1
|
Cao W, Chen HD, Yu YW, Li N and Chen WQ:
Changing profiles of cancer burden worldwide and in China: A
secondary analysis of the global cancer statistics 2020. Chin Med J
(Engl). 134:783–791. 2021.
|
2
|
Kinoshita H, Hayakawa Y and Koike K:
Metaplasia in the stomach-precursor of gastric cancer? Int J Mol
Sci. 18:20632017.
|
3
|
Giroux V and Rustgi AK: Metaplasia: Tissue
injury adaptation and a precursor to the dysplasia-cancer sequence.
Nat Rev Cancer. 17:594–604. 2017.
|
4
|
Weis VG and Goldenring JR: Current
understanding of SPEM and its standing in the preneoplastic
process. Gastric Cancer. 12:189–197. 2009.
|
5
|
Schmidt PH, Lee JR, Joshi V, Playford RJ,
Poulsom R, Wright NA and Goldenring JR: Identification of a
metaplastic cell lineage associated with human gastric
adenocarcinoma. Lab Invest. 79:639–646. 1999.
|
6
|
Barros R, Freund JN, David L and Almeida
R: Gastric intestinal metaplasia revisited: Function and regulation
of CDX2. Trends Mol Med. 18:555–563. 2012.
|
7
|
Petersen CP, Weis VG, Nam KT, Sousa JF,
Fingleton B and Goldenring JR: Macrophages promote progression of
spasmolytic polypeptide-expressing metaplasia after acute loss of
parietal cells. Gastroenterology. 146:1727–1738 e8. 2014.
|
8
|
Nam KT, Lee HJ, Mok H, Romero-Gallo J,
Crowe JE Jr, Peek RM Jr and Goldenring JR: Amphiregulin-deficient
mice develop spasmolytic polypeptide expressing metaplasia and
intestinal metaplasia. Gastroenterology. 136:1288–1296. 2009.
|
9
|
Lefebvre O, Wolf C, Kédinger M, Chenard
MP, Tomasetto C, Chambon P and Rio MC: The mouse one P-domain (pS2)
and two P-domain (mSP) genes exhibit distinct patterns of
expression. J Cell Biol. 122:191–198. 1993.
|
10
|
Playford RJ, Marchbank T, Goodlad RA,
Chinery RA, Poulsom R and Hanby AM: Transgenic mice that
overexpress the human trefoil peptide pS2 have an increased
resistance to intestinal damage. Proc Natl Acad Sci USA.
93:2137–2142. 1996.
|
11
|
Mills JC and Goldenring JR: Metaplasia in
the stomach arises from gastric chief cells. Cell Mol Gastroenterol
Hepatol. 4:85–88. 2017.
|
12
|
Lennerz JK, Kim SH, Oates EL, Huh WJ,
Doherty JM, Tian X, Bredemeyer AJ, Goldenring JR, Lauwers GY, Shin
YK and Mills JC: The transcription factor MIST1 is a novel human
gastric chief cell marker whose expression is lost in metaplasia,
dysplasia, and carcinoma. Am J Pathol. 177:1514–1533. 2010.
|
13
|
Wada T, Ishimoto T, Seishima R,
Tsuchihashi K, Yoshikawa M, Oshima H, Oshima M, Masuko T, Wright
NA, Furuhashi S, et al: Functional role of CD44v-xCT system in the
development of spasmolytic polypeptide-expressing metaplasia.
Cancer Sci. 104:1323–1329. 2013.
|
14
|
Bertaux-Skeirik N, Wunderlich M, Teal E,
Chakrabarti J, Biesiada J, Mahe M, Sundaram N, Gabre J, Hawkins J,
Jian G, et al: CD44 variant isoform 9 emerges in response to injury
and contributes to the regeneration of the gastric epithelium. J
Pathol. 242:463–475. 2017.
|
15
|
Karam SM and Leblond CP: Identifying and
counting epithelial cell types in the 'corpus' of the mouse
stomach. Anat Rec. 232:231–246. 1992.
|
16
|
Hayakawa Y, Ariyama H, Stancikova J,
Sakitani K, Asfaha S, Renz BW, Dubeykovskaya ZA, Shibata W, Wang H,
Westphalen CB, et al: Mist1 expressing gastric stem cells maintain
the normal and neoplastic gastric epithelium and are supported by a
perivascular stem cell niche. Cancer Cell. 28:800–814. 2015.
|
17
|
Matsuo J, Kimura S, Yamamura A, Koh CP,
Hossain MZ, Heng DL, Kohu K, Voon DC, Hiai H, Unno M, et al:
Identification of stem cells in the epithelium of the stomach
corpus and antrum of mice. Gastroenterology. 152:218–231 e14.
2017.
|
18
|
Caldwell B, Meyer AR, Weis JA, Engevik AC
and Choi E: Chief cell plasticity is the origin of metaplasia
following acute injury in the stomach mucosa. Gut. 71:1068–1077.
2022.
|
19
|
Radyk MD, Burclaff J, Willet SG and Mills
JC: Metaplastic cells in the stomach arise, independently of stem
cells, via dedifferentiation or transdifferentiation of chief
cells. Gastroenterology. 154:839–843 e2. 2018.
|
20
|
Hayakawa Y, Fox YG and Wang TC: Isthmus
stem cells are the origins of metaplasia in the gastric corpus.
Cell Mol Gastroenterol Hepatol. 4:89–94. 2017.
|
21
|
Sáenz JB and Mills JC: Acid and the basis
for cellular plasticity and reprogramming in gastric repair and
cancer. Nat Rev Gastroenterol Hepatol. 15:257–273. 2018.
|
22
|
Goldenring JR and Nam KT: Oxyntic atrophy,
metaplasia, and gastric cancer. Prog Mol Biol Transl Sci.
96:117–131. 2010.
|
23
|
Blaser MJ and Parsonnet J: Parasitism by
the 'slow' bacterium Helicobacter pylori leads to altered gastric
homeostasis and neoplasia. J Clin Invest. 94:4–8. 1994.
|
24
|
Jain RN, Brunkan CS, Chew CS and Samuelson
LC: Gene expression profiling of gastrin target genes in parietal
cells. Physiol Genomics. 24:124–132. 2006.
|
25
|
Beauchamp RD, Barnard JA, McCutchen CM,
Cherner JA and Coffey RJ Jr: Localization of transforming growth
factor alpha and its receptor in gastric mucosal cells.
Implications for a regulatory role in acid secretion and mucosal
renewal. J Clin Invest. 84:1017–1023. 1989.
|
26
|
Murayama Y, Miyagawa J, Higashiyama S,
Kondo S, Yabu M, Isozaki K, Kayanoki Y, Kanayama S, Shinomura Y,
Taniguchi N, et al: Localization of heparin-binding epidermal
growth factor-like growth factor in human gastric mucosa.
Gastroenterology. 109:1051–1059. 1995.
|
27
|
Abe S, Sasano H, Katoh K, Ohara S, Arikawa
T, Noguchi T, Asaki S, Yasui W, Tahara E, Nagura H and Toyota T:
Immunohistochemical studies on EGF family growth factors in normal
and ulcerated human gastric mucosa. Dig Dis Sci. 42:1199–1209.
1997.
|
28
|
El-Zimaity HM, Ota H, Graham DY, Akamatsu
T and Katsuyama T: Patterns of gastric atrophy in intestinal type
gastric carcinoma. Cancer. 94:1428–1436. 2002.
|
29
|
Filipe MI, Muñoz N, Matko I, Kato I,
Pompe-Kirn V, Jutersek A, Teuchmann S, Benz M and Prijon T:
Intestinal metaplasia types and the risk of gastric cancer: A
cohort study in Slovenia. Int J Cancer. 57:324–329. 1994.
|
30
|
Xia HH, Kalantar JS, Talley NJ, Wyatt JM,
Adams S, Chueng K and Mitchell HM: Antral-type mucosa in the
gastric incisura, body, and fundus (antralization): A link between
Helicobacter pylori infection and intestinal metaplasia? Am J
Gastroenterol. 95:114–121. 2000.
|
31
|
Yamaguchi H, Goldenring JR, Kaminishi M
and Lee JR: Association of spasmolytic polypeptide-expressing
metaplasia with carcinogen administration and oxyntic atrophy in
rats. Lab Invest. 82:1045–1052. 2002.
|
32
|
Halldórsdóttir AM, Sigurdardóttrir M,
Jónasson JG, Oddsdóttir M, Magnússon J, Lee JR and Goldenring JR:
Spasmolytic polypeptide-expressing metaplasia (SPEM) associated
with gastric cancer in iceland. Dig Dis Sci. 48:431–441. 2003.
|
33
|
Yamaguchi H, Goldenring JR, Kaminishi M
and Lee JR: Identification of spasmolytic polypeptide expressing
metaplasia (SPEM) in remnant gastric cancer and surveillance
postgastrectomy biopsies. Dig Dis Sci. 47:573–578. 2002.
|
34
|
Goldenring JR and Nomura S:
Differentiation of the gastric mucosa III. Animal models of oxyntic
atrophy and metaplasia. Am J Physiol Gastrointest Liver Physiol.
291:G999–G1004. 2006.
|
35
|
Malfertheiner P, Megraud F, O'Morain CA,
Gisbert JP, Kuipers EJ, Axon AT, Bazzoli F, Gasbarrini A, Atherton
J, Graham DY, et al: Management of Helicobacter pylori
infection-the Maastricht V/Florence Consensus Report. Gut. 66:6–30.
2017.
|
36
|
Kuo HY, Chang WL, Yeh YC, Cheng HC, Tsai
YC, Wu CT, Lin SH, Yang HB, Lu CC and Sheu BS: Spasmolytic
polypeptide-expressing metaplasia associated with higher
expressions of miR-21, 155, and 223 can be regressed by
Helicobacter pylori eradication in the gastric cancer familial
relatives. Helicobacter. 24:e125782019.
|
37
|
Ogawa M, Nomura S, Car BD and Goldenring
JR: Omeprazole treatment ameliorates oxyntic atrophy induced by
DMP-777. Dig Dis Sci. 51:431–439. 2006.
|
38
|
Nam KT, Lee HJ, Sousa JF, Weis VG, O'Neal
RL, Finke PE, Romero-Gallo J, Shi G, Mills JC, Peek RM Jr, et al:
Mature chief cells are cryptic progenitors for metaplasia in the
stomach. Gastroenterology. 139:2028–2037.e9. 2010.
|
39
|
Weis VG, Sousa JF, LaFleur BJ, Nam KT,
Weis JA, Finke PE, Ameen NA, Fox JG and Goldenring JR:
Heterogeneity in mouse spasmolytic polypeptide-expressing
metaplasia lineages identifies markers of metaplastic progression.
Gut. 62:1270–1279. 2013.
|
40
|
Houghton J, Stoicov C, Nomura S, Rogers
AB, Carlson J, Li H, Cai X, Fox JG, Goldenring JR and Wang TC:
Gastric cancer originating from bone marrow-derived cells. Science.
306:1568–1571. 2004.
|
41
|
Goldenring JR, Ray GS, Coffey RJ, Meunier
PC, Haley PJ, Barnes TB and Car BD: Reversible drug-induced oxyntic
atrophy in rats. Gastroenterology. 118:1080–1093. 2000.
|
42
|
Nomura S, Yamaguchi H, Ogawa M, Wang TC,
Lee JR and Goldenring JR: Alterations in gastric mucosal lineages
induced by acute oxyntic atrophy in wild-type and gastrin-deficient
mice. Am J Physiol Gastrointest Liver Physiol. 288:G362–G375.
2005.
|
43
|
Nozaki K, Ogawa M, Williams JA, Lafleur
BJ, Ng V, Drapkin RI, Mills JC, Konieczny SF, Nomura S and
Goldenring JR: A molecular signature of gastric metaplasia arising
in response to acute parietal cell loss. Gastroenterology.
134:511–522. 2008.
|
44
|
Nam KT, Varro A, Coffey RJ and Goldenring
JR: Potentiation of oxyntic atrophy-induced gastric metaplasia in
amphiregulin-deficient mice. Gastroenterology. 132:1804–1819.
2007.
|
45
|
Muthupalani S, Ge Z, Joy J, Feng Y, Dobey
C, Cho HY, Langenbach R, Wang TC, Hagen SJ and Fox JG: Muc5ac null
mice are predisposed to spontaneous gastric antro-pyloric
hyperplasia and adenomas coupled with attenuated H. pylori-induced
corpus mucous metaplasia. Lab Invest. 99:1887–1905. 2019.
|
46
|
Busada JT, Ramamoorthy S, Cain DW, Xu X,
Cook DN and Cidlowski JA: Endogenous glucocorticoids prevent
gastric metaplasia by suppressing spontaneous inflammation. J Clin
Invest. 129:1345–1358. 2019.
|
47
|
Biswas SK and Mantovani A: Macrophage
plasticity and interaction with lymphocyte subsets: Cancer as a
paradigm. Nat Immunol. 11:889–896. 2010.
|
48
|
Hanna RN, Cekic C, Sag D, Tacke R, Thomas
GD, Nowyhed H, Herrley E, Rasquinha N, McArdle S, Wu R, et al:
Patrolling monocytes control tumor metastasis to the lung. Science.
350:985–990. 2015.
|
49
|
Papierska L and Rabijewski M: Delay in
diagnosis of adrenal insufficiency is a frequent cause of adrenal
crisis. Int J Endocrinol. 2013:4823702013.
|
50
|
Puar TH, Stikkelbroeck NM, Smans LC,
Zelissen PM and Hermus AR: Adrenal crisis: still a deadly event in
the 21st century. Am J Med. 129:339 e1–9. 2016.
|
51
|
Meyer AR, Engevik AC, Madorsky T, Belmont
E, Stier MT, Norlander AE, Pilkinton MA, McDonnell WJ, Weis JA,
Jang B, et al: Group 2 innate lymphoid cells coordinate damage
response in the stomach. Gastroenterology. 159:2077–2091.e8.
2020.
|
52
|
Meyer AR and Goldenring GR: Injury,
repair, inflammation and metaplasia in the stomach. J Physiol.
596:3861–3867. 2018.
|
53
|
Goldenring JR, Nam KT, Wang TC, Mills JC
and Wright NA: Spasmolytic polypeptide-expressing metaplasia and
intestinal metaplasia: Time for reevaluation of metaplasias and the
origins of gastric cancer. Gastroenterology. 138:2207–2210.e1.
2010.
|
54
|
Hayakawa Y and Wang TC: Isthmus
Progenitors, not chief cells, are the likely origin of metaplasia
in eR1-CreERT; LSL-KrasG12D Mice. Gastroenterology.
152:2078–2079. 2017.
|
55
|
Hayakawa Y, Fox JG and Wang TC: The
origins of gastric cancer from gastric stem cells: Lessons from
mouse models. Cell Mol Gastroenterol Hepatol. 3:331–338. 2017.
|
56
|
Nomura S, Baxter T, Yamaguchi H, Leys C,
Vartapetian AB, Fox JG, Lee JR, Wang TC and Goldenring JR:
Spasmolytic polypeptide expressing metaplasia to preneoplasia in H.
felis-infected mice. Gastroenterology. 127:582–594. 2004.
|
57
|
Kinoshita H, Hayakawa Y, Niu Z, Konishi M,
Hata M, Tsuboi M, Hayata Y, Hikiba Y, Ihara S, Nakagawa H, et al:
Mature gastric chief cells are not required for the development of
metaplasia. Am J Physiol Gastrointest Liver Physiol. 314:G583–G596.
2018.
|
58
|
Hata M, Kinoshita H, Hayakawa Y, Konishi
M, Tsuboi M, Oya Y, Kurokawa K, Hayata Y, Nakagawa H, Tateishi K,
et al: GPR30-Expressing gastric chief cells do not dedifferentiate
but are eliminated via PDK-Dependent cell competition during
development of metaplasia. Gastroenterology. 158:1650–1666 e15.
2020.
|
59
|
Nam KT, O'Neal RL, Coffey RJ, Finke PE,
Barker N and Goldenring JR: Spasmolytic polypeptide-expressing
metaplasia (SPEM) in the gastric oxyntic mucosa does not arise from
Lgr5-expressing cells. Gut. 61:1678–1685. 2012.
|
60
|
Meyer AR, Engevik AC, Willet SG, Williams
JA, Zou Y, Massion PP, Mills JC, Choi E and Goldenring JR:
Cystine/Glutamate Antiporter (xCT) is required for chief cell
plasticity after gastric injury. Cell Mol Gastroenterol Hepatol.
8:379–405. 2019.
|
61
|
Lee A, O'Rourke J, De Ungria MC, Robertson
B, Daskalopoulos G and Dixon MF: A standardized mouse model of
Helicobacter pylori infection: Introducing the Sydney strain.
Gastroenterology. 112:1386–1397. 1997.
|
62
|
Watanabe T, Tada M, Nagai H, Sasaki S and
Nakao M: Helicobacter pylori infection induces gastric cancer in
Mongolian gerbils. Gastroenterology. 115:642–648. 1998.
|
63
|
Lee JR, Baxter TM, Yamaguchi H, Wang TC,
Goldenring JR and Anderson MG: Differential protein analysis of
spasomolytic polypeptide expressing metaplasia using laser capture
microdissection and two-dimensional difference gel electrophoresis.
Appl Immunohistochem Mol Morphol. 11:188–193. 2003.
|
64
|
Yoshizawa N, Takenaka Y, Yamaguchi H,
Tetsuya T, Tanaka H, Tatematsu M, Nomura S, Goldenring JR and
Kaminishi M: Emergence of spasmolytic polypeptide-expressing
metaplasia in Mongolian gerbils infected with Helicobacter pylori.
Lab Invest. 87:1265–1276. 2007.
|
65
|
El-Zimaity HM, Ramchatesingh J, Saeed MA
and Graham DY: Gastric intestinal metaplasia: Subtypes and natural
history. J Clin Pathol. 54:679–683. 2001.
|
66
|
Matsukura N, Kinebuchi M, Kawachi T, Sato
S and Sugimura T: Quantitative measurement of intestinal marker
enzymes in intestinal metaplasia from human stomach with cancer.
Gan. 70:509–513. 1979.
|
67
|
Ricardo SD, van Goor H and Eddy AA:
Macrophage diversity in renal injury and repair. J Clin Invest.
118:3522–3530. 2008.
|
68
|
Mills CD, Kincaid K, Alt JM, Heilman MJ
and Hill AM: M-1/M-2 Macrophages and the Th1/Th2 Paradigm. J
Immunol. 164:6166–6173. 2000.
|
69
|
Teal E, Dua-Awereh M, Hirshorn ST and
Zavros Y: Role of metaplasia during gastric regeneration. Am J
Physiol Cell Physiol. 319:C947–C954. 2020.
|
70
|
Petersen CP, Meyer AR, De Salvo C, Choi E,
Schlegel C, Petersen A, Engevik AC, Prasad N, Levy SE, Peebles RS,
et al: A signalling cascade of IL-33 to IL-13 regulates metaplasia
in the mouse stomach. Gut. 67:805–817. 2018.
|
71
|
De Salvo C, Pastorelli L, Petersen CP,
Buttò LF, Buela KA, Omenetti S, Locovei SA, Ray S, Friedman HR,
Duijser J, et al: Interleukin 33 triggers early
eosinophil-dependent events leading to metaplasia in a chronic
model of gastritis-prone mice. Gastroenterology. 160:302–316 e7.
2021.
|
72
|
Xu X, Cheng J, Luo S, Gong X, Huang D, Xu
J, Qian Y, Wan X and Zhou H: Deoxycholic acid-stimulated
macrophage-derived exosomes promote spasmolytic
polypeptide-expressing metaplasia in the stomach. Biochem Biophys
Res Commun. 524:649–655. 2020.
|
73
|
Park H, Li Z, Yang XO, Chang SH, Nurieva
R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q and Dong C: A distinct
lineage of CD4 T cells regulates tissue inflammation by producing
interleukin 17. Nat Immunol. 6:1133–1141. 2005.
|
74
|
Harrington LE, Hatton RD, Mangan PR,
Turner H, Murphy TL, Murphy KM and Weaver CT: Interleukin
17-producing CD4+ effector T cells develop via a lineage distinct
from the T helper type 1 and 2 lineages. Nat Immunol. 6:1123–1132.
2005.
|
75
|
Onishi RM and Gaffen SL: Interleukin-17
and its target genes: Mechanisms of interleukin-17 function in
disease. Immunology. 129:311–321. 2010.
|
76
|
Bockerstett KA, Osaki LH, Petersen CP, Cai
CW, Wong CF, Nguyen TM, Ford EL, Hoft DF, Mills JC, Goldenring JR
and DiPaolo RJ: Interleukin-17A promotes parietal cell atrophy by
inducing apoptosis. Cell Mol Gastroenterol Hepatol. 5:678–690 e1.
2018.
|
77
|
Togawa S, Joh T, Itoh M, Katsuda N, Ito H,
Matsuo K, Tajima K and Hamajima N: Interleukin-2 gene polymorphisms
associated with increased risk of gastric atrophy from helicobacter
pylori infection. Helicobacter. 10:172–178. 2005.
|
78
|
Sugimoto M, Yamaoka Y and Furuta T:
Influence of interleukin polymorphisms on development of gastric
cancer and peptic ulcer. World J Gastroenterol. 16:1188–1200.
2010.
|
79
|
Yamaoka Y, Kodama T, Kita M, Imanishi J,
Kashima K and Graham DY: Relation between clinical presentation,
Helicobacter pylori density, interleukin 1beta and 8 production,
and cagA status. Gut. 45:804–811. 1999.
|
80
|
Lee C, Lee H, Hwang SY, Moon CM and Hong
SN: IL-10 Plays a pivotal role in tamoxifen-induced spasmolytic
polypeptide-expressing metaplasia in gastric mucosa. Gut Liver.
11:789–797. 2017.
|
81
|
Maloum F, Allaire JM, Gagné-Sansfaçon J,
Roy E, Belleville K, Sarret P, Morisset J, Carrier JC, Mishina Y,
Kaestner KH and Perreault N: Epithelial BMP signaling is required
for proper specification of epithelial cell lineages and gastric
endocrine cells. Am J Physiol Gastrointest Liver Physiol.
300:G1065–G1079. 2011.
|
82
|
Bleuming SA, He XC, Kodach LL, Hardwick
JC, Koopman FA, Ten Kate FJ, van Deventer SJ, Hommes DW,
Peppelenbosch MP, Offerhaus GJ, et al: Bone morphogenetic protein
signaling suppresses tumorigenesis at gastric epithelial transition
zones in mice. Cancer Res. 67:8149–8155. 2007.
|
83
|
Oshima H, Itadani H, Kotani H, Taketo MM
and Oshima M: Induction of prostaglandin E2 pathway promotes
gastric hamartoma development with suppression of bone
morphogenetic protein signaling. Cancer Res. 69:2729–2733.
2009.
|
84
|
Auclair BA, Benoit YD, Rivard N, Mishina Y
and Perreault N: Bone morphogenetic protein signaling is essential
for terminal differentiation of the intestinal secretory cell
lineage. Gastroenterology. 133:887–896. 2007.
|
85
|
Oshima H and Oshima M: Mouse models of
gastric tumors: Wnt activation and PGE2 induction. Pathol Int.
60:599–607. 2010.
|
86
|
Liu Z, Demitrack ES, Keeley TM, Eaton KA,
El-Zaatari M, Merchant JL and Samuelson LC: IFNү contributes to the
development of gastric epithelial cell metaplasia in Huntingtin
interacting protein 1 related (Hip1r)-deficient mice. Lab Invest.
92:1045–1057. 2012.
|
87
|
Wang TC, Dangler CA, Chen D, Goldenring
JR, Koh T, Raychowdhury R, Coffey RJ, Ito S, Varro A, Dockray GJ
and Fox JG: Synergistic interaction between hypergastrinemia and
Helicobacter infection in a mouse model of gastric cancer.
Gastroenterology. 118:36–47. 2000.
|
88
|
Mohammadi M, Czinn S, Redline R and Nedrud
J: Helicobacter-specific cell-mediated immune responses display a
predominant Th1 phenotype and promote a delayed-type
hypersensitivity response in the stomachs of mice. J Immunol.
156:47291996.
|
89
|
Roth KA, Kapadia SB, Martin SM and Lorenz
RG: Cellular immune responses are essential for the development of
helicobacter felis-Associated gastric pathology. J Immunol.
163:14901999.
|
90
|
Srivastava S, Huang KK, Rebbani K, Das K,
Fazreen Z, Yeoh KG, Tan P and The M: An LCM-based genomic analysis
of SPEM, gastric cancer and pyloric gland adenoma in an Asian
cohort. Mod Pathol. 33:2075–2086. 2020.
|
91
|
Hernandez C, Huebener P and Schwabe RF:
Damage-associated molecular patterns in cancer: A double-edged
sword. Oncogene. 35:5931–5941. 2016.
|
92
|
Otani K, Tanigawa T, Watanabe T, Nadatani
Y, Sogawa M, Yamagami H, Shiba M, Watanabe K, Tominaga K, Fujiwara
Y and Arakawa T: Toll-like receptor 9 signaling has
anti-inflammatory effects on the early phase of Helicobacter
pylori-induced gastritis. Biochem Biophys Res Commun. 426:342–349.
2012.
|
93
|
Varga MG, Piazuelo MB, Romero-Gallo J,
Delgado AG, Suarez G, Whitaker ME, Krishna US, Patel RV, Skaar EP,
Wilson KT, et al: TLR9 activation suppresses inflammation in
response to Helicobacter pylori infection. Am J Physiol
Gastrointest Liver Physiol. 311:G852–G858. 2016.
|
94
|
Varga MG, Shaffer CL, Sierra JC, Suarez G,
Piazuelo MB, Whitaker ME, Romero-Gallo J, Krishna US, Delgado A,
Gomez MA, et al: Pathogenic Helicobacter pylori strains translocate
DNA and activate TLR9 via the cancer-associated cag type IV
secretion system. Oncogene. 35:6262–6269. 2016.
|
95
|
Wang X, Xue L, Yang Y, Xu L and Zhang G:
TLR9 promoter polymorphism is associated with both an increased
susceptibility to gastric carcinoma and poor prognosis. PLoS One.
8:e657312013.
|
96
|
Min J, Han TS, Sohn Y, Shimizu T, Choi B,
Bae SW, Hur K, Kong SH, Suh YS, Lee HJ, et al: microRNA-30a
arbitrates intestinal-type early gastric carcinogenesis by directly
targeting ITGA2. Gastric Cancer. 23:600–613. 2020.
|
97
|
Riera KM, Jang B, Min J, Roland JT, Yang
Q, Fesmire WT, Camilleri-Broet S, Ferri L, Kim WH, Choi E and
Goldenring JR: Trop2 is upregulated in the transition to dysplasia
in the metaplastic gastric mucosa. J Pathol. 251:336–347. 2020.
|
98
|
Fox JG and Wang TC: Inflammation, atrophy,
and gastric cancer. J Clin Invest. 117:60–69. 2007.
|
99
|
Correa P: Human gastric carcinogenesis: A
multistep and multifactorial process-First American Cancer Society
Award Lecture on Cancer Epidemiology and Prevention. Cancer Res.
52:6735–6740. 1992.
|
100
|
Thompson MP and Kurzrock R: Epstein-Barr
virus and cancer. Clin Cancer Res. 10:803–821. 2004.
|
101
|
Murphy G, Pfeiffer R, Camargo MC and
Rabkin CS: Meta-analysis shows that prevalence of Epstein-Barr
virus-positive gastric cancer differs based on sex and anatomic
location. Gastroenterology. 137:824–833. 2009.
|
102
|
Cancer Genome Atlas Research Network:
Comprehensive molecular characterization of gastric adenocarcinoma.
Nature. 513:202–209. 2014.
|
103
|
Lee JH, Kim SH, Han SH, An JS, Lee ES and
Kim YS: Clinicopathological and molecular characteristics of
Epstein-Barr virus-associated gastric carcinoma: A meta-analysis. J
Gastroenterol Hepatol. 24:354–365. 2009.
|
104
|
Zhang Y, Chen JN, Dong M, Zhang ZG, Zhang
YW, Wu JY, Du H, Li HG, Huang Y and Shao CK: Clinical significance
of spasmolytic polypeptide-expressing metaplasia and intestinal
metaplasia in Epstein-Barr virus-associated and Epstein-Barr
virus-negative gastric cancer. Hum Pathol. 63:128–138. 2017.
|
105
|
Gessner R and Tauber R: Intestinal cell
adhesion molecules: liver-intestine cadherin. Ann NY Acad Sci.
915:136–143. 2000.
|
106
|
Lee HJ, Nam KT, Park HS, Kim MA, Lafleur
BJ, Aburatani H, Yang HK, Kim WH and Goldenring JR: Gene expression
profiling of metaplastic lineages identifies CDH17 as a prognostic
marker in early stage gastric cancer. Gastroenterology.
139:213–725.e3. 2010.
|
107
|
O'Neal RL, Nam KT, LaFleur BJ, Barlow B,
Nozaki K, Lee HJ, Kim WH, Yang HK, Shi C, Maitra A, et al: Human
epididymis protein 4 is up-regulated in gastric and pancreatic
adenocarcinomas. Hum Pathol. 44:734–742. 2013.
|
108
|
Sousa JF, Ham AJ, Whitwell C, Nam KT, Lee
HJ, Yang HK, Kim WH, Zhang B, Li M, LaFleur B, et al: Proteomic
profiling of paraffin-embedded samples identifies
metaplasia-specific and early-stage gastric cancer biomarkers. Am J
Pathol. 181:1560–1572. 2012.
|
109
|
Merchant JL and Ding L: Hedgehog signaling
links chronic inflammation to gastric cancer precursor lesions.
Cell Mol Gastroenterol Hepatol. 3:201–210. 2017.
|
110
|
Bockerstett KA, Lewis SA, Noto CN, Ford
EL, Saenz JB, Jackson NM, Ahn TH, Mills JC and DiPaolo RJ:
Single-Cell transcriptional analyses identify lineage-specific
epithelial responses to inflammation and metaplastic development in
the gastric corpus. Gastroenterology. 159:2116–2129 e4. 2020.
|
111
|
Lee SH, Jang B, Min J, Contreras-Panta EW,
Presentation KS, Delgado AG, Piazuelo MB, Choi E and Goldenring JR:
Up-regulation of aquaporin 5 defines spasmolytic
polypeptide-expressing metaplasia and progression to incomplete
intestinal metaplasia. Cell Mol Gastroenterol Hepatol. 13:199–217.
2022.
|