–31. 2012. | |
Barbash O, Zamfirova P, Lin DI, et al: Mutations in Fbx4 inhibit dimerization of the SCF(Fbx4) ligase and contribute to cyclin D1 overexpression in human cancer. Cancer Cell. 14:68–78. 2008. View Article : Google Scholar : PubMed/NCBI | |
Buckley MF, Sweeney KJ, Hamilton JA, et al: Expression and amplification of cyclin genes in human breast cancer. Oncogene. 8:2127–2133. 1993.PubMed/NCBI | |
Shinozaki H, Ozawa S, Ando N, et al: Cyclin D1 amplification as a new predictive classification for squamous cell carcinoma of the esophagus, adding gene information. Clin Cancer Res. 2:1155–1161. 1996.PubMed/NCBI | |
Ikeguchi M, Sakatani T, Ueta T and Kaibara N: Cyclin D1 expression and retinoblastoma gene protein (pRB) expression in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 127:531–536. 2001. View Article : Google Scholar : PubMed/NCBI | |
Okabe H, Lee SH, Phuchareon J, et al: A critical role for FBXW8 and MAPK in cyclin D1 degradation and cancer cell proliferation. PLoS One. 1:e1282006. View Article : Google Scholar : PubMed/NCBI | |
Yu ZK, Gervais JL and Zhang H: Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci USA. 95:11324–11329. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kanie T, Onoyama I, Matsumoto A, et al: Genetic reevaluation of the role of F-box proteins in cyclin D1 degradation. Mol Cell Biol. 32:590–605. 2012. View Article : Google Scholar : PubMed/NCBI | |
Naganawa Y, Ishiguro H, Kuwabara Y, et al: Decreased expression of FBXW7 is correlated with poor prognosis in patients with esophageal squamous cell carcinoma. Exp Ther Med. 1:841–846. 2010.PubMed/NCBI | |
Kogo R, Mimori K, Tanaka F, et al: FBXO31 determines poor prognosis in esophageal squamous cell carcinoma. Int J Oncol. 39:155–159. 2011.PubMed/NCBI | |
Huang HL, Zheng WL, Zhao R, et al: FBXO31 is down-regulated and may function as a tumor suppressor in hepatocellular carcinoma. Oncol Rep. 24:715–720. 2010.PubMed/NCBI | |
Johansson P, Jeffery J, Al-Ejeh F, et al: SCF-FBXO31 E3 ligase targets DNA replication factor Cdt1 for proteolysis in the G2 phase of cell cycle to prevent re-replication. J Biol Chem. 289:18514–18525. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kumar R, Neilsen PM, Crawford J, et al: FBXO31 is the chromosome 16q24.3 senescence gene, a candidate breast tumor suppressor, and a component of an SCF complex. Cancer Res. 65:11304–11313. 2005. View Article : Google Scholar | |
Dreissigacker U, Mueller MS, Unger M, Siegert P, et al: Oncogenic K-Ras down-regulates Rac1 and RhoA activity and enhances migration and invasion of pancreatic carcinoma cells through activation of p38. Cell Signal. 18:1156–1168. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tan J, Yang X, Zhuang L, et al: Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 21:1050–1063. 2007. View Article : Google Scholar : PubMed/NCBI | |
Guo W, Zhang M, Shen S, et al: Aberrant methylation and decreased expression of the TGF-β/Smad target gene FBXO32 in esophageal squamous cell carcinoma. Cancer. 120:2412–2413. 2014. | |
Jemal A, Bray F, Center MM, et al: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar | |
Ma XM, Liu Y, Guo JW, Liu JH and Zuo LF: Relation of over-expression of S phase kinase-associated protein 2 with reduced expression of p27 and PTEN in human gastric carcinoma. World J Gastroenterol. 11:6716–6721. 2005.PubMed/NCBI | |
Ma XM, Liu JH, Guo JW, et al: Correlation of Skp2 expression in gastric carcinoma to expression of P27 and PTEN. Ai Zheng. 25:56–61. 2006.(In Chinese). | |
Yang L, Kuang LG, Zheng HC, et al: PTEN encoding product: a marker for tumorigenesis and progression of gastric carcinoma. World J Gastroenterol. 9:35–39. 2003.PubMed/NCBI | |
Wei Z, Jiang X, Liu F, et al: Downregulation of Skp2 inhibits the growth and metastasis of gastric cancer cells in vitro and in vivo. Tumour Biol. 34:181–192. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cen G, Ding HH, Liu B and Wu WD: FBXL5 targets cortactin for ubiquitination-mediated destruction to regulate gastric cancer cell migration. Tumour Biol. May 28–2014.(Epub ahead of print). | |
Saitoh T and Katoh M: Expression profiles of βTRCP1 and βTRCP2, and mutation analysis of βTRCP2 in gastric cancer. Int J Oncol. 18:959–964. 2001. | |
Milne AN, Leguit R, Corver WE, et al: Loss of CDC4/FBXW7 in gastric carcinoma. Cell Oncol. 32:347–359. 2010.PubMed/NCBI | |
Yokobori T, Mimori K, Iwatsuki M, et al: p53-altered FBXW7 expression determines poor prognosis in gastric cancer cases. Cancer Res. 69:3788–3794. 2009. View Article : Google Scholar : PubMed/NCBI | |
Martins CP, Brown-Swigart L and Evan GI: Modeling the therapeutic efficacy of p53 restoration in tumors. Cell. 127:1323–1334. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ventura A, Kirsch DG, McLaughlin ME, et al: Restoration of p53 function leads to tumour regression in vivo. Nature. 445:661–665. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xue W, Zender L, Miething C, et al: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 445:656–660. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang YW, Brognard J, Coughlin C, et al: The F box protein Fbx6 regulates Chk1 stability and cellular sensitivity to replication stress. Mol Cell. 35:442–453. 2009. View Article : Google Scholar : PubMed/NCBI | |
Merry C, Fu K, Wang J, et al: Targeting the checkpoint kinase Chk1 in cancer therapy. Cell Cycle. 9:279–283. 2010. View Article : Google Scholar : PubMed/NCBI | |
Verlinden L, Vanden BI, Eelen G, et al: The E2F-regulated gene Chk1 is highly expressed in triple-negative estrogen receptor/progesterone receptor/HER-2 breast carcinomas. Cancer Res. 67:6574–6581. 2007.PubMed/NCBI | |
Zhang L, Hou Y, Wang M, et al: A study on the functions of ubiquitin metabolic system related gene FBG2 in gastric cancer cell line. J Exp Clin Cancer Res. 28:782009. View Article : Google Scholar : PubMed/NCBI | |
Lei KF, Liu BY, Wang YF, et al: SerpinB5 interacts with KHDRBS3 and FBXO32 in gastric cancer cells. Oncol Rep. 26:1115–1120. 2011.PubMed/NCBI | |
Chen WQ, Zeng HM, Zheng RS, et al: Cancer incidence and mortality in china, 2007. Chin J Cancer Res. 24:1–8. 2012. View Article : Google Scholar | |
Koga H, Harada M, Ohtsubo M, et al: Troglitazone induces p27Kip1-associated cell-cycle arrest through down-regulating Skp2 in human hepatoma cells. Hepatology. 37:1086–1096. 2003. View Article : Google Scholar : PubMed/NCBI | |
Liao YJ, Bai HY, Li ZH, et al: Longikaurin A, a natural ent-kaurane, induces G2/M phase arrest via downregulation of Skp2 and apoptosis induction through ROS/JNK/c-Jun pathway in hepatocellular carcinoma cells. Cell Death Dis. 5:e11372014. View Article : Google Scholar : PubMed/NCBI | |
Yan S, Yang X, Chen T, et al: The PPARγ agonist Troglitazone induces autophagy, apoptosis and necroptosis in bladder cancer cells. Cancer Gene Ther. 21:188–193. 2014. | |
Zou QF, Du JK, Zhang H, et al: Anti-tumour activity of longikaurin A (LK-A), a novel natural diterpenoid, in nasopharyngeal carcinoma. J Transl Med. 11:2002013. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Choe C, Shin SH, et al: Silencing of KIF14 interferes with cell cycle progression and cytokinesis by blocking the p27 (Kip1) ubiquitination pathway in hepatocellular carcinoma. Exp Mol Med. 46:e972014. View Article : Google Scholar : PubMed/NCBI | |
Thériault BL, Basavarajappa HD, Lim H, et al: Transcriptional and epigenetic regulation of KIF14 overexpression in ovarian cancer. PLoS One. 9:e915402014.PubMed/NCBI | |
Hsiang CY, Wu SL, Chen JC, et al: Acetaldehyde induces matrix metalloproteinase-9 gene expression via nuclear factor-kappaB and activator protein 1 signaling pathways in human hepato-cellular carcinoma cells: association with the invasive potential. Toxicol Lett. 171:78–86. 2007. View Article : Google Scholar | |
Imura S, Tovuu LO, Utsunomiya T, et al: The role of Fbxw7 expression in hepatocellular carcinoma and adjacent non-tumor liver tissue. J Gastroenterol Hepatol. Apr 14–2014.(Epub ahead of print). | |
Tu K, Yang W, Li C, et al: Fbxw7 is an independent prognostic marker and induces apoptosis and growth arrest by regulating YAP abundance in hepatocellular carcinoma. Mol Cancer. 13:1102014. View Article : Google Scholar : PubMed/NCBI | |
Steinhardt AA, Gayyed MF, Klein AP, et al: Expression of Yes-associated protein in common solid tumors. Hum Pathol. 39:1582–1589. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tu K, Zheng X, Zan X, et al: Evaluation of Fbxw7 expression and its correlation with the expression of c-Myc, cyclin E and p53 in human hepatocellular carcinoma. Hepatol Res. 42:904–910. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tu K, Zheng X, Zhou Z, et al: Recombinant human adenovirus-p53 injection induced apoptosis in hepatocellular carcinoma cell lines mediated by p53-Fbxw7 pathway, which controls c-Myc and Cyclin E. PLoS One. 8:e685742013. View Article : Google Scholar | |
Fu J, Qiu H, Cai M, et al: Low cyclin F expression in hepatocellular carcinoma associates with poor differentiation and unfavorable prognosis. Cancer Sci. 104:508–515. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Tang Q, Ni R, et al: Early mitotic inhibitor-1, an anaphase-promoting complex/cyclosome inhibitor, can control tumor cell proliferation in hepatocellular carcinoma: correlation with Skp2 stability and degradation of p27 (Kip1). Hum Pathol. 44:365–373. 2013. View Article : Google Scholar | |
Sanada T, Yokoi S, Arii S, et al: Skp2 overexpression is a p27Kip1-independent predictor of poor prognosis in patients with biliary tract cancers. Cancer Sci. 95:969–976. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hashimoto N, Yachida S, Okano K, et al: Immunohistochemically detected expression of p27(Kip1) and Skp2 predicts survival in patients with intrahepatic cholangiocarcinomas. Ann Surg Oncol. 16:395–403. 2009. View Article : Google Scholar | |
Zhang B, Ji LH, Liu W, et al: Skp2-RNAi suppresses proliferation and migration of gallbladder carcinoma cells by enhancing p27 expression. World J Gastroenterol. 19:4917–4924. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ferlay J, Shin HR, Bray F, et al: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar : PubMed/NCBI | |
Greenlee RT, Hill-Harmon MB, Murray T and Thun M: Cancer statistics, 2001. CA Cancer J Clin. 51:15–36. 2001. View Article : Google Scholar | |
Li D, Xie K, Wolff R and Abbruzzese JL: Pancreatic cancer. Lancet. 363:1049–1057. 2004. View Article : Google Scholar | |
Hidalgo M: Pancreatic cancer. N Engl J Med. 362:1605–1617. 2010. View Article : Google Scholar | |
Einama T, Kagata Y, Tsuda H, et al: High-level Skp2 expression in pancreatic ductal adenocarcinoma: correlation with the extent of lymph node metastasis, higher histological grade, and poorer patient outcome. Pancreas. 32:376–381. 2006. View Article : Google Scholar | |
Schüler S, Diersch S, Hamacher R, et al: Skp2 confers resistance of pancreatic cancer cells towards TRAIL-induced apoptosis. Int J Oncol. 38:219–225. 2011.PubMed/NCBI | |
Müerköster S, Arlt A, Sipos B, et al: Increased expression of the E3-ubiquitin ligase receptor subunit betaTRCP1 relates to constitutive nuclear factor-kappaB activation and chemo-resistance in pancreatic carcinoma cells. Cancer Res. 65:1316–1324. 2005. | |
Ma J, Cheng L, Liu H, et al: Genistein down-regulates miR-223 expression in pancreatic cancer cells. Curr Drug Targets. 14:1150–1156. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Chen Y, Lin P, et al: The CUL7/F-box and WD repeat domain containing 8 (CUL7/Fbxw8) ubiquitin ligase promotes degradation of hematopoietic progenitor kinase 1. J Biol Chem. 289:4009–4017. 2014. View Article : Google Scholar : PubMed/NCBI | |
Frescas D, Guardavaccaro D, Bassermann F, et al: JHDM1B/ FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature. 450:309–313. 2007. View Article : Google Scholar : PubMed/NCBI | |
He J, Nguyen AT and Zhang Y: KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia. Blood. 117:3869–3880. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tzatsos A, Paskaleva P, Ferrari F, et al: KDM2B promotes pancreatic cancer via Polycomb-dependent and -independent transcriptional programs. J Clin Invest. 123:727–739. 2013.PubMed/NCBI | |
Center MM, Jemal A and Ward E: International trends in colorectal cancer incidence rates. Cancer Epidemiol Biomarkers Prev. 18:1688–1694. 2009. View Article : Google Scholar : PubMed/NCBI | |
Center MM, Jemal A, Smith RA and Ward E: Worldwide variations in colorectal cancer. CA Cancer J Clin. 59:366–378. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li JQ, Wu F, Mai T, et al: Correlation of Skp2 with carcinogenesis, invasion, metastasis, and prognosis in colorectal tumors. Int J Oncol. 25:87–95. 2004.PubMed/NCBI | |
Woenckhaus C, Maile S, Uffmann S, et al: Expression of Skp2 and p27KIP1 in naevi and malignant melanoma of the skin and its relation to clinical outcome. Histol Histopathol. 20:501–508. 2005.PubMed/NCBI | |
Shapira M, Ben-Izhak O, Linn S, et al: The prognostic impact of the ubiquitin ligase subunits Skp2 and Cks1 in colorectal carcinoma. Cancer. 103:1336–1346. 2005. View Article : Google Scholar : PubMed/NCBI | |
Xu SY, Wang F, Wei G, et al: S-phase kinase-associated protein 2 knockdown blocks colorectal cancer growth via regulation of both p27 and p16 expression. Cancer Gene Ther. 20:690–694. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Mo X, Yu J, et al: Interference of Skp2 effectively inhibits the development and metastasis of colon carcinoma. Mol Med Rep. 10:1129–1135. 2014.PubMed/NCBI | |
Zhu J, Li K, Dong L and Chen Y: Role of FBXL20 in human colorectal adenocarcinoma. Oncol Rep. 28:2290–2298. 2012.PubMed/NCBI | |
Zhu J, Deng S, Duan J, et al: FBXL20 acts as an invasion inducer and mediates E-cadherin in colorectal adenocarcinoma. Oncol Lett. 7:2185–2191. 2014.PubMed/NCBI | |
Babaei-Jadidi R, Li N, Saadeddin A, et al: FBXW7 influences murine intestinal homeostasis and cancer, targeting Notch, Jun, and DEK for degradation. J Exp Med. 208:295–312. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rajagopalan H, Jallepalli PV, Rago C, et al: Inactivation of hCDC4 can cause chromosomal instability. Nature. 428:77–81. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sancho R, Jandke A, Davis H, et al: F-box and WD repeat domain-containing 7 regulates intestinal cell lineage commitment and is a haploinsufficient tumor suppressor. Gastroenterology. 139:929–941. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jahid S, Sun J, Edwards RA, et al: miR-23a promotes the transition from indolent to invasive colorectal cancer. Cancer Discov. 2:540–553. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liu Y, Lu J, et al: Rapamycin inhibits FBXW7 loss-induced epithelial-mesenchymal transition and cancer stem cell-like characteristics in colorectal cancer cells. Biochem Biophys Res Commun. 434:352–356. 2013. View Article : Google Scholar : PubMed/NCBI | |
Aberle H, Bauer A, Stappert J, et al: Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16:3797–3804. 1997. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Wei P, Gong A, et al: FoxM1 promotes β-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell. 20:427–442. 2011. | |
Mokkapati S, Niopek K, Huang L, et al: β-catenin activation in a novel liver progenitor cell type is sufficient to cause hepatocellular carcinoma and hepatoblastoma. Cancer Res. 74:4515–4525. 2014. | |
Shirane M, Hatakeyama S, Hattori K, et al: Common pathway for the ubiquitination of IkappaBalpha, IkappaBbeta, and IkappaBepsilon mediated by the F-box protein FWD1. J Biol Chem. 274:28169–28174. 1999. View Article : Google Scholar : PubMed/NCBI | |
Spiegelman VS, Slaga TJ, Pagano M, et al: Wnt/beta-catenin signaling induces the expression and activity of beta-TrCP ubiquitin ligase receptor. Mol Cell. 5:877–882. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ougolkov A, Zhang B, Yamashita K, et al: Associations among beta-TrCP, an E3 ubiquitin ligase receptor, beta-catenin, and NF-kappaB in colorectal cancer. J Natl Cancer Inst. 96:1161–1170. 2004. View Article : Google Scholar : PubMed/NCBI | |
Alinari L, White VL, Earl CT, et al: Combination bortezomib and rituximab treatment affects multiple survival and death pathways to promote apoptosis in mantle cell lymphoma. MAbs. 1:31–40. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kane RC, Bross PF, Farrell AT and Pazdur R: Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist. 8:508–513. 2003. View Article : Google Scholar : PubMed/NCBI |