The Akt pathway in oncology therapy and beyond (Review)
- Authors:
- George Mihai Nitulescu
- Maryna Van De Venter
- Georgiana Nitulescu
- Anca Ungurianu
- Petras Juzenas
- Qian Peng
- Octavian Tudorel Olaru
- Daniela Grădinaru
- Aristides Tsatsakis
- Dimitris Tsoukalas
- Demetrios A. Spandidos
- Denisa Margina
-
Affiliations: Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, 020956 Bucharest, Romania, Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth 6031, South Africa, Department of Pathology, Radiumhospitalet, Oslo University Hospital, 0379 Oslo, Norway, Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece, Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece - Published online on: October 16, 2018 https://doi.org/10.3892/ijo.2018.4597
- Pages: 2319-2331
-
Copyright: © Nitulescu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bellacosa A, de Feo D, Godwin AK, Bell DW, Cheng JQ, Altomare DA, Wan M, Dubeau L, Scambia G, Masciullo V, et al: Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer. 64:280–285. 1995. View Article : Google Scholar : PubMed/NCBI | |
Bellacosa A, Kumar CC, Di Cristofano A and Testa JR: Activation of AKT kinases in cancer: Implications for therapeutic targeting. Adv Cancer Res. 94:29–86. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C and González-Barón M: PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 30:193–204. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhao GX, Pan H, Ouyang DY and He XH: The critical molecular interconnections in regulating apoptosis and autophagy. Ann Med. 47:305–315. 2015. View Article : Google Scholar : PubMed/NCBI | |
Duronio V: The life of a cell: Apoptosis regulation by the PI3K/PKB pathway. Biochem J. 415:333–344. 2008. View Article : Google Scholar : PubMed/NCBI | |
Song G, Ouyang G and Bao S: The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med. 9:59–71. 2005. View Article : Google Scholar : PubMed/NCBI | |
Coffer PJ and Woodgett JR: Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem. 201:475–481. 1991. View Article : Google Scholar : PubMed/NCBI | |
Jones PF, Jakubowicz T, Pitossi FJ, Maurer F and Hemmings BA: Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci USA. 88:4171–4175. 1991. View Article : Google Scholar : PubMed/NCBI | |
Bellacosa A, Testa J, Staal SP and Tsichlis PN: A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science. 254:274–277. 1991. View Article : Google Scholar : PubMed/NCBI | |
Scheid MP and Woodgett JR: Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Lett. 546:108–112. 2003. View Article : Google Scholar : PubMed/NCBI | |
Brazil DP, Yang ZZ and Hemmings BA: Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci. 29:233–242. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rodgers SJ, Ferguson DT, Mitchell CA and Ooms LM: Regulation of PI3K effector signalling in cancer by the phosphoinositide phosphatases. Biosci Rep. 37:372017. View Article : Google Scholar | |
Dobbin ZC and Landen CN: The importance of the PI3K/AKT/MTOR pathway in the progression of ovarian cancer. Int J Mol Sci. 14:8213–8227. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ahmad A, Biersack B, Li Y, Kong D, Bao B, Schobert R, Padhye SB and Sarkar FH: Targeted regulation of PI3K/Akt/mTOR/NF-κB signaling by indole compounds and their derivatives: Mechanistic details and biological implications for cancer therapy. Anticancer Agents Med Chem. 13:1002–1013. 2013. View Article : Google Scholar : PubMed/NCBI | |
Montaño A, Forero-Castro M, Marchena-Mendoza D, Benito R and Hernández-Rivas JM: New Challenges in Targeting Signaling Pathways in Acute Lymphoblastic Leukemia by NGS Approaches: An Update. Cancers (Basel). 10. pp. 102018, View Article : Google Scholar | |
Altomare DA and Testa JR: Perturbations of the AKT signaling pathway in human cancer. Oncogene. 24:7455–7464. 2005. View Article : Google Scholar : PubMed/NCBI | |
Conus NM, Hannan KM, Cristiano BE, Hemmings BA and Pearson RB: Direct identification of tyrosine 474 as a regulatory phosphorylation site for the Akt protein kinase. J Biol Chem. 277:38021–38028. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mora A, Komander D, van Aalten DMF and Alessi DR: PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol. 15:161–170. 2004. View Article : Google Scholar : PubMed/NCBI | |
Memmott RM and Dennis PA: Akt-dependent and -independent mechanisms of mTOR regulation in cancer. Cell Signal. 21:656–664. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jhaveri K and Modi S: Ganetespib: Research and clinical development. Onco Targets Ther. 8:1849–1858. 2015.PubMed/NCBI | |
Georgescu MM: PTEN tumor suppressor network in PI3K-Akt pathway control. Genes Cancer. 1:1170–1177. 2010. View Article : Google Scholar | |
Hers I, Vincent EE and Tavaré JM: Akt signalling in health and disease. Cell Signal. 23:1515–1527. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Cheng H, Roberts TM and Zhao JJ: Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 8:627–644. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hindupur SK, González A and Hall MN: The opposing actions of target of rapamycin and AMP-activated protein kinase in cell growth control. Cold Spring Harb Perspect Biol. 7:a0191412015. View Article : Google Scholar : PubMed/NCBI | |
Soliman GA: The role of mechanistic target of rapamycin (mTOR) complexes signaling in the immune responses. Nutrients. 5:2231–2257. 2013. View Article : Google Scholar : PubMed/NCBI | |
Laplante M and Sabatini DM: mTOR signaling in growth control and disease. Cell. 149:274–293. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sarbassov DD, Guertin DA, Ali SM and Sabatini DM: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 307:1098–1101. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bozulic L and Hemmings BA: PIKKing on PKB: Regulation of PKB activity by phosphorylation. Curr Opin Cell Biol. 21:256–261. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nitulescu GM, Margina D, Juzenas P, Peng Q, Olaru OT, Saloustros E, Fenga C, Spandidos DA, Libra M and Tsatsakis AM: Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review). Int J Oncol. 48:869–885. 2016. View Article : Google Scholar : | |
Inoki K, Li Y, Zhu T, Wu J and Guan KL: TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 4:648–657. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hay N and Sonenberg N: Upstream and downstream of mTOR. Genes Dev. 18:1926–1945. 2004. View Article : Google Scholar : PubMed/NCBI | |
Dowling RJ, Topisirovic I, Alain T, Bidinosti M, Fonseca BD, Petroulakis E, Wang X, Larsson O, Selvaraj A, Liu Y, et al: mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science. 328:1172–1176. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yu C, Li WB, Liu JB, Lu JW and Feng JF: Autophagy: Novel applications of nonsteroidal anti-inflammatory drugs for primary cancer. Cancer Med. 7:471–484. 2018. View Article : Google Scholar | |
Zhang X, Tang N, Hadden TJ and Rishi AK: Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta. 1813:1978–1986. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jin J, Jin L, Lim SW and Yang CW: Klotho deficiency aggravates tacrolimus-induced renal injury via the phosphatidylinositol 3-kinase-Akt-Forkhead box protein O pathway. Am J Nephrol. 43:357–365. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ouyang ZH, Wang WJ, Yan YG, Wang B and Lv GH: The PI3K/Akt pathway: A critical player in intervertebral disc degeneration. Oncotarget. 8:57870–57881. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pommier Y, Sordet O, Antony S, Hayward RL and Kohn KW: Apoptosis defects and chemotherapy resistance: Molecular interaction maps and networks. Oncogene. 23:2934–2949. 2004. View Article : Google Scholar : PubMed/NCBI | |
Liao Y and Hung MC: Physiological regulation of Akt activity and stability. Am J Transl Res. 2:19–42. 2010.PubMed/NCBI | |
Brognard J, Sierecki E, Gao T and Newton AC: PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell. 25:917–931. 2007. View Article : Google Scholar : PubMed/NCBI | |
Newton AC and Trotman LC: Turning off AKT: PHLPP as a drug target. Annu Rev Pharmacol Toxicol. 54:537–558. 2014. View Article : Google Scholar : PubMed/NCBI | |
Haddadi N, Lin Y, Travis G, Simpson AM, Nassif NT and McGowan EM: PTEN/PTENP1: 'Regulating the regulator of RTK-dependent PI3K/Akt signalling', new targets for cancer therapy. Mol Cancer. 17:372018. View Article : Google Scholar : PubMed/NCBI | |
Brown JS and Banerji U: Maximising the potential of AKT inhibitors as anti-cancer treatments. Pharmacol Ther. 172:101–115. 2017. View Article : Google Scholar | |
Huck BR and Mochalkin I: Recent progress towards clinically relevant ATP-competitive Akt inhibitors. Bioorg Med Chem Lett. 27:2838–2848. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Chen X and Hay N: Akt as a target for cancer therapy: More is not always better (lessons from studies in mice). Br J Cancer. 117:159–163. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chalhoub N and Baker SJ: PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol. 4:127–150. 2009. View Article : Google Scholar : | |
Nakatani K, Thompson DA, Barthel A, Sakaue H, Liu W, Weigel RJ and Roth RA: Up-regulation of Akt3 in estrogen receptor-deficient breast cancers and androgen-independent prostate cancer lines. J Biol Chem. 274:21528–21532. 1999. View Article : Google Scholar : PubMed/NCBI | |
Cristiano BE, Chan JC, Hannan KM, Lundie NA, Marmy-Conus NJ, Campbell IG, Phillips WA, Robbie M, Hannan RD and Pearson RB: A specific role for AKT3 in the genesis of ovarian cancer through modulation of G(2)-M phase transition. Cancer Res. 66:11718–11725. 2006. View Article : Google Scholar : PubMed/NCBI | |
Xia P and Xu XY: PI3K/Akt/mTOR signaling pathway in cancer stem cells: From basic research to clinical application. Am J Cancer Res. 5:1602–1609. 2015.PubMed/NCBI | |
Milella M, Falcone I, Conciatori F, Cesta Incani U, Del Curatolo A, Inzerilli N, Nuzzo CM, Vaccaro V, Vari S, Cognetti F, et al: PTEN: Multiple functions in human malignant tumors. Front Oncol. 5:242015. View Article : Google Scholar : PubMed/NCBI | |
Sato K, Tsuchihara K, Fujii S, Sugiyama M, Goya T, Atomi Y, Ueno T, Ochiai A, Esumi H, et al: Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res. 67:9677–9684. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huang KH, Kuo KL, Ho IL, Chang HC, Chuang YT, Lin WC, Lee PY, Chang SC, Chiang CK, Pu YS, et al: Celecoxib-induced cytotoxic effect is potentiated by inhibition of autophagy in human urothelial carcinoma cells. PLoS One. 8:e820342013. View Article : Google Scholar : PubMed/NCBI | |
Bibbins-Domingo K: US Preventive Services Task Force: Aspirin use for the primary prevention of cardiovascular disease and colorectal cancer: US preventive services task force recommendation statement. Ann Intern Med. 164:836–845. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zheng HC: The molecular mechanisms of chemoresistance in cancers. Oncotarget. 8:59950–59964. 2017.PubMed/NCBI | |
Dasari S and Tchounwou PB: Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol. 740:364–378. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tao K, Yin Y, Shen Q, Chen Y, Li R, Chang W, Bai J, Liu W, Shi L and Zhang P: Akt inhibitor MK-2206 enhances the effect of cisplatin in gastric cancer cells. Biomed Rep. 4:365–368. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin YH, Chen BYH, Lai WT, Wu SF, Guh JH, Cheng AL and Hsu LC: The Akt inhibitor MK-2206 enhances the cytotoxicity of paclitaxel (Taxol) and cisplatin in ovarian cancer cells. Naunyn Schmiedebergs Arch Pharmacol. 388:19–31. 2015. View Article : Google Scholar | |
Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen NT, et al: PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 6:117–127. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nahta R, Yu D, Hung MC, Hortobagyi GN and Esteva FJ: Mechanisms of disease: Understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol. 3:269–280. 2006. View Article : Google Scholar : PubMed/NCBI | |
Crowell JA, Steele VE and Fay JR: Targeting the AKT protein kinase for cancer chemoprevention. Mol Cancer Ther. 6:2139–2148. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mayer IA and Arteaga CL: The PI3K/AKT pathway as a target for cancer treatment. Annu Rev Med. 67:11–28. 2016. View Article : Google Scholar | |
Geuna E, Roda D, Rafii S, Jimenez B, Capelan M, Rihawi K, Montemurro F, Yap TA, Kaye SB, De Bono JS, et al: Complications of hyperglycaemia with PI3K-AKT-mTOR inhibitors in patients with advanced solid tumours on Phase I clinical trials. Br J Cancer. 113:1541–1547. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ribeiro FM, Paquet M, Cregan SP and Ferguson SS: Group I metabotropic glutamate receptor signalling and its implication in neurological disease. CNS Neurol Disord Drug Targets. 9:574–595. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sattler R and Tymianski M: Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol. 24:107–129. 2001. View Article : Google Scholar | |
Baskys A, Bayazitov I, Fang L, Blaabjerg M, Poulsen FR and Zimmer J: Group I metabotropic glutamate receptors reduce excitotoxic injury and may facilitate neurogenesis. Neuropharmacology. 49(Suppl 1): 146–156. 2005. View Article : Google Scholar : PubMed/NCBI | |
Costa C, Tsatsakis A, Mamoulakis C, Teodoro M, Briguglio G, Caruso E, Tsoukalas D, Margina D, Dardiotis E, Kouretas D, et al: Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem Toxicol. 110:286–299. 2017. View Article : Google Scholar : PubMed/NCBI | |
Reddy PH: Amyloid beta-induced glycogen synthase kinase 3β phosphorylated VDAC1 in Alzheimer's disease: implications for synaptic dysfunction and neuronal damage. Biochim Biophys Acta. 1832:1913–1921. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hernandez F, Lucas JJ and Avila J: GSK3 and tau: Two convergence points in Alzheimer's disease. J Alzheimers Dis. 3(Suppl 1): 141–144. 2012. View Article : Google Scholar | |
Li X, Lu F, Tian Q, Yang Y, Wang Q and Wang JZ: Activation of glycogen synthase kinase-3 induces Alzheimer-like tau hyper-phosphorylation in rat hippocampus slices in culture. J Neural Transm (Vienna). 113:93–102. 2006. View Article : Google Scholar | |
Luo HR, Hattori H, Hossain MA, Hester L, Huang Y, Lee-Kwon W, Donowitz M, Nagata E and Snyder SH: Akt as a mediator of cell death. Proc Natl Acad Sci USA. 100:11712–11717. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wang R and Reddy PH: Role of glutamate and NMDA receptors in Alzheimer's disease. J Alzheimers Dis. 57:1041–1048. 2017. View Article : Google Scholar | |
Ferrarelli LK: PTEN contributes to Alzheimer's disease. Sci Signal. 9:ec452016. View Article : Google Scholar | |
Frere S and Slutsky I: Targeting PTEN interactions for Alzheimer's disease. Nat Neurosci. 19:416–418. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Chen B, Xu WF, Liu RF, Yang J and Yu CX: Effects of PTEN inhibition on regulation of tau phosphorylation in an okadaic acid-induced neurodegeneration model. Int J Dev Neurosci. 30:411–419. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jo H, Mondal S, Tan D, Nagata E, Takizawa S, Sharma AK, Hou Q, Shanmugasundaram K, Prasad A, Tung JK, et al: Small molecule-induced cytosolic activation of protein kinase Akt rescues ischemia-elicited neuronal death. Proc Natl Acad Sci USA. 109:10581–10586. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pulido R: PTEN inhibition in human disease therapy. Molecules. 23:E2852018. View Article : Google Scholar : PubMed/NCBI | |
Mhyre TR, Boyd JT, Hamill RW and Maguire-Zeiss KA: Parkinson's disease. Subcell Biochem. 65:389–455. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Gao YW and Yang Y: SC79 protects dopaminergic neurons from oxidative stress. Oncotarget. 9:12639–12648. 2017. | |
Pariyar R, Lamichhane R, Jung HJ, Kim SY and Seo J: Sulfuretin attenuates MPP+-induced neurotoxicity through Akt/GSK3β and ERK signaling pathways. Int J Mol Sci. 18:E27532017. View Article : Google Scholar | |
Hu M, Li F and Wang W: Vitexin protects dopaminergic neurons in MPTP-induced Parkinson's disease through PI3K/Akt signaling pathway. Drug Des Devel Ther. 12:565–573. 2018. View Article : Google Scholar : PubMed/NCBI | |
Masaki K and Douglas Z: Diabetic neuropathy and the sensory neuron: New aspects of pathogenesis and their treatment implications. J Diabetes Investig. Mar 13–2018.Epub ahead of print. View Article : Google Scholar | |
Boucher J, Kleinridders A and Kahn CR: Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 6:a0091912014. View Article : Google Scholar : PubMed/NCBI | |
Zaid H, Antonescu CN, Randhawa VK and Klip A: Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem J. 413:201–215. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lim CY, Bi X, Wu D, Kim JB, Gunning PW, Hong W and Han W: Tropomodulin3 is a novel Akt2 effector regulating insulin-stimulated GLUT4 exocytosis through cortical actin remodeling. Nat Commun. 6:59512015. View Article : Google Scholar : PubMed/NCBI | |
Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB III, Kaestner KH, Bartolomei MS, Shulman GI and Birnbaum MJ: Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science. 292:1728–1731. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gradinaru D, Khaddour H, Margina D, Ungurianu A, Borsa C, Ionescu C, Prada GI, Usher J and Elshimali Y: Insulin-leptin axis, cardiometabolic risk and oxidative stress in elderly with metabolic syndrome. Exp Clin Endocrinol Diabetes. 126:445–452. 2018. View Article : Google Scholar | |
Koren S, DiPilato LM, Emmett MJ, Shearin AL, Chu Q, Monks B and Birnbaum MJ: The role of mouse Akt2 in insulin-dependent suppression of adipocyte lipolysis in vivo. Diabetologia. 58:1063–1070. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hussain K, Challis B, Rocha N, Payne F, Minic M, Thompson A, Daly A, Scott C, Harris J, Smillie BJ, et al: An activating mutation of AKT2 and human hypoglycemia. Science. 334:4742011. View Article : Google Scholar : PubMed/NCBI | |
Badea M, Olar R, Uivarosi V, Marinescu D, Aldea V, Barbuceanu SF and Nitulescu GM: Thermal behavior of some vanadyl complexes with flavone derivatives as potential insulin- mimetic agents. J Therm Anal Calorim. 105:1052011. View Article : Google Scholar | |
Domingo JL and Gómez M: Vanadium compounds for the treatment of human diabetes mellitus: A scientific curiosity? A review of thirty years of research. Food Chem Toxicol. 95:137–141. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sierecki E, Sinko W, McCammon JA and Newton AC: Discovery of small molecule inhibitors of the PH domain leucine-rich repeat protein phosphatase (PHLPP) by chemical and virtual screening. J Med Chem. 53:6899–6911. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhao W and Zhao SP: Different effects of statins on induction of diabetes mellitus: An experimental study. Drug Des Devel Ther. 9:6211–6223. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bonifacio A, Sanvee GM, Bouitbir J and Krähenbühl S: The AKT/mTOR signaling pathway plays a key role in statin-induced myotoxicity. Biochim Biophys Acta. 1853:1841–1849. 2015. View Article : Google Scholar : PubMed/NCBI | |
Beckwitt CH, Shiraha K and Wells A: Lipophilic statins limit cancer cell growth and survival, via involvement of Akt signaling. PLoS One. 13:e01974222018. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Littlewood T and Bennett M: Akt isoforms in vascular disease. Vascul Pharmacol. 71:57–64. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rotllan N, Chamorro-Jorganes A, Araldi E, Wanschel AC, Aryal B, Aranda JF, Goedeke L, Salerno AG, Ramírez CM, Sessa WC, et al: Hematopoietic Akt2 deficiency attenuates the progression of atherosclerosis. FASEB J. 29:597–610. 2015. View Article : Google Scholar : | |
Yao S, Fan LY and Lam EW: The FOXO3 FOXM1 axis: A key cancer drug target and a modulator of cancer drug resistance. Semin Cancer Biol. 50:77–89. 2018. View Article : Google Scholar | |
Dhalla NS and Müller AL: Protein kinases as drug development targets for heart disease therapy. Pharmaceuticals (Basel). 3:2111–2145. 2010. View Article : Google Scholar | |
McMullen JR, Boey EJ, Ooi JY, Seymour JF, Keating MJ and Tam CS: Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K-Akt signaling. Blood. 124:3829–3830. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pretorius L, Du XJ, Woodcock EA, Kiriazis H, Lin RC, Marasco S, Medcalf RL, Ming Z, Head GA, Tan JW, et al: Reduced phosphoinositide 3-kinase (p110α) activation increases the susceptibility to atrial fibrillation. Am J Pathol. 175:998–1009. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ezeani M and Elom S: Necessity to evaluate PI3K/Akt signalling pathway in proarrhythmia. Open Hear. 4:e0005962017. View Article : Google Scholar | |
Tamura M, Gu J, Danen EHJ, Takino T, Miyamoto S and Yamada KM: PTEN interactions with focal adhesion kinase and suppression of the extracellular matrix-dependent phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem. 274:20693–20703. 1999. View Article : Google Scholar : PubMed/NCBI | |
Nho RS, Hergert P, Kahm J, Jessurun J and Henke C: Pathological alteration of FoxO3a activity promotes idiopathic pulmonary fibrosis fibroblast proliferation on type i collagen matrix. Am J Pathol. 179:2420–2430. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lawrence J and Nho R: The Role of the Mammalian Target of Rapamycin (mTOR) in Pulmonary Fibrosis. Int J Mol Sci. 19:7782018. View Article : Google Scholar : | |
Xia H, Khalil W, Kahm J, Jessurun J, Kleidon J and Henke CA: Pathologic caveolin-1 regulation of PTEN in idiopathic pulmonary fibrosis. Am J Pathol. 176:2626–2637. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nho RS, Peterson M, Hergert P and Henke CA: FoxO3a (Forkhead Box O3a) deficiency protects Idiopathic Pulmonary Fibrosis (IPF) fibroblasts from type I polymerized collagen matrix-induced apoptosis via caveolin-1 (cav-1) and Fas. PLoS One. 8:e610172013. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Azad N, Wang L, Iyer AKV, Castranova V, Jiang BH and Rojanasakul Y: Phosphatidylinositol-3-kinase/akt regulates bleomycin-induced fibroblast proliferation and collagen production. Am J Respir Cell Mol Biol. 42:432–441. 2010. View Article : Google Scholar : | |
Saito S, Zhuang Y, Shan B, Danchuk S, Luo F, Korfei M, Guenther A and Lasky JA: Tubastatin ameliorates pulmonary fibrosis by targeting the TGFβ-PI3K-Akt pathway. PLoS One. 12:e01866152017. View Article : Google Scholar | |
Theofilopoulos AN, Kono DH and Baccala R: The multiple pathways to autoimmunity. Nat Immunol. 18:716–724. 2017. View Article : Google Scholar : PubMed/NCBI | |
Goodnow CC, Crosbie J, Adelstein S, Lavoie TB, Smith-Gill SJ, Brink RA, Pritchard-Briscoe H, Wotherspoon JS, Loblay RH, Raphael K, et al: Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature. 334:676–682. 1988. View Article : Google Scholar : PubMed/NCBI | |
Sakaguchi S: Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 6:345–352. 2005. View Article : Google Scholar : PubMed/NCBI | |
Matthews R: Autoimmune diseases. The B cell slayer. Science. 318:1232–1233. 2007. View Article : Google Scholar : PubMed/NCBI | |
Waldman M and Madaio MP: Pathogenic autoantibodies in lupus nephritis. Lupus. 14:19–24. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lai ZW, Borsuk R, Shadakshari A, Yu J, Dawood M, Garcia R, Francis L, Tily H, Bartos A, Faraone SV, et al: Mechanistic target of rapamycin activation triggers IL-4 production and necrotic death of double-negative T cells in patients with systemic lupus erythematosus. J Immunol. 191:2236–2246. 2013. View Article : Google Scholar : PubMed/NCBI | |
Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB and Pandolfi PP: Impaired Fas response and autoimmunity in Pten+/− mice. Science. 285:2122–2125. 1999. View Article : Google Scholar : PubMed/NCBI | |
Carbone F, De Rosa V, Carrieri PB, Montella S, Bruzzese D, Porcellini A, Procaccini C, La Cava A and Matarese G: Regulatory T cell proliferative potential is impaired in human autoimmune disease. Nat Med. 20:69–74. 2014. View Article : Google Scholar | |
Zhang HG, Wang Y, Xie JF, Liang X, Liu D, Yang P, Hsu HC, Ray RB and Mountz JD: Regulation of tumor necrosis factor α-mediated apoptosis of rheumatoid arthritis synovial fibroblasts by the protein kinase Akt. Arthritis Rheum. 44:1555–1567. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chimenti MS, Triggianese P, Conigliaro P, Candi E, Melino G and Perricone R: The interplay between inflammation and metabolism in rheumatoid arthritis. Cell Death Dis. 6:e18872015. View Article : Google Scholar : PubMed/NCBI | |
Warner LM, Adams LM and Sehgal SN: Rapamycin prolongs survival and arrests pathophysiologic changes in murine systemic lupus erythematosus. Arthritis Rheum. 37:289–297. 1994. View Article : Google Scholar : PubMed/NCBI | |
Fernandez D, Bonilla E, Mirza N, Niland B and Perl A: Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheum. 54:2983–2988. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wu T and Mohan C: The AKT axis as a therapeutic target in autoimmune diseases. Endocr Metab Immune Disord Drug Targets. 9:145–150. 2009. View Article : Google Scholar : PubMed/NCBI | |
Juarez M, Schcolnik-Cabrera A and Dueñas-Gonzalez A: The multitargeted drug ivermectin: From an antiparasitic agent to a repositioned cancer drug. Am J Cancer Res. 8:317–331. 2018.PubMed/NCBI | |
Li Q, Ni W, Deng Z, Liu M, She L and Xie Q: Targeting nasopharyngeal carcinoma by artesunate through inhibiting Akt/mTOR and inducing oxidative stress. Fundam Clin Pharmacol. 31:301–310. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tan Z, Peng A, Xu J and Ouyang M: Propofol enhances BCR-ABL TKIs' inhibitory effects in chronic myeloid leukemia through Akt/mTOR suppression. BMC Anesthesiol. 17:1322017. View Article : Google Scholar : PubMed/NCBI | |
Dana P, Vaeteewoottacharn K, Kariya R, Matsuda K, Wongkham S and Okada S: Repurposing cimetidine for cholangiocarcinoma: Antitumor effects in vitro and in vivo. Oncol Lett. 13:1432–1436. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tsubamoto H, Inoue K, Sakata K, Ueda T, Takeyama R, Shibahara H and Sonoda T: Itraconazole inhibits AKT/mTOR signaling and proliferation in endometrial cancer cells. Anticancer Res. 37:515–519. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pan YJ, Wang WH, Huang TY, Weng WH, Fang CK, Chen YC and Hwang JJ: Quetiapine ameliorates collagen-induced arthritis in mice via the suppression of the AKT and ERK signaling pathways. Inflamm Res. 67:847–861. 2018. View Article : Google Scholar : PubMed/NCBI | |
Margină D, Ilie M, Grădinaru D, Androutsopoulos VP, Kouretas D and Tsatsakis AM: Natural products-friends or foes? Toxicol Lett. 236:154–167. 2015. View Article : Google Scholar | |
Seca AML and Pinto DCGA: Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int J Mol Sci. 19:2632018. View Article : Google Scholar : | |
Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB and Kondo Y: Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: Role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol. 72:29–39. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tang FY, Shih CJ, Cheng LH, Ho HJ and Chen HJ: Lycopene inhibits growth of human colon cancer cells via suppression of the Akt signaling pathway. Mol Nutr Food Res. 52:646–654. 2008. View Article : Google Scholar : PubMed/NCBI | |
Schmidt C, Loos C, Jin L, Schmiech M, Schmidt CQ, Gaafary ME, Syrovets T and Simmet T: Acetyl-lupeolic acid inhibits Akt signaling and induces apoptosis in chemoresistant prostate cancer cells in vitro and in vivo. Oncotarget. 8:55147–55161. 2017. View Article : Google Scholar : PubMed/NCBI | |
Estrada AC, Syrovets T, Pitterle K, Lunov O, Büchele B, Schimana-Pfeifer J, Schmidt T, Morad SA and Simmet T: Tirucallic acids are novel pleckstrin homology domain-dependent Akt inhibitors inducing apoptosis in prostate cancer cells. Mol Pharmacol. 77:378–387. 2010. View Article : Google Scholar | |
Han HY, Kim HJ, Jeong SH, Kim J, Jeong SH, Kim GC, Hwang DS, Kim UK and Ryu MH: The flavonoid Jaceosidin from Artemisia princeps induces apoptotic cell death and inhibits the Akt pathway in oral cancer cells. Evid Based Complement Alternat Med. 2018:57650472018. View Article : Google Scholar : | |
Lin CH, Chang CY, Lee KR, Lin HJ, Chen TH and Wan L: Flavones inhibit breast cancer proliferation through the Akt/FOXO3a signaling pathway. BMC Cancer. 15:9582015. View Article : Google Scholar : PubMed/NCBI | |
Lim W, Yang C, Bazer FW and Song G: Luteolin inhibits proliferation and induces apoptosis of human placental choriocarcinoma cells by blocking the PI3K/AKT pathway and regulating sterol regulatory element binding protein activity. Biol Reprod. 95:822016. View Article : Google Scholar : PubMed/NCBI | |
Carpi S, Polini B, Poli G, Alcantara Barata G, Fogli S, Romanini A, Tuccinardi T, Guella G, Frontini FP, Nieri P, et al: Anticancer activity of euplotin C, isolated from the marine ciliate Euplotes crassus, against human melanoma cells. Mar Drugs. 16:E1662018. View Article : Google Scholar | |
Guerra AC, Soares LA, Ferreira MR, Araújo AA, Rocha HA, Medeiros JS, Cavalcante RD and Júnior RF: Libidibia ferrea presents antiproliferative, apoptotic and antioxidant effects in a colorectal cancer cell line. Biomed Pharmacother. 92:696–706. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Liu Y, Wang M, Qian Y, Dai X, Zhu Y, Chen J, Guo S and Hisamitsu T: Celastrus orbiculatus extract triggers apoptosis and autophagy via PI3K/Akt/mTOR inhibition in human colorectal cancer cells. Oncol Lett. 12:3771–3778. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou R, Chen H, Chen J, Chen X, Wen Y and Xu L: Extract from Astragalus membranaceus inhibit breast cancer cells proliferation via PI3K/AKT/mTOR signaling pathway. BMC Complement Altern Med. 18:832018. View Article : Google Scholar : PubMed/NCBI | |
Wong FC, Woo CC, Hsu A and Tan BKH: The anti-cancer activities of Vernonia amygdalina extract in human breast cancer cell lines are mediated through caspase-dependent and p53-independent pathways. PLoS One. 8:e780212013. View Article : Google Scholar : PubMed/NCBI | |
Olaru OT, Niţulescu GM, Ortan A and Dinu-Pîrvu CE: Ethnomedicinal, phytochemical and pharmacological profile of anthriscus sylvestris as an alternative source for anticancer lignans. Molecules. 20:15003–15022. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gunadharini DN, Elumalai P, Arunkumar R, Senthilkumar K and Arunakaran J: Induction of apoptosis and inhibition of PI3K/Akt pathway in PC-3 and LNCaP prostate cancer cells by ethanolic neem leaf extract. J Ethnopharmacol. 134:644–650. 2011. View Article : Google Scholar : PubMed/NCBI | |
Olaru OT and Venables L: Anticancer potential of selected Fallopia Adans species. Oncol Lett. 10:1323–1332. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ying C, Mao Y, Chen L, Wang S, Ling H, Li W and Zhou X: Bamboo leaf extract ameliorates diabetic nephropathy through activating the AKT signaling pathway in rats. Int J Biol Macromol. 105:1587–1594. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lu Q, Zuo WZ, Ji XJ, Zhou YX, Liu YQ, Yao XQ, Zhou XY, Liu YW, Zhang F and Yin XX: Ethanolic Ginkgo biloba leaf extract prevents renal fibrosis through Akt/mTOR signaling in diabetic nephropathy. Phytomedicine. 22:1071–1078. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dai B, Wu Q, Zeng C, Zhang J, Cao L, Xiao Z and Yang M: The effect of Liuwei Dihuang decoction on PI3K/Akt signaling pathway in liver of type 2 diabetes mellitus (T2DM) rats with insulin resistance. J Ethnopharmacol. 192:382–389. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Guo Q, Qin C, Shang R and Zhang Z: Sea buckthorn fruit oil extract alleviates insulin resistance through the PI3K/Akt signaling pathway in type 2 diabetes mellitus cells and rats. J Agric Food Chem. 65:1328–1336. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mundi PS, Sachdev J, McCourt C and Kalinsky K: AKT in cancer: New molecular insights and advances in drug development. Br J Clin Pharmacol. 82:943–956. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dorlo TP, Balasegaram M, Beijnen JH and de Vries PJ: Beijnen JH and de vries PJ: Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother. 67:2576–2597. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pal SK, Reckamp K, Yu H and Figlin RA: Akt inhibitors in clinical development for the treatment of cancer. Expert Opin Investig Drugs. 19:1355–1366. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mattmann ME, Stoops SL and Lindsley CW: Inhibition of Akt with small molecules and biologics: Historical perspective and current status of the patent landscape. Expert Opin Ther Pat. 21:1309–1338. 2011. View Article : Google Scholar : PubMed/NCBI | |
Davies BR, Greenwood H, Dudley P, Crafter C, Yu DH, Zhang J, Li J, Gao B, Ji Q, Maynard J, et al: Preclinical pharmacology of AZD5363, an inhibitor of AKT: Pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background. Mol Cancer Ther. 11:873–887. 2012. View Article : Google Scholar : PubMed/NCBI | |
Banerji U, Dean EJ, Pérez-Fidalgo JA, Batist G, Bedard PL, You B, Westin SN, Kabos P, Garrett MD, Tall M, et al: A phase I open-label study to identify a dosing regimen of the Pan-AKT inhibitor AZD5363 for evaluation in solid tumors and in PIK3CA-mutated breast and gynecologic cancers. Clin Cancer Res. 24:2050–2059. 2018. View Article : Google Scholar | |
Sundar R, Chénard-Poirier M, Collins DC and Yap TA: Imprecision in the era of precision medicine in non-small cell lung cancer. Front Med (Lausanne). 4:392017. | |
Saura C, Roda D, Roselló S, Oliveira M, Macarulla T, Pérez-Fidalgo JA, Morales-Barrera R, Sanchis-García JM, Musib L, Budha N, et al: A first-in-human phase I study of the ATP-competitive AKT inhibitor ipatasertib demonstrates robust and safe targeting of AKT in patients with solid tumors. Cancer Discov. 7:102–113. 2017. View Article : Google Scholar : | |
Dent RA, Kim SB, Im SA, Espie M, Blau S, Tan AR, Isakoff S, Oliveira M, Saura C, Wongchenko M, et al: LOTUS (NCT02162719): A double-blind placebo (PBO)-controlled randomized phase II trial of first-line ipatasertib (IPAT) + paclitaxel (P) for metastatic triple-negative breast cancer (TNBC). J Clin Oncol. 35(Suppl 15): 10092017. View Article : Google Scholar | |
Dumble M, Crouthamel M-C, Zhang S-Y, Schaber M, Levy D, Robell K, Liu Q, Figueroa DJ, Minthorn EA, Seefeld MA, et al: Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor. PLoS One. 9:e1008802014. View Article : Google Scholar : PubMed/NCBI | |
Spencer A, Yoon SS, Harrison SJ, Morris SR, Smith DA, Brigandi RA, Gauvin J, Kumar R, Opalinska JB and Chen C: The novel AKT inhibitor afuresertib shows favorable safety, pharmacokinetics, and clinical activity in multiple myeloma. Blood. 124:2190–2195. 2014. View Article : Google Scholar : PubMed/NCBI | |
Arceci RJ, Allen CE, Dunkel IJ, Jacobsen E, Whitlock J, Vassallo R, Morris SR, Portnoy A, Reedy BA, Smith DA, et al: A phase IIa study of afuresertib, an oral pan-AKT inhibitor, in patients with Langerhans cell histiocytosis. Pediatr Blood Cancer. 64:642017. View Article : Google Scholar | |
Aghajanian C, Bell-McGuinn KM, Burris HA III, Siu LL, Stayner LA, Wheler JJ, Hong DS, Kurkjian C, Pant S, Santiago-Walker A, et al: A phase I, open-label, two-stage study to investigate the safety, tolerability, pharmacokinetics, and pharmacodynamics of the oral AKT inhibitor GSK2141795 in patients with solid tumors. Invest New Drugs. Apr 3–2018.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Ma BB, Goh BC, Lim WT, Hui EP, Tan EH, Lopes GL, Lo KW, Li L, Loong H, Foster NR, et al: Multicenter phase II study of the AKT inhibitor MK-2206 in recurrent or metastatic nasopharyngeal carcinoma from patients in the mayo phase II consortium and the cancer therapeutics research group (MC1079). Invest New Drugs. 33:985–991. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yap TA, Yan L, Patnaik A, Fearen I, Olmos D, Papadopoulos K, Baird RD, Delgado L, Taylor A, Lupinacci L, et al: First-in-man clinical trial of the oral pan-AKT inhibitor MK-2206 in patients with advanced solid tumors. J Clin Oncol. 29:4688–4695. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bjune K, Sundvold H, Leren TP and Naderi S: MK-2206, an allosteric inhibitor of AKT, stimulates LDLR expression and LDL uptake: A potential hypocholesterolemic agent. Atherosclerosis. 276:28–38. 2018. View Article : Google Scholar : PubMed/NCBI | |
Richardson PG, Eng C, Kolesar J, Hideshima T and Anderson KC: Perifosine, an oral, anti-cancer agent and inhibitor of the Akt pathway: Mechanistic actions, pharmacodynamics, pharmacokinetics, and clinical activity. Expert Opin Drug Metab Toxicol. 8:623–633. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ríos-Marco P, Marco C, Gálvez X, Jiménez-López JM and Carrasco MP: Alkylphospholipids: An update on molecular mechanisms and clinical relevance. Biochim Biophys Acta - Biomembr. 1859:1657–1667. 2017. View Article : Google Scholar : PubMed/NCBI | |
Reid JM, Walden CA, Qin R, Ziegler KL, Haslam JL, Rajewski RA, Warndahl R, Fitting CL, Boring D, Szabo E, et al: Cancer Prevention Network: Phase 0 clinical chemoprevention trial of the Akt inhibitor SR13668. Cancer Prev Res (Phila). 4:347–353. 2011. View Article : Google Scholar | |
Kapetanovic IM, Muzzio M, Hu SC, Crowell JA, Rajewski RA, Haslam JL, Jong L and McCormick DL: Pharmacokinetics and enhanced bioavailability of candidate cancer preventative agent, SR13668 in dogs and monkeys. Cancer Chemother Pharmacol. 65:1109–1116. 2010. View Article : Google Scholar | |
Yang L, Dan HC, Sun M, Liu Q, Sun XM, Feldman RI, Hamilton AD, Polokoff M, Nicosia SV, Herlyn M, et al: Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res. 64:4394–4399. 2004. View Article : Google Scholar : PubMed/NCBI | |
Berndt N, Yang H, Trinczek B, Betzi S, Zhang Z, Wu B, Lawrence NJ, Pellecchia M, Schönbrunn E, Cheng JQ, et al: The Akt activation inhibitor TCN-P inhibits Akt phosphorylation by binding to the PH domain of Akt and blocking its recruitment to the plasma membrane. Cell Death Differ. 17:1795–1804. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hoffman K, Holmes FA, Fraschini G, Esparza L, Frye D, Raber MN, Newman RA and Hortobagyi GN: Phase I–II study: Triciribine (tricyclic nucleoside phosphate) for metastatic breast cancer. Cancer Chemother Pharmacol. 37:254–258. 1996. View Article : Google Scholar | |
Feun LG, Savaraj N, Bodey GP, Lu K, Yap BS, Ajani JA, Burgess MA, Benjamin RS, McKelvey E and Krakoff I: Phase I study of tricyclic nucleoside phosphate using a five-day continuous infusion schedule. Cancer Res. 44:3608–3612. 1984.PubMed/NCBI | |
Sampath D, Malik A, Plunkett W, Nowak B, Williams B, Burton M, Verstovsek S, Faderl S, Garcia-Manero G, List AF, et al: Phase I clinical, pharmacokinetic, and pharmacodynamic study of the Akt-inhibitor triciribine phosphate monohydrate in patients with advanced hematologic malignancies. Leuk Res. 37:1461–1467. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim K, Li J, Barazia A, Tseng A, Youn SW, Abbadessa G, Yu Y, Schwartz B, Andrews RK, Gordeuk VR, et al: ARQ 092, an orally-available, selective AKT inhibitor, attenuates neutrophil-platelet interactions in sickle cell disease. Haematologica. 102:246–259. 2017. View Article : Google Scholar : | |
Ranieri C, Di Tommaso S, Loconte DC, Grossi V, Sanese P, Bagnulo R, Susca FC, Forte G, Peserico A, De Luisi A, et al: In vitro efficacy of ARQ 092, an allosteric AKT inhibitor, on primary fibroblast cells derived from patients with PIK3CA-related overgrowth spectrum (PROS). Neurogenetics. 19:77–91. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lindhurst MJ, Yourick MR, Yu Y, Savage RE, Ferrari D and Biesecker LG: Repression of AKT signaling by ARQ 092 in cells and tissues from patients with Proteus syndrome. Sci Rep. 5:171622015. View Article : Google Scholar : PubMed/NCBI | |
Politz O, Siegel F, Bärfacker L, Bömer U, Hägebarth A, Scott WJ, Michels M, Ince S, Neuhaus R, Meyer K, et al: BAY 1125976, a selective allosteric AKT1/2 inhibitor, exhibits high efficacy on AKT signaling-dependent tumor growth in mouse models. Int J Cancer. 140:449–459. 2017. View Article : Google Scholar |