mRNA vaccine development and applications: A special focus on tumors (Review)
- Authors:
- Bangjie Chen
- Yipin Yang
- Xinyi Wang
- Wenzhi Yang
- You Lu
- Daoyue Wang
- Enba Zhuo
- Yanchao Tang
- Junhong Su
- Guozheng Tang
- Song Shao
- Kangsheng Gu
-
Affiliations: Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China, Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China, First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230022, P.R. China, Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China, Department of Rehabilitation, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China, Department of Orthopedics, Lu'an Hospital of Anhui Medical University, Lu'an, Anhui 237008, P.R. China - Published online on: July 9, 2024 https://doi.org/10.3892/ijo.2024.5669
- Article Number: 81
-
Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Maomao C, He L, Dianqin S, Siyi H, Xinxin Y, Fan Y, Shaoli Z, Changfa X, Lin L, Ji P and Wanqing C: Current cancer burden in China: Epidemiology, etiology, and prevention. Cancer Biol Med. 19:1121–1138. 2022. View Article : Google Scholar : PubMed/NCBI | |
Roy PS and Saikia BJ: Cancer and cure: A critical analysis. Indian J Cancer. 53:441–442. 2016. View Article : Google Scholar | |
Sobhani N, Scaggiante B, Morris R, Chai D, Catalano M, Tardiel-Cyril DR, Neeli P, Roviello G, Mondani G and Li Y: Therapeutic cancer vaccines: From biological mechanisms and engineering to ongoing clinical trials. Cancer Treat Rev. 109:1024292022. View Article : Google Scholar : PubMed/NCBI | |
Corbett KS, F lynn B, Foulds K E, Francica J R, Boyoglu-Barnum S, Werner AP, Flach B, O'Connell S, Bock KW, Minai M, et al: Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N Engl J Med. 383:1544–1555. 2020. View Article : Google Scholar : PubMed/NCBI | |
Scherubl H: Smoking tobacco and cancer risk. Dtsch Med Wochenschr. 146:412–417. 2021.In German. | |
van Elsland D and Neefjes J: Bacterial infections and cancer. EMBO Rep. 19:e466322018. View Article : Google Scholar : PubMed/NCBI | |
Schiller JT and Lowy DR: An introduction to virus infections and human cancer. Recent Results Cancer Res. 217:1–11. 2021. View Article : Google Scholar : | |
Zare Sakhvidi MJ, Lequy E, Goldberg M and Jacquemin B: Air pollution exposure and bladder, kidney and urinary tract cancer risk: A systematic review. Environ Pollut. 267:1153282020. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Gao F, Chang Y, Zhao Q and He X: Advances of mRNA vaccine in tumor: A maze of opportunities and challenges. Biomark Res. 11:62023. View Article : Google Scholar : PubMed/NCBI | |
Gote V, Bolla PK, Kommineni N, Butreddy A, Nukala PK, Palakurthi SS and Khan W: A comprehensive review of mRNA Vaccines. Int J Mol Sci. 24:27002023. View Article : Google Scholar : PubMed/NCBI | |
Deng Z, Tian Y, Song J, An G and Yang P: mRNA Vaccines: The dawn of a new era of cancer immunotherapy. Front Immunol. 13:8871252022. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Shi Q, Huang X, Koo S, Kong N and Tao W: mRNA-based cancer therapeutics. Nat Rev Cancer. 23:526–543. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lorentzen CL, Haanen JB, Met Ö and Svane IM: Clinical advances and ongoing trials on mRNA vaccines for cancer treatment. Lancet Oncol. 23:e450–e458. 2022. View Article : Google Scholar : PubMed/NCBI | |
Weber JS, Carlino MS, Khattak A, Meniawy T, Ansstas G, Taylor MH, Kim KB, McKean M, Long GV, Sullivan RJ, et al: Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): A randomised, phase 2b study. Lancet. 403:632–644. 2024. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kaur R, Bhardwaj A and Gupta S: Cancer treatment therapies: Traditional to modern approaches to combat cancers. Mol Biol Rep. 50:9663–9676. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sahin U and Tureci O: Personalized vaccines for cancer immunotherapy. Science. 359:1355–1360. 2018. View Article : Google Scholar : PubMed/NCBI | |
Saxena M, van der Burg SH, Melief CJM and Bhardwaj N: Therapeutic cancer vaccines. Nat Rev Cancer. 21:360–378. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wang M, Peng X, Yang Y, Chen Q, Liu J, She Q, Tan J, Lou C, Liao Z and Li X: mRNA vaccine in cancer therapy: Current advance and future outlook. Clin Transl Med. 13:e13842023. View Article : Google Scholar : PubMed/NCBI | |
Fang E, Liu X, Li M, Zhang Z, Song L, Zhu B, Wu X, Liu J, Zhao D and Li Y: Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther. 7:942022. View Article : Google Scholar : PubMed/NCBI | |
Szabo GT, Mahiny AJ and Vlatkovic I: COVID-19 mRNA vaccines: Platforms and current developments. Mol Ther. 30:1850–1868. 2022. View Article : Google Scholar : PubMed/NCBI | |
Brenner S, Jacob F and Meselson M: An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature. 190:576–581. 1961. View Article : Google Scholar : PubMed/NCBI | |
Malone RW, Felgner PL and Verma IM: Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci USA. 86:6077–6081. 1989. View Article : Google Scholar : PubMed/NCBI | |
Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A and Felgner PL: Direct gene transfer into mouse muscle in vivo. Science. 247(4949 Pt 1): 1465–1468. 1990. View Article : Google Scholar : PubMed/NCBI | |
Jirikowski GF, Sanna PP, Maciejewski-Lenoir D and Bloom FE: Reversal of diabetes insipidus in Brattleboro rats: Intrahypothalamic injection of vasopressin mRNA. Science. 255:996–998. 1992. View Article : Google Scholar : PubMed/NCBI | |
Martinon F, Krishnan S, Lenzen G, Magné R, Gomard E, Guillet JG, Lévy JP and Meulien P: Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol. 23:1719–1722. 1993. View Article : Google Scholar : PubMed/NCBI | |
Boczkowski D, Nair SK, Snyder D and Gilboa E: Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med. 184:465–472. 1996. View Article : Google Scholar : PubMed/NCBI | |
Zhou WZ, Hoon DS, Huang SK, Fujii S, Hashimoto K, Morishita R and Kaneda Y: RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. Hum Gene Ther. 10:2719–2724. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang Z, Luo J, Han X, Wei Y and Wei X: mRNA vaccine: A potential therapeutic strategy. Mol Cancer. 20:332021. View Article : Google Scholar : PubMed/NCBI | |
Wadhwa A, Aljabbari A, Lokras A, Foged C and Thakur A: Opportunities and Challenges in the Delivery of mRNA-based Vaccines. Pharmaceutics. 12:1022020. View Article : Google Scholar : PubMed/NCBI | |
Kackos CM, Surman SL, Jones BG, Sealy RE, Jeevan T, Davitt CJH, Pustylnikov S, Darling TL, Boon ACM, Hurwitz JL, et al: mRNA Vaccine Mitigates SARS-CoV-2 Infections and COVID-19. Microbiol Spectr. 11:e04240222023. View Article : Google Scholar : PubMed/NCBI | |
Park JW, Lagniton PNP, Liu Y and Xu RH: mRNA vaccines for COVID-19: What, why and how. Int J Biol Sci. 17:1446–1460. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gong H, Wen J, Luo R, Feng Y, Guo J, Fu H and Zhou X: Integrated mRNA sequence optimization using deep learning. Brief Bioinform. 24:bbad0012023. View Article : Google Scholar : PubMed/NCBI | |
Pardi N, Hogan MJ, Porter FW and Weissman D: mRNA vaccines-a new era in vaccinology. Nat Rev Drug Discov. 17:261–279. 2018. View Article : Google Scholar : PubMed/NCBI | |
Herrera M, Kim J, Eygeris Y, Jozic A and Sahay G: Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA delivery. Biomater Sci. 9:4289–4300. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jyotsana N, Sharma A, Chaturvedi A, Budida R, Scherr M, Kuchenbauer F, Lindner R, Noyan F, Sühs KW, Stangel M, et al: Lipid nanoparticle-mediated siRNA delivery for safe targeting of human CML in vivo. Ann Hematol. 98:1905–1918. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sahin U, Kariko K and Tureci O: mRNA-based therapeutics-developing a new class of drugs. Nat Rev Drug Discov. 13:759–780. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cruz FM, Chan A and Rock KL: Pathways of MHC I cross-presentation of exogenous antigens. Semin Immunol. 66:1017292023. View Article : Google Scholar : PubMed/NCBI | |
Rosa SS, Prazeres DMF, Azevedo AM and Marques MPC: mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine. 39:2190–2200. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Yang K, Li R and Zhang L: mRNA Vaccine Era-Mechanisms, drug platform and clinical prospection. Int J Mol Sci. 21:20202020. View Article : Google Scholar | |
Talotta R: Do COVID-19 RNA-based vaccines put at risk of immune-mediated diseases? In reply to 'potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases'. Clin Immunol. 224:1086652021. View Article : Google Scholar | |
Chen YG and Hur S: Cellular origins of dsRNA, their recognition and consequences. Nat Rev Mol Cell Biol. 23:286–301. 2022. View Article : Google Scholar : | |
Vaidyanathan S, Azizian KT, Haque AKMA, Henderson JM, Hendel A, Shore S, Antony JS, Hogrefe RI, Kormann MSD, Porteus MH and McCaffrey AP: Uridine depletion and chemical modification increase Cas9 mRNA activity and reduce immunogenicity without HPLC purification. Mol Ther Nucleic Acids. 12:530–542. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bernardo M, Tolstykh T, Zhang YA, Bangari DS, Cao H, Heyl KA, Lee JS, Malkova NV, Malley K, Marquez E, et al: An experimental model of anti-PD-1 resistance exhibits activation of TGFβ and Notch pathways and is sensitive to local mRNA immunotherapy. Oncoimmunology. 10:18812682021. View Article : Google Scholar | |
Yao R, Xie C and Xia X: Recent progress in mRNA cancer vaccines. Hum Vaccin Immunother. 20:23071872024. View Article : Google Scholar : PubMed/NCBI | |
Wilson RC and Carroll D: The daunting economics of therapeutic genome editing. CRISPR J. 2:280–284. 2019. View Article : Google Scholar : PubMed/NCBI | |
Morrison C: $1-million price tag set for Glybera gene therapy. Nat Biotechnol. 33:217–218. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jackson NAC, Kester KE, Casimiro D, Gurunathan S and DeRosa F: The promise of mRNA vaccines: A biotech and industrial perspective. NPJ Vaccines. 5:112020. View Article : Google Scholar : PubMed/NCBI | |
Miao L, Zhang Y and Huang L: mRNA vaccine for cancer immunotherapy. Mol Cancer. 20:412021. View Article : Google Scholar : PubMed/NCBI | |
Ita K: Coronavirus Disease (COVID-19): Current status and prospects for drug and vaccine development. Arch Med Res. 52:15–24. 2021. View Article : Google Scholar : | |
Van Nuffel AM, Wilgenhof S, Thielemans K and Bonehill A: Overcoming HLA restriction in clinical trials: Immune monitoring of mRNA-loaded DC therapy. Oncoimmunology. 1:1392–1394. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ho W, Gao M, Li F, Li Z, Zhang XQ and Xu X: Next-Generation Vaccines: Nanoparticle-Mediated DNA and mRNA Delivery. Adv Healthc Mater. 10:e20018122021. View Article : Google Scholar : PubMed/NCBI | |
Guevara ML, Persano F and Persano S: Advances in lipid nanoparticles for mRNA-Based cancer immunotherapy. Front Chem. 8:5899592020. View Article : Google Scholar : PubMed/NCBI | |
De Beuckelaer A, Grooten J and De Koker S: Type I Interferons Modulate CD8(+) T Cell Immunity to mRNA Vaccines. Trends Mol Med. 23:216–226. 2017. View Article : Google Scholar : PubMed/NCBI | |
Karam M and Daoud G: mRNA vaccines: Past, present, future. Asian J Pharm Sci. 17:491–522. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao P, Hou X, Yan J, Du S, Xue Y, Li W, Xiang G and Dong Y: Long-term storage of lipid-like nanoparticles for mRNA delivery. Bioact Mater. 5:358–363. 2020.PubMed/NCBI | |
Stitz L, Vogel A, Schnee M, Voss D, Rauch S, Mutzke T, Ketterer T, Kramps T and Petsch B: A thermostable messenger RNA based vaccine against rabies. PLoS Negl Trop Dis. 11:e00061082017. View Article : Google Scholar : PubMed/NCBI | |
Petsch B, Schnee M, Vogel AB, Lange E, Hoffmann B, Voss D, Schlake T, Thess A, Kallen KJ, Stitz L and Kramps T: Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol. 30:1210–1216. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dowdy SF: Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol. 35:222–229. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chaudhary N, Weissman D and Whitehead KA: mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov. 20:817–838. 2021. View Article : Google Scholar : PubMed/NCBI | |
Heine A, Juranek S and Brossart P: Clinical and immunological effects of mRNA vaccines in malignant diseases. Mol Cancer. 20:522021. View Article : Google Scholar : PubMed/NCBI | |
Schlake T, Thess A, Fotin-Mleczek M and Kallen KJ: Developing mRNA-vaccine technologies. RNA Biol. 9:1319–1330. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dobrowolski C, Paunovska K, Schrader Echeverri E, Loughrey D, Da Silva Sanchez AJ, Ni H, Hatit MZC, Lokugamage MP, Kuzminich Y, Peck HE, et al: Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA delivery. Nat Nanotechnol. 17:871–879. 2022. View Article : Google Scholar : PubMed/NCBI | |
Solodushko V and Fouty B: Terminal hairpins improve protein expression in IRES-initiated mRNA in the absence of a cap and polyadenylated tail. Gene Ther. 30:620–627. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kowalski PS, Rudra A, Miao L and Anderson DG: Delivering the messenger: Advances in technologies for therapeutic mRNA delivery. Mol Ther. 27:710–728. 2019. View Article : Google Scholar : PubMed/NCBI | |
Park KS, Sun X, Aikins ME and Moon JJ: Non-viral COVID-19 vaccine delivery systems. Adv Drug Deliv Rev. 169:137–151. 2021. View Article : Google Scholar | |
Kim J, Eygeris Y, Gupta M and Sahay G: Self-assembled mRNA vaccines. Adv Drug Deliv Rev. 170:83–112. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kauffman KJ, Webber MJ and Anderson DG: Materials for non-viral intracellular delivery of messenger RNA therapeutics. J Control Release. 240:227–234. 2016. View Article : Google Scholar : PubMed/NCBI | |
Whitley J, Zwolinski C, Denis C, Maughan M, Hayles L, Clarke D, Snare M, Liao H, Chiou S, Marmura T, et al: Development of mRNA manufacturing for vaccines and therapeutics: mRNA platform requirements and development of a scalable production process to support early phase clinical trials. Transl Res. 242:38–55. 2022. View Article : Google Scholar | |
Kariko K, Muramatsu H, Ludwig J and Weissman D: Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 39:e1422011. View Article : Google Scholar : PubMed/NCBI | |
Linares-Fernandez S, Lacroix C, Exposito JY and Verrier B: Tailoring mRNA vaccine to balance innate/adaptive immune response. Trends Mol Med. 26:311–323. 2020. View Article : Google Scholar | |
Engel BJ, Grindel BJ, Gray JP and Millward SW: Purification of poly-dA oligonucleotides and mRNA-protein fusions with dT(25)-OAS resin. Bioorg Med Chem Lett. 30:1269342020. View Article : Google Scholar : PubMed/NCBI | |
Ye Z, Harmon J, Ni W, Li Y, Wich D and Xu Q: The mRNA Vaccine Revolution: COVID-19 has launched the future of vaccinology. ACS Nano. 17:15231–15253. 2023. View Article : Google Scholar : PubMed/NCBI | |
To KKW and Cho WCS: An overview of rational design of mRNA-based therapeutics and vaccines. Expert Opin Drug Discov. 16:1307–1317. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kariko K, Kuo A and Barnathan E: Overexpression of urokinase receptor in mammalian cells following administration of the in vitro transcribed encoding mRNA. Gene Ther. 6:1092–1100. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kallen KJ and Theβ A: A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. Ther Adv Vaccines. 2:10–31. 2014. View Article : Google Scholar : PubMed/NCBI | |
Holtkamp S, Kreiter S, Selmi A, Simon P, Koslowski M, Huber C, Türeci O and Sahin U: Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood. 108:4009–4017. 2006. View Article : Google Scholar : PubMed/NCBI | |
Leppek K, Byeon GW, Kladwang W, Wayment-Steele HK, Kerr CH, Xu AF, Kim DS, Topkar VV, Choe C, Rothschild D, et al: Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nat Commun. 13:15362022. View Article : Google Scholar : PubMed/NCBI | |
Ramanathan A, Robb GB and Chan SH: mRNA capping: Biological functions and applications. Nucleic Acids Res. 44:7511–7526. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li Y and Kiledjian M: Regulation of mRNA decapping. Wiley Interdiscip Rev RNA. 1:253–265. 2010. View Article : Google Scholar | |
Geall AJ, Verma A, Otten GR, Shaw CA, Hekele A, Banerjee K, Cu Y, Beard CW, Brito LA, Krucker T, et al: Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci USA. 109:14604–14609. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mohamad Razif MI, Nizar N, Zainal Abidin NH, Muhammad Ali SN, Wan Zarimi WNN, Khotib J, Susanti D, Mohd Jailani MT and Taher M: Emergence of mRNA vaccines in the management of cancer. Expert Rev Vaccines. 22:629–642. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kim SC, Sekhon SS, Shin WR, Ahn G, Cho BK, Ahn JY and Kim YH: Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Mol Cell Toxicol. 18:1–8. 2022. View Article : Google Scholar | |
Warminski M, Kowalska J, Nowak E, Kubacka D, Tibble R, Kasprzyk R, Sikorski PJ, Gross JD, Nowotny M and Jemielity J: Structural Insights into the interaction of clinically relevant phosphorothioate mRNA Cap Analogs with translation initiation factor 4E Reveal Stabilization via Electrostatic Thio-Effect. ACS Chem Biol. 16:334–343. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kuhn AN, Diken M, Kreiter S, Selmi A, Kowalska J, Jemielity J, Darzynkiewicz E, Huber C, Türeci O and Sahin U: Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther. 17:961–971. 2010. View Article : Google Scholar : PubMed/NCBI | |
Grudzien-Nogalska E, Jemielity J, Kowalska J, Darzynkiewicz E and Rhoads RE: Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells. RNA. 13:1745–1755. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rydzik AM, Kulis M, Lukaszewicz M, Kowalska J, Zuberek J, Darzynkiewicz ZM, Darzynkiewicz E and Jemielity J: Synthesis and properties of mRNA cap analogs containing imidodiphosphate moiety-fairly mimicking natural cap structure, yet resistant to enzymatic hydrolysis. Bioorg Med Chem. 20:1699–1710. 2012. View Article : Google Scholar : PubMed/NCBI | |
Henderson JM, Ujita A, Hill E, Yousif-Rosales S, Smith C, Ko N, McReynolds T, Cabral CR, Escamilla-Powers JR and Houston ME: Cap 1 Messenger RNA Synthesis with Co-transcriptional CleanCap((R)) Analog by In Vitro Transcription. Curr Protoc. 1:e392021. View Article : Google Scholar | |
Suknuntha K, Tao L, Brok-Volchanskaya V, D'Souza SS, Kumar A and Slukvin I: Optimization of Synthetic mRNA for highly efficient translation and its application in the generation of endothelial and hematopoietic cells from human and primate pluripotent stem cells. Stem Cell Rev Rep. 14:525–534. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ryczek N, Lys A and Makalowska I: The Functional Meaning of 5'UTR in Protein-Coding Genes. Int J Mol Sci. 24:29762023. View Article : Google Scholar : PubMed/NCBI | |
Creusot RJ, Chang P, Healey DG, Tcherepanova IY, Nicolette CA and Fathman CG: A short pulse of IL-4 delivered by DCs electroporated with modified mRNA can both prevent and treat autoimmune diabetes in NOD mice. Mol Ther. 18:2112–2120. 2010. View Article : Google Scholar : PubMed/NCBI | |
Asrani KH, Farelli JD, Stahley MR, Miller RL, Cheng CJ, Subramanian RR and Brown JM: Optimization of mRNA untranslated regions for improved expression of therapeutic mRNA. RNA Biol. 15:756–762. 2018.PubMed/NCBI | |
Chakraborty C, Sharma AR, Bhattacharya M and Lee SS: From COVID-19 to Cancer mRNA Vaccines: Moving from bench to clinic in the vaccine landscape. Front Immunol. 12:6793442021. View Article : Google Scholar : PubMed/NCBI | |
Beaudoin CA, Bartas M, Volná A, Pečinka P and Blundell TL: Are There Hidden Genes in DNA/RNA Vaccines? Front Immunol. 13:8019152022. View Article : Google Scholar : PubMed/NCBI | |
Gustafsson C, Govindarajan S and Minshull J: Codon bias and heterologous protein expression. Trends Biotechnol. 22:346–353. 2004. View Article : Google Scholar : PubMed/NCBI | |
Passmore LA and Coller J: Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat Rev Mol Cell Biol. 23:93–106. 2022. View Article : Google Scholar | |
Lima SA, Chipman LB, Nicholson AL, Chen YH, Yee BA, Yeo GW, Coller J and Pasquinelli AE: Short poly(A) tails are a conserved feature of highly expressed genes. Nat Struct Mol Biol. 24:1057–1063. 2017. View Article : Google Scholar : PubMed/NCBI | |
McNamara MA, Nair SK and Holl EK: RNA-Based Vaccines in Cancer Immunotherapy. J Immunol Res. 2015:7945282015. View Article : Google Scholar : PubMed/NCBI | |
Chung JY, Thone MN and Kwon YJ: COVID-19 vaccines: The status and perspectives in delivery points of view. Adv Drug Deliv Rev. 170:1–25. 2021. View Article : Google Scholar | |
Islam MA, Rice J, Reesor E, Zope H, Tao W, Lim M, Ding J, Chen Y, Aduluso D, Zetter BR, et al: Adjuvant-pulsed mRNA vaccine nanoparticle for immunoprophylactic and therapeutic tumor suppression in mice. Biomaterials. 266:1204312021. View Article : Google Scholar | |
De Keersmaecker B, Claerhout S, Carrasco J, Bar I, Corthals J, Wilgenhof S, Neyns B and Thielemans K: TriMix and tumor antigen mRNA electroporated dendritic cell vaccination plus ipilimumab: link between T-cell activation and clinical responses in advanced melanoma. J Immunother Cancer. 8:e0003292020. View Article : Google Scholar : PubMed/NCBI | |
Franzoni G, Anfossi A, De Ciucis CG, Mecocci S, Carta T, Dei Giudici S, Fruscione F, Zinellu S, Vito G, Graham SP, et al: Targeting Toll-Like Receptor 2: Polarization of Porcine Macrophages by a Mycoplasma-Derived Pam2cys Lipopeptide. Vaccines (Basel). 9:6922021. View Article : Google Scholar : PubMed/NCBI | |
Gu Y, Yang J, He C, Zhao T, Lu R, Liu J, Mo X, Wen F and Shi H: Incorporation of a Toll-like receptor 2/6 agonist potentiates mRNA vaccines against cancer and infectious diseases. Signal Transduct Target Ther. 8:2732023. View Article : Google Scholar : PubMed/NCBI | |
Ulmer JB, Mason PW, Geall A and Mandl CW: RNA-based vaccines. Vaccine. 30:4414–4418. 2012. View Article : Google Scholar : PubMed/NCBI | |
McCullough KC, Milona P, Thomann-Harwood L, Démoulins T, Englezou P, Suter R and Ruggli N: Self-Amplifying Replicon RNA Vaccine Delivery to Dendritic Cells by Synthetic Nanoparticles. Vaccines (Basel). 2:735–754. 2014. View Article : Google Scholar : PubMed/NCBI | |
Maruggi G, Zhang C, Li J, Ulmer JB and Yu D: mRNA as a transformative technology for vaccine development to control infectious diseases. Mol Ther. 27:757–772. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhuang X, Qi Y, Wang M, Yu N, Nan F, Zhang H, Tian M, Li C, Lu H and Jin N: mRNA Vaccines Encoding the HA Protein of Influenza A H1N1 virus delivered by cationic lipid nanoparticles induce protective immune responses in mice. Vaccines (Basel). 8:1232020. View Article : Google Scholar : PubMed/NCBI | |
Kallen KJ, Heidenreich R, Schnee M, Petsch B, Schlake T, Thess A, Baumhof P, Scheel B, Koch SD and Fotin-Mleczek M: A novel, disruptive vaccination technology: Self-adjuvanted RNActive((R)) vaccines. Hum Vaccin Immunother. 9:2263–2276. 2013. View Article : Google Scholar : PubMed/NCBI | |
Leal L, Guardo AC, Morón-López S, Salgado M, Mothe B, Heirman C, Pannus P, Vanham G, van den Ham HJ, Gruters R, et al: Phase I clinical trial of an intranodally administered mRNA-based therapeutic vaccine against HIV-1 infection. AIDS. 32:2533–2545. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jong W, Leal L, Buyze J, Pannus P, Guardo A, Salgado M, Mothe B, Molto J, Moron-Lopez S, Gálvez C, et al: Therapeutic Vaccine in Chronically HIV-1-Infected Patients: A Randomized, Double-Blind, Placebo-Controlled Phase IIa Trial with HTI-TriMix. Vaccines (Basel). 7:2092019. View Article : Google Scholar : PubMed/NCBI | |
Egan KP, Hook LM, Naughton A, Pardi N, Awasthi S, Cohen GH, Weissman D and Friedman HM: An HSV-2 nucleoside-modified mRNA genital herpes vaccine containing glycoproteins gC, gD, and gE protects mice against HSV-1 genital lesions and latent infection. PLoS Pathog. 16:e10087952020. View Article : Google Scholar : PubMed/NCBI | |
Wollner CJ, Richner M, Hassert MA, Pinto AK, Brien JD and Richner JM: A Dengue Virus Serotype 1 mRNA-LNP vaccine elicits protective immune responses. J Virol. 95:e02482–20. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wollner CJ and Richner JM: mRNA Vaccines against Flaviviruses. Vaccines (Basel). 9:1482021. View Article : Google Scholar | |
Rzymski P, Szuster-Ciesielska A, Dzieciątkowski T, Gwenzi W and Fal A: mRNA vaccines: The future of prevention of viral infections? J Med Virol. 95:e285722023. View Article : Google Scholar : PubMed/NCBI | |
Richner JM, Himansu S, Dowd KA, Butler SL, Salazar V, Fox JM, Julander JG, Tang WW, Shresta S, Pierson TC, et al: Modified mRNA Vaccines Protect against Zika Virus Infection. Cell. 169:1762017. View Article : Google Scholar : PubMed/NCBI | |
Parums DV: Editorial: mRNA Vaccines and Future Epidemic, Pandemic, and Endemic Zoonotic Virus Infections. Med Sci Monit. 27:e9329152021.PubMed/NCBI | |
Haynes BF: A new vaccine to battle covid-19. N Engl J Med. 384:470–471. 2021. View Article : Google Scholar | |
Fairweather D, Beetler DJ, Di Florio DN, Musigk N, Heidecker B and Cooper LT Jr: COVID-19, myocarditis and pericarditis. Circ Res. 132:1302–1319. 2023. View Article : Google Scholar : PubMed/NCBI | |
Maruggi G, Chiarot E, Giovani C, Buccato S, Bonacci S, Frigimelica E, Margarit I, Geall A, Bensi G and Maione D: Immunogenicity and protective efficacy induced by self-amplifying mRNA vaccines encoding bacterial antigens. Vaccine. 35:361–368. 2017. View Article : Google Scholar | |
Jawalagatti V, Kirthika P and Lee JH: Oral mRNA Vaccines Against Infectious Diseases-A Bacterial Perspective (Invited). Front Immunol. 13:8848622022. View Article : Google Scholar | |
Beck JD, Reidenbach D, Salomon N, Sahin U, Türeci Ö, Vormehr M and Kranz LM: mRNA therapeutics in cancer immunotherapy. Mol Cancer. 20:692021. View Article : Google Scholar : PubMed/NCBI | |
Vishweshwaraiah YL and Dokholyan NV: mRNA vaccines for cancer immunotherapy. Front Immunol. 13:10290692022. View Article : Google Scholar : | |
Wang F: Identification of tumor antigens and immune subtypes of acute myeloid leukemia for mRNA vaccine development. Clin Transl Oncol. 25:2204–2223. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chung DJ, Sharma S, Rangesa M, DeWolf S, Elhanati Y, Perica K and Young JW: Langerhans dendritic cell vaccine bearing mRNA-encoded tumor antigens induces antimyeloma immunity after autotransplant. Blood Adv. 6:1547–1558. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Yang Y, Li L, Ma P, Jiang Y, Ge M, Yu Y, Huang H, Fang Y, Jiang N, et al: Identification of Tumor Antigens and Immune Subtypes of Malignant Mesothelioma for mRNA Vaccine Development. Vaccines (Basel). 10:11682022. View Article : Google Scholar : PubMed/NCBI | |
Lin H, Wang K, Xiong Y, Zhou L, Yang Y, Chen S, Xu P, Zhou Y, Mao R, Lv G, et al: Identification of tumor antigens and immune subtypes of glioblastoma for mRNA vaccine development. Front Immunol. 13:7732642022. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Yan X, Zhu H, Xin Z, Zhao J, Shen W, Yin W, Guo Y, Xu H, Zhao M, et al: Identification of three tumor antigens and immune subtypes for mRNA vaccine development in diffuse glioma. Theranostics. 11:9775–9790. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Zheng X, Zhang S, Yi X, Zhang T, Wei Q, Li H and Ai J: Tumor antigens and immune subtypes guided mRNA vaccine development for kidney renal clear cell carcinoma. Mol Cancer. 20:1592021. View Article : Google Scholar : PubMed/NCBI | |
Rojas LA, Sethna Z, Soares KC, Olcese C, Pang N, Patterson E, Lihm J, Ceglia N, Guasp P, Chu A, et al: Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature. 618:144–150. 2023. View Article : Google Scholar : PubMed/NCBI | |
mRNA Vaccine Slows Melanoma Recurrence. Cancer Discov. 13:12782023. View Article : Google Scholar | |
Sun Z, Jing C, Zhan H, Guo X, Suo N, Kong F, Tao W, Xiao C, Hu D, Wang H and Jiang S: Identification of tumor antigens and immune landscapes for bladder urothelial carcinoma mRNA vaccine. Front Immunol. 14:10974722023. View Article : Google Scholar : PubMed/NCBI | |
Kiousi E, Lyraraki V, Mardiki GL, Stachika N, Damianou AK, Malainou CP, Syrigos N, Gomatou G and Kotteas E: Progress and Challenges of Messenger RNA Vaccines in the Therapeutics of NSCLC. Cancers (Basel). 15:55892023. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Xu H, Yi X, Zhang T, Wei Q, Li H and Ai J: Tumor-antigens and immune landscapes identification for prostate adenocarcinoma mRNA vaccine. Mol Cancer. 20:1602021. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Li Z, Lin H and Wang H: Identification of tumor antigens and immune subtypes of high-grade serous ovarian cancer for mRNA vaccine development. J Cancer. 14:2655–2669. 2023. View Article : Google Scholar : PubMed/NCBI | |
Song J, Zhang Y, Zhou C, Zhan J, Cheng X, Huang H, Mao S and Zong Z: The dawn of a new Era: mRNA vaccines in colorectal cancer immunotherapy. Int Immunopharmacol. 132:1120372024. View Article : Google Scholar : PubMed/NCBI | |
Sumi T, Koshino Y, Michimata H, Nagayama D, Watanabe H, Yamada Y and Chiba H: Cytokine release syndrome in a patient with non-small cell lung cancer on ipilimumab and nivolumab maintenance therapy after vaccination with the mRNA-1273 vaccine: A case report. Transl Lung Cancer Res. 11:1973–1976. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rausch S, Schwentner C, Stenzl A and Bedke J: mRNA vaccine CV9103 and CV9104 for the treatment of prostate cancer. Hum Vaccin Immunother. 10:3146–3152. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Wang Y, Miao L, Liu Q, Musetti S, Li J and Huang L: Combination Immunotherapy of MUC1 mRNA Nano-vaccine and CTLA-4 Blockade Effectively Inhibits Growth of Triple Negative Breast Cancer. Mol Ther. 26:45–55. 2018. View Article : Google Scholar : | |
Liu C, Papukashvili D, Dong Y, Wang X, Hu X, Yang N, Cai J, Xie F, Rcheulishvili N and Wang PG: Identification of Tumor Antigens and Design of mRNA vaccine for colorectal cancer based on the immune subtype. Front Cell Dev Biol. 9:7835272022. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Zhang G, Tang TY, Gao X and Liang TB: Personalized pancreatic cancer therapy: From the perspective of mRNA vaccine. Mil Med Res. 9:532022.PubMed/NCBI | |
Samuel N and Hudson TJ: The molecular and cellular heterogeneity of pancreatic ductal adenocarcinoma. Nat Rev Gastroenterol Hepatol. 9:77–87. 2011. View Article : Google Scholar : PubMed/NCBI | |
Makohon-Moore AP, Zhang M, Reiter JG, Bozic I, Allen B, Kundu D, Chatterjee K, Wong F, Jiao Y, Kohutek ZA, et al: Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nat Genet. 49:358–366. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bear AS, Vonderheide RH and O'Hara MH: Challenges and opportunities for pancreatic cancer immunotherapy. Cancer Cell. 38:788–802. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kang N, Zhang S and Wang Y: A personalized mRNA vaccine has exhibited potential in the treatment of pancreatic cancer. Holist Integr Oncol. 2:182023. View Article : Google Scholar : PubMed/NCBI | |
Tan H, Yu T, Liu C, Wang Y, Jing F, Ding Z, Liu J and Shi H: Identifying tumor antigens and immuno-subtyping in colon adenocarcinoma to facilitate the development of mRNA vaccine. Cancer Med. 11:4656–4672. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ping H, Yu W, Gong X, Tong X, Lin C, Chen Z, Cai C, Guo K and Ke H: Analysis of melanoma tumor antigens and immune subtypes for the development of mRNA vaccine. Invest New Drugs. 40:1173–1184. 2022. View Article : Google Scholar : | |
Sittplangkoon C, Alameh MG, Weissman D, Lin PJC, Tam YK, Prompetchara E and Palaga T: mRNA vaccine with unmodified uridine induces robust type I interferon-dependent anti-tumor immunity in a melanoma model. Front Immunol. 13:9830002022. View Article : Google Scholar : | |
Li RQ, Wang W, Yan L, Song LY, Guan X, Zhang W and Lian J: Identification of tumor antigens and immune subtypes in breast cancer for mRNA vaccine development. Front Oncol. 12:9737122022. View Article : Google Scholar : PubMed/NCBI | |
Niemi JVL, Sokolov AV and Schioth HB: Neoantigen vaccines; clinical trials, classes, indications, adjuvants and combinatorial treatments. Cancers (Basel). 14:51632022. View Article : Google Scholar : PubMed/NCBI | |
Oberli MA, Reichmuth AM, Dorkin JR, Mitchell MJ, Fenton OS, Jaklenec A, Anderson DG, Langer R and Blankschtein D: Lipid Nanoparticle Assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 17:1326–1335. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mellor AL, Keskin DB, Johnson T, Chandler P and Munn DH: Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses. J Immunol. 168:3771–3776. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mellman I, Coukos G and Dranoff G: Cancer immunotherapy comes of age. Nature. 480:480–489. 2011. View Article : Google Scholar : PubMed/NCBI | |
Conry RM, LoBuglio AF, Wright M, Sumerel L, Pike MJ, Johanning F, Benjamin R, Lu D and Curiel DT: Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. 55:1397–1400. 1995.PubMed/NCBI | |
Huang X, Tang T, Zhang G and Liang T: Identification of tumor antigens and immune subtypes of cholangiocarcinoma for mRNA vaccine development. Mol Cancer. 20:502021. View Article : Google Scholar : | |
Guo Y, Lei K and Tang L: Neoantigen Vaccine delivery for personalized anticancer immunotherapy. Front Immunol. 9:14992018. View Article : Google Scholar : PubMed/NCBI | |
Grabbe S, Haas H, Diken M, Kranz LM, Langguth P and Sahin U: Translating nanoparticulate-personalized cancer vaccines into clinical applications: Case study with RNA-lipoplexes for the treatment of melanoma. Nanomedicine (Lond). 11:2723–2734. 2016. View Article : Google Scholar : PubMed/NCBI | |
Esprit A, de Mey W, Bahadur Shahi R, Thielemans K, Franceschini L and Breckpot K: Neo-Antigen mRNA Vaccines. Vaccines (Basel). 8:7762020. View Article : Google Scholar : PubMed/NCBI | |
Blass E and Ott PA: Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol. 18:215–229. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cafri G, Gartner JJ, Zaks T, Hopson K, Levin N, Paria BC, Parkhurst MR, Yossef R, Lowery FJ and Jafferji MS: mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. J Clin Invest. 130:5976–5988. 2020. View Article : Google Scholar : PubMed/NCBI | |
Roberts ND, Kortschak RD, Parker WT, Schreiber AW, Branford S, Scott HS, Glonek G and Adelson DL: A comparative analysis of algorithms for somatic SNV detection in cancer. Bioinformatics. 29:2223–2230. 2013. View Article : Google Scholar : PubMed/NCBI | |
Karasaki T, Nagayama K, Kuwano H, Nitadori JI, Sato M, Anraku M, Hosoi A, Matsushita H, Takazawa M, Ohara O, et al: Prediction and prioritization of neoantigens: integration of RNA sequencing data with whole-exome sequencing. Cancer Sci. 108:170–177. 2017. View Article : Google Scholar : | |
Horak P, Frohling S and Glimm H: Integrating next-generation sequencing into clinical oncology: strategies, promises and pitfalls. ESMO Open. 1:e0000942016. View Article : Google Scholar : PubMed/NCBI | |
Bassani-Sternberg M, Bräunlein E, Klar R, Engleitner T, Sinitcyn P, Audehm S, Straub M, Weber J, Slotta-Huspenina J, Specht K, et al: Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat Commun. 7:134042016. View Article : Google Scholar : PubMed/NCBI | |
Kongsted P, Borch TH, Ellebaek E, Iversen TZ, Andersen R, Met Ö, Hansen M, Lindberg H, Sengeløv L and Svane IM: Dendritic cell vaccination in combination with docetaxel for patients with metastatic castration-resistant prostate cancer: A randomized phase II study. Cytotherapy. 19:500–513. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ingels J, De Cock L, Mayer RL, Devreker P, Weening K, Heyns K, Lootens N, De Smet S, Brusseel M, De Munter S, et al: Small-scale manufacturing of neoantigen-encoding messenger RNA for early-phase clinical trials. Cytotherapy. 24:213–222. 2022. View Article : Google Scholar | |
Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Löwer M, Bukur V, Tadmor AD, Luxemburger U, Schrörs B, et al: Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 547:222–226. 2017. View Article : Google Scholar : PubMed/NCBI | |
Steitz J, Britten CM, Wölfel T and Tüting T: Effective induction of anti-melanoma immunity following genetic vaccination with synthetic mRNA coding for the fusion protein EGFP.TRP2. Cancer Immunol Immunother. 55:246–253. 2006. View Article : Google Scholar | |
Weide B, Pascolo S, Scheel B, Derhovanessian E, Pflugfelder A, Eigentler TK, Pawelec G, Hoerr I, Rammensee HG and Garbe C: Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother. 32:498–507. 2009. View Article : Google Scholar | |
Mai Y, Guo J, Zhao Y, Ma S, Hou Y and Yang J: Intranasal delivery of cationic liposome-protamine complex mRNA vaccine elicits effective anti-tumor immunity. Cell Immunol. 354:1041432020. View Article : Google Scholar | |
Sahin U, Oehm P, Derhovanessian E, Jabulowsky RA, Vormehr M, Gold M, Maurus D, Schwarck-Kokarakis D, Kuhn AN, Omokoko T, et al: An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature. 585:107–112. 2020. View Article : Google Scholar | |
Conlon KC, Miljkovic MD and Waldmann TA: Cytokines in the Treatment of Cancer. J Interferon Cytokine Res. 39:6–21. 2019. View Article : Google Scholar : | |
Di Trani CA, Fernandez-Sendin M, Cirella A, Segués A, Olivera I, Bolaños E, Melero I and Berraondo P: Advances in mRNA-based drug discovery in cancer immunotherapy. Expert Opin Drug Discov. 17:41–53. 2022. View Article : Google Scholar | |
Komel T, Bosnjak M, Kranjc Brezar S, De Robertis M, Mastrodonato M, Scillitani G, Pesole G, Signori E, Sersa G and Cemazar M: Gene electrotransfer of IL-2 and IL-12 plasmids effectively eradicated murine B16.F10 melanoma. Bioelectrochemistry. 141:1078432021. View Article : Google Scholar : PubMed/NCBI | |
Etxeberria I, Bolaños E, Quetglas JI, Gros A, Villanueva A, Palomero J, Sánchez-Paulete AR, Piulats JM, Matias-Guiu X, Olivera I, et al: Intratumor Adoptive Transfer of IL-12 mRNA Transiently Engineered Antitumor CD8(+) T Cells. Cancer Cell. 36:613–629 e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hewitt SL, Bailey D, Zielinski J, Apte A, Musenge F, Karp R, Burke S, Garcon F, Mishra A, Gurumurthy S, et al: Intratumoral IL12 mRNA Therapy Promotes TH1 transformation of the tumor microenvironment. Clin Cancer Res. 26:6284–6298. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hotz C, Wagenaar TR, Gieseke F, Bangari DS, Callahan M, Cao H, Diekmann J, Diken M, Grunwitz C, Hebert A, et al: Local delivery of mRNA-encoded cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Sci Transl Med. 13:eabc78042021. View Article : Google Scholar : PubMed/NCBI | |
Hewitt SL, Bai A, Bailey D, Ichikawa K, Zielinski J, Karp R, Apte A, Arnold K, Zacharek SJ, Iliou MS, et al: Durable anticancer immunity from intratumoral administration of IL-23, IL-36ү, and OX40L mRNAs. Sci Transl Med. 11:eaat91432019. View Article : Google Scholar | |
Loomis KH, Lindsay KE, Zurla C, Bhosle SM, Vanover DA, Blanchard EL, Kirschman JL, Bellamkonda RV and Santangelo PJ: In Vitro Transcribed mRNA vaccines with programmable stimulation of innate immunity. Bioconjug Chem. 29:3072–3083. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jansen Y, Kruse V, Corthals J, Schats K, van Dam PJ, Seremet T, Heirman C, Brochez L, Kockx M, Thielemans K and Neyns B: A randomized controlled phase II clinical trial on mRNA electroporated autologous monocyte-derived dendritic cells (TriMixDC-MEL) as adjuvant treatment for stage III/IV melanoma patients who are disease-free following the resection of macrometastases. Cancer Immunol Immunother. 69:2589–2598. 2020. View Article : Google Scholar : PubMed/NCBI | |
Schlake T, Thran M, Fiedler K, Heidenreich R, Petsch B and Fotin-Mleczek M: mRNA: A novel avenue to antibody therapy? Mol Ther. 27:773–784. 2019. View Article : Google Scholar : PubMed/NCBI | |
Thran M, Mukherjee J, Pönisch M, Fiedler K, Thess A, Mui BL, Hope MJ, Tam YK, Horscroft N, Heidenreich R, et al: mRNA mediates passive vaccination against infectious agents, toxins, and tumors. EMBO Mol Med. 9:1434–1447. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dahlen E, Veitonmaki N and Norlen P: Bispecific antibodies in cancer immunotherapy. Ther Adv Vaccines Immunother. 6:3–17. 2018. View Article : Google Scholar : PubMed/NCBI | |
Thomas A, Teicher BA and Hassan A: Antibody-drug conjugates for cancer therapy. Lancet Oncol. 17:e254–e262. 2016. View Article : Google Scholar : PubMed/NCBI | |
Page DB, Postow MA, Callahan MK, Allison JP and Wolchok JD: Immune modulation in cancer with antibodies. Annu Rev Med. 65:185–202. 2014. View Article : Google Scholar | |
Hudis CA: Trastuzumab-mechanism of action and use in clinical practice. N Engl J Med. 357:39–51. 2007. View Article : Google Scholar : PubMed/NCBI | |
Diamantis N and Banerji U: Antibody-drug conjugates-an emerging class of cancer treatment. Br J Cancer. 114:362–367. 2016. View Article : Google Scholar : PubMed/NCBI | |
de Miguel D, Lemke J, Anel A, Walczak H and MartinezLostao L: Onto better TRAILs for cancer treatment. Cell Death Differ. 23:733–747. 2016. View Article : Google Scholar : PubMed/NCBI | |
Salles G, Barrett M, Foà R, Maurer J, O'Brien S, Valente N, Wenger M and Maloney DG: Rituximab in B-Cell Hematologic Malignancies: A review of 20 years of clinical experience. Adv Ther. 34:2232–2273. 2017. View Article : Google Scholar : PubMed/NCBI | |
Van Hoecke L, Verbeke R, Dewitte H, Lentacker I, Vermaelen K, Breckpot K and Van Lint S: mRNA in cancer immunotherapy: Beyond a source of antigen. Mol Cancer. 20:482021. View Article : Google Scholar : PubMed/NCBI | |
Rybakova Y, Kowalski PS, Huang Y, Gonzalez JT, Heartlein MW, DeRosa F, Delcassian D and Anderson DG: mRNA Delivery for Therapeutic Anti-HER2 antibody expression in vivo. Mol Ther. 27:1415–1423. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ballesteros-Briones MC, Martisova E, Casales E, Silva-Pilipich N, Buñuales M, Galindo J, Mancheño U, Gorraiz M, Lasarte JJ, Kochan G, et al: Short-Term Local Expression of a PD-L1 Blocking Antibody from a Self-Replicating RNA Vector induces potent antitumor responses. Mol Ther. 27:1892–1905. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nisonoff A, Wissler FC and Lipman LN: Properties of the major component of a peptic digest of rabbit antibody. Science. 132:1770–1771. 1960. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Tiruthani K, Li S, Hu M, Zhong G, Tang Y, Roy S, Zhang L, Tan J, Liao C and Liu R: mRNA delivery of a bispecific single-domain antibody to polarize tumor-associated macrophages and synergize immunotherapy against liver malignancies. Adv Mater. 33:e20076032021. View Article : Google Scholar : PubMed/NCBI | |
Fudenberg HH, Drews G and Nisonoff A: Serologic demonstration of dual specificity of rabbit bivalent hybrid antibody. J Exp Med. 119:151–166. 1964. View Article : Google Scholar : PubMed/NCBI | |
Garber K: Bispecific antibodies rise again. Nat Rev Drug Discov. 13:799–801. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Wang W, Tian J, Qi C, Cai Z, Yan W, Xuan S and Shang A: Engineered mRNA-expressed bispecific antibody prevent intestinal cancer via lipid nanoparticle delivery. Bioengineered. 12:12383–12393. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL, Chew A, Carroll RG, Scholler J, Levine BL, et al: Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res. 70:9053–9061. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rabinovich PM, Komarovskaya ME, Wrzesinski SH, Alderman JL, Budak-Alpdogan T, Karpikov A, Guo H, Flavell RA, Cheung NK, Weissman SM and Bahceci E: Chimeric receptor mRNA transfection as a tool to generate antineoplastic lymphocytes. Hum Gene Ther. 20:51–61. 2009. View Article : Google Scholar | |
Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM and Rosenberg SA: Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 18:843–851. 2010. View Article : Google Scholar : PubMed/NCBI | |
Brentjens R, Yeh R, Bernal Y, Riviere I and Sadelain M: Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: Case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther. 18:666–668. 2010. View Article : Google Scholar : PubMed/NCBI | |
Miliotou AN and Papadopoulou LC: CAR T-cell Therapy: A new era in cancer immunotherapy. Curr Pharm Biotechnol. 19:5–18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fiedler K, Lazzaro S, Lutz J, Rauch S and Heidenreich R: mRNA cancer vaccines. Recent Results Cancer Res. 209:61–85. 2016. View Article : Google Scholar | |
Soundara Rajan T, Gugliandolo A, Bramanti P and Mazzon E: In Vitro-Transcribed mRNA Chimeric Antigen Receptor T Cell (IVT mRNA CAR T) therapy in hematologic and solid tumor management: A preclinical update. Int J Mol Sci. 21:65142020. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Zheng Z, Cohen CJ, Gattinoni L, Palmer DC, Restifo NP, Rosenberg SA and Morgan RA: High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol Ther. 13:151–159. 2006. View Article : Google Scholar | |
Yoon SH, Lee JM, Woo SJ, Park MJ, Park JS, Kim HS, Park MY, Sohn HJ and Kim TG: Transfer of Her-2/neu specificity into cytokine-induced killer (CIK) cells with RNA encoding chimeric immune receptor (CIR). J Clin Immunol. 29:806–814. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schaft N, Dörrie J, Müller I, Beck V, Baumann S, Schunder T, Kämpgen E and Schuler G: A new way to generate cytolytic tumor-specific T cells: Electroporation of RNA coding for a T cell receptor into T lymphocytes. Cancer Immunol Immunother. 55:1132–1141. 2006. View Article : Google Scholar | |
Boissel L, Betancur M, Wels WS, Tuncer H and Klingemann H: Transfection with mRNA for CD19 specific chimeric antigen receptor restores NK cell mediated killing of CLL cells. Leuk Res. 33:1255–1259. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kenderian SS, Ruella M, Shestova O, Klichinsky M, Aikawa V, Morrissette JJ, Scholler J, Song D, Porter DL, Carroll M, et al: CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia. 29:1637–1647. 2015. View Article : Google Scholar : PubMed/NCBI | |
Birkholz K, Hombach A, Krug C, Reuter S, Kershaw M, Kämpgen E, Schuler G, Abken H, Schaft N and Dörrie J: Transfer of mRNA encoding recombinant immunoreceptors reprograms CD4+ and CD8+ T cells for use in the adoptive immunotherapy of cancer. Gene Ther. 16:596–604. 2009. View Article : Google Scholar : PubMed/NCBI | |
Barrett DM, Zhao Y, Liu X, Jiang S, Carpenito C, Kalos M, Carroll RG, June CH and Grupp SA: Treatment of advanced leukemia in mice with mRNA engineered T cells. Hum Gene Ther. 22:1575–1586. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ang WX, Li Z, Chi Z, Du SH, Chen C, Tay JC, Toh HC, Connolly JE, Xu XH and Wang S: Intraperitoneal immunotherapy with T cells stably and transiently expressing anti-EpCAM CAR in xenograft models of peritoneal carcinomatosis. Oncotarget. 8:13545–13559. 2017. View Article : Google Scholar : PubMed/NCBI | |
Almasbak H, Rian E, Hoel HJ, Pulè M, Wälchli S, Kvalheim G, Gaudernack G and Rasmussen AM: Transiently redirected T cells for adoptive transfer. Cytotherapy. 13:629–640. 2011. View Article : Google Scholar | |
Miliotou AN and Papadopoulou LC: In Vitro-Transcribed (IVT)-mRNA CAR Therapy Development. Methods Mol Biol. 2086:87–117. 2020. View Article : Google Scholar | |
Foster JB, Choudhari N, Perazzelli J, Storm J, Hofmann TJ, Jain P, Storm PB, Pardi N, Weissman D, Waanders AJ, et al: Purification of mRNA Encoding Chimeric Antigen Receptor Is Critical for Generation of a Robust T-Cell Response. Hum Gene Ther. 30:168–178. 2019. View Article : Google Scholar : | |
Jetani H, Navarro-Bailón A, Maucher M, Frenz S, Verbruggen C, Yeguas A, Vidriales MB, González M, Rial Saborido J, Kraus S, et al: Siglec-6 is a novel target for CAR T-cell therapy in acute myeloid leukemia. Blood. 138:1830–1842. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lin L, Cho SF, Xing L, Wen K, Li Y, Yu T, Hsieh PA, Chen H, Kurtoglu M, Zhang Y, et al: Preclinical evaluation of CD8+ anti-BCMA mRNA CAR T cells for treatment of multiple myeloma. Leukemia. 35:752–763. 2021. View Article : Google Scholar | |
Bontkes HJ, Kramer D, Ruizendaal JJ, Meijer CJ and Hooijberg E: Tumor associated antigen and interleukin-12 mRNA transfected dendritic cells enhance effector function of natural killer cells and antigen specific T-cells. Clin Immunol. 127:375–384. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wilgenhof S, Van Nuffel AMT, Benteyn D, Corthals J, Aerts C, Heirman C, Van Riet I, Bonehill A, Thielemans K and Neyns B: A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann Oncol. 24:2686–2693. 2013. View Article : Google Scholar : PubMed/NCBI | |
Figlin RA, Tannir NM, Uzzo RG, Tykodi SS, Chen DYT, Master V, Kapoor A, Vaena D, Lowrance W, Bratslavsky G, et al: Results of the ADAPT Phase 3 Study of Rocapuldencel-T in combination with sunitinib as first-line therapy in patients with metastatic renal cell carcinoma. Clin Cancer Res. 26:2327–2336. 2020. View Article : Google Scholar : PubMed/NCBI | |
Van Hoecke L, Van Lint S, Roose K, Van Parys A, Vandenabeele P, Grooten J, Tavernier J, De Koker S and Saelens X: Treatment with mRNA coding for the necroptosis mediator MLKL induces antitumor immunity directed against neo-epitopes. Nat Commun. 9:34172018. View Article : Google Scholar : PubMed/NCBI | |
Trepotec Z, Lichtenegger E, Plank C, Aneja MK and Rudolph C: Delivery of mRNA therapeutics for the treatment of hepatic diseases. Mol Ther. 27:794–802. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sahu I, Haque AKMA, Weidensee B, Weinmann P and Kormann MSD: Recent Developments in mRNA-Based protein supplementation therapy to target lung diseases. Mol Ther. 27:803–823. 2019. View Article : Google Scholar : PubMed/NCBI | |
Patel S, Ryals RC, Weller KK, Pennesi ME and Sahay G: Lipid nanoparticles for delivery of messenger RNA to the back of the eye. J Control Release. 303:91–100. 2019. View Article : Google Scholar : PubMed/NCBI | |
Magadum A, Kaur K and Zangi L: mRNA-Based protein replacement therapy for the heart. Mol Ther. 27:785–793. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lescan M, Perl RM, Golombek S, Pilz M, Hann L, Yasmin M, Behring A, Keller T, Nolte A, Gruhn F, et al: De Novo Synthesis of elastin by exogenous delivery of synthetic modified mRNA into Skin and Elastin-Deficient Cells. Mol Ther Nucleic Acids. 11:475–484. 2018. View Article : Google Scholar : PubMed/NCBI | |
Baba M, Itaka K, Kondo K, Yamasoba T and Kataoka K: Treatment of neurological disorders by introducing mRNA in vivo using polyplex nanomicelles. J Control Release. 201:41–48. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kormann MS, Hasenpusch G, Aneja MK, Nica G, Flemmer AW, Herber-Jonat S, Huppmann M, Mays LE, Illenyi M, Schams A, et al: Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol. 29:154–157. 2011. View Article : Google Scholar : PubMed/NCBI | |
Van Hoecke L and Roose K: How mRNA therapeutics are entering the monoclonal antibody field. J Transl Med. 17:542019. View Article : Google Scholar : PubMed/NCBI | |
Raab M, Kostova I, Peña-Llopis S, Fietz D, Kressin M, Aberoumandi SM, Ullrich E, Becker S, Sanhaji M and Strebhardt K: Rescue of p53 functions by in vitro-transcribed mRNA impedes the growth of high-grade serous ovarian cancer. Cancer Commun (Lond). 44:101–126. 2024. View Article : Google Scholar | |
Yin H, Kauffman KJ and Anderson DG: Delivery technologies for genome editing. Nat Rev Drug Discov. 16:387–399. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cox DB, Platt RJ and Zhang F: Therapeutic genome editing: Prospects and challenges. Nat Med. 21:121–131. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang SW, Gao C, Zheng YM, Yi L, Lu JC, Huang XY, Cai JB, Zhang PF, Cui YH and Ke AW: Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol Cancer. 21:572022. View Article : Google Scholar : PubMed/NCBI | |
Ling K, Dou Y, Yang N, Deng L, Wang Y, Li Y, Yang L, Chen C, Jiang L, Deng Q, et al: Genome editing mRNA nanotherapies inhibit cervical cancer progression and regulate the immunosuppressive microenvironment for adoptive T-cell therapy. J Control Release. 360:496–513. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jo JI, Gao JQ and Tabata Y: Biomaterial-based delivery systems of nucleic acid for regenerative research and regenerative therapy. Regen Ther. 11:123–130. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kwon H, Kim M, Seo Y, Moon YS, Lee HJ, Lee K and Lee H: Emergence of synthetic mRNA: In vitro synthesis of mRNA and its applications in regenerative medicine. Biomaterials. 156:172–193. 2018. View Article : Google Scholar | |
Lin Z, Wu Y, Xu Y, Li G, Li Z and Liu T: Mesenchymal stem cell-derived exosomes in cancer therapy resistance: Recent advances and therapeutic potential. Mol Cancer. 21:1792022. View Article : Google Scholar : PubMed/NCBI | |
Ramos da Silva J, Bitencourt Rodrigues K, Formoso Pelegrin G, Silva Sales N, Muramatsu H, de Oliveira Silva M, Porchia BFMM, Moreno ACR, Aps LRMM, Venceslau-Carvalho AA, et al: Single immunizations of self-amplifying or non-replicating mRNA-LNP vaccines control HPV-associated tumors in mice. Sci Transl Med. 15:eabn34642023. View Article : Google Scholar : PubMed/NCBI |