Myeloid‑derived suppressor cells: Key immunosuppressive regulators and therapeutic targets in colorectal cancer (Review)
- Authors:
- Wenjuan Zeng
- Haohan Liu
- Yuanhao Mao
- Shihao Jiang
- Hao Yi
- Zitong Zhang
- Menghui Wang
- Zhen Zong
-
Affiliations: Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Fuzhou Medical College, Nanchang University, Fuzhou, Jiangxi 330006, P.R. China - Published online on: July 25, 2024 https://doi.org/10.3892/ijo.2024.5673
- Article Number: 85
-
Copyright: © Zeng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM and Wallace MB: Colorectal cancer. Lancet. 394:1467–1480. 2019. View Article : Google Scholar : PubMed/NCBI | |
Leufkens AM, van den Bosch MAAJ, van Leeuwen MS and Siersema PD: Diagnostic accuracy of computed tomography for colon cancer staging: A systematic review. Scand J Gastroenterol. 46:887–894. 2011. View Article : Google Scholar : PubMed/NCBI | |
Biller LH and Schrag D: Diagnosis and treatment of metastatic colorectal cancer: A review. JAMA. 325:669–685. 2021. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Wagle NS, Cercek A, Smith RA and Jemal A: Colorectal cancer statistics, 2023. CA Cancer J Clin. 73:233–254. 2023. View Article : Google Scholar : PubMed/NCBI | |
Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, Kramer J and Siegel RL: Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 72:409–436. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhu YJ, Li X, Chen TT, Wang JX, Zhou YX, Mu XL, Du Y, Wang JL, Tang J and Liu JY: Personalised neoantigen-based therapy in colorectal cancer. Clin Transl Med. 13:e14612023. View Article : Google Scholar : PubMed/NCBI | |
Barker HE, Paget JTE, Khan AA and Harrington KJ: The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat Rev Cancer. 15:409–425. 2015. View Article : Google Scholar : PubMed/NCBI | |
Le DT, Hubbard-Lucey VM, Morse MA, Heery CR, Dwyer A, Marsilje TH, Brodsky AN, Chan E, Deming DA, Diaz LA Jr, et al: A blueprint to advance colorectal cancer immunotherapies. Cancer Immunol Res. 5:942–949. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fletcher R, Wang YJ, Schoen RE, Finn OJ, Yu J and Zhang L: Colorectal cancer prevention: Immune modulation taking the stage. Biochim Biophys Acta Rev Cancer. 1869:138–148. 2018. View Article : Google Scholar : PubMed/NCBI | |
Milette S, Fiset PO, Walsh LA, Spicer JD and Quail DF: The innate immune architecture of lung tumors and its implication in disease progression. J Pathol. 247:589–605. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, et al: Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 7:121502016. View Article : Google Scholar : PubMed/NCBI | |
Condamine T and Gabrilovich DI: Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 32:19–25. 2011. View Article : Google Scholar : | |
Condamine T, Mastio J and Gabrilovich DI: Transcriptional regulation of myeloid-derived suppressor cells. J Leukoc Biol. 98:913–922. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao F, Hoechst B, Duffy A, Gamrekelashvili J, Fioravanti S, Manns MP, Greten TF and Korangy F: S100A9 a new marker for monocytic human myeloid-derived suppressor cells. Immunology. 136:176–183. 2012. View Article : Google Scholar : PubMed/NCBI | |
Veglia F, Sanseviero E and Gabrilovich DI: Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 21:485–498. 2021. View Article : Google Scholar : PubMed/NCBI | |
Groth C, Hu X, Weber R, Fleming V, Altevogt P, Utikal J and Umansky V: Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer. 120:16–25. 2019. View Article : Google Scholar : | |
Veglia F, Perego M and Gabrilovich D: Myeloid-derived suppressor cells coming of age. Nat Immunol. 19:108–119. 2018. View Article : Google Scholar : PubMed/NCBI | |
Marigo I, Bosio E, Solito S, Mesa C, Fernandez A, Dolcetti L, Ugel S, Sonda N, Bicciato S, Falisi E, et al: Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity. 32:790–802. 2010. View Article : Google Scholar : PubMed/NCBI | |
Consonni FM, Porta C, Marino A, Pandolfo C, Mola S, Bleve A and Sica A: Myeloid-derived suppressor cells: Ductile targets in disease. Front Immunol. 10:9492019. View Article : Google Scholar : PubMed/NCBI | |
Lim HX, Kim TS and Poh CL: Understanding the differentiation, expansion, recruitment and suppressive activities of myeloid-derived suppressor cells in cancers. Int J Mol Sci. 21:35992020. View Article : Google Scholar : PubMed/NCBI | |
Ma T, Renz BW, Ilmer M, Koch D, Yang Y, Werner J and Bazhin AV: Myeloid-derived suppressor cells in solid tumors. Cells. 11:3102022. View Article : Google Scholar : PubMed/NCBI | |
Talmadge JE and Gabrilovich DI: History of myeloid-derived suppressor cells. Nat Rev Cancer. 13:739–752. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gabrilovich DI: Myeloid-derived suppressor cells. Cancer Immunol Res. 5:3–8. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fleming V, Hu X, Weber R, Nagibin V, Groth C, Altevogt P, Utikal J and Umansky V: Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Front Immunol. 9:3982018. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Guo J, Weng L, Tang W, Jin S and Ma W: Myeloid-derived suppressor cells-new and exciting players in lung cancer. J Hematol Oncol. 13:102020. View Article : Google Scholar : PubMed/NCBI | |
Cui C, Lan P and Fu L: The role of myeloid-derived suppressor cells in gastrointestinal cancer. Cancer Commun (Lond). 41:442–471. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hess NJ, Kink JA and Hematti P: Exosomes, MDSCs and tregs: A new frontier for GVHD prevention and treatment. Front Immunol. 14:11433812023. View Article : Google Scholar : PubMed/NCBI | |
Pan PY, Ma G, Weber KJ, Ozao-Choy J, Wang G, Yin B, Divino CM and Chen SH: Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res. 70:99–108. 2010. View Article : Google Scholar : | |
Gaißler A, Bochem J, Spreuer J, Ottmann S, Martens A, Amaral T, Wagner NB, Claassen M, Meier F, Terheyden P, et al: Early decrease of blood myeloid-derived suppressor cells during checkpoint inhibition is a favorable biomarker in metastatic melanoma. J Immunother Cancer. 11:e0068022023. View Article : Google Scholar | |
Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, et al: VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 438:820–827. 2005. View Article : Google Scholar : PubMed/NCBI | |
Condamine T, Ramachandran I, Youn JI and Gabrilovich DI: Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu Rev Med. 66:97–110. 2015. View Article : Google Scholar : | |
Li K, Shi H, Zhang B, Ou X, Ma Q, Chen Y, Shu P, Li D and Wang Y: Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduct Target Ther. 6:3622021. View Article : Google Scholar : PubMed/NCBI | |
Fědorová L, Pilátová K, Selingerová I, Bencsiková B, Budinská E, Zwinsová B, Brychtová V, Langrová M, Šefr R, Valík D and Zdražilová Dubská L: Circulating myeloid-derived suppressor cell subsets in patients with colorectal cancer-exploratory analysis of their biomarker potential. Klin Onkol. 31(Suppl 2): S88–S92. 2018. View Article : Google Scholar | |
Zhang Y, Xu J, Zhang N, Chen M, Wang H and Zhu D: Targeting the tumour immune microenvironment for cancer therapy in human gastrointestinal malignancies. Cancer Lett. 458:123–135. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S and Schreiber H: The terminology issue for myeloid-derived suppressor cells. Cancer Res. 67:425–426. 2007. View Article : Google Scholar : PubMed/NCBI | |
Youn JI, Nagaraj S, Collazo M and Gabrilovich DI: Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 181:5791–5802. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ueha S, Shand FHW and Matsushima K: Myeloid cell population dynamics in healthy and tumor-bearing mice. Int Immunopharmacol. 11:783–788. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mandruzzato S, Brandau S, Britten CM, Bronte V, Damuzzo V, Gouttefangeas C, Maurer D, Ottensmeier C, van der Burg SH, Welters MJ and Walter S: Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: Results from an interim study. Cancer Immunol Immunother. 65:161–169. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Yuan R, Hu S, Yuan W and Sun Z: Roles of the exosomes derived from myeloid-derived suppressor cells in tumor immunity and cancer progression. Front Immunol. 13:8179422022. View Article : Google Scholar : PubMed/NCBI | |
Cassetta L, Bruderek K, Skrzeczynska-Moncznik J, Osiecka O, Hu X, Rundgren IM, Lin A, Santegoets K, Horzum U, Godinho-Santos A, et al: Differential expansion of circulating human MDSC subsets in patients with cancer, infection and inflammation. J Immunother Cancer. 8:e0012232020. View Article : Google Scholar : PubMed/NCBI | |
Flores-Toro JA, Luo D, Gopinath A, Sarkisian MR, Campbell JJ, Charo IF, Singh R, Schall TJ, Datta M, Jain RK, et al: CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas. Proc Natl Acad Sci USA. 117:1129–1138. 2020. View Article : Google Scholar : | |
Takacs GP, Kreiger CJ, Luo D, Tian G, Garcia JS, Deleyrolle LP, Mitchell DA and Harrison JK: Glioma-derived CCL2 and CCL7 mediate migration of immune suppressive CCR2+/CX3CR1+ M-MDSCs into the tumor microenvironment in a redundant manner. Front Immunol. 13:9934442023. View Article : Google Scholar | |
Singh L, Muise ES, Bhattacharya A, Grein J, Javaid S, Stivers P, Zhang J, Qu Y, Joyce-Shaikh B, Loboda A, et al: ILT3 (LILRB4) promotes the immunosuppressive function of tumor-educated human monocytic myeloid-derived suppressor cells. Mol Cancer Res. 19:702–716. 2021. View Article : Google Scholar | |
Veglia F, Hashimoto A, Dweep H, Sanseviero E, De Leo A, Tcyganov E, Kossenkov A, Mulligan C, Nam B, Masters G, et al: Analysis of classical neutrophils and polymorphonuclear myeloid-derived suppressor cells in cancer patients and tumor-bearing mice. J Exp Med. 218:e202018032021. View Article : Google Scholar : PubMed/NCBI | |
Condamine T, Dominguez GA, Youn JI, Kossenkov AV, Mony S, Alicea-Torres K, Tcyganov E, Hashimoto A, Nefedova Y, Lin C, et al: Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol. 1:aaf89432016. View Article : Google Scholar | |
Joshi S and Sharabi A: Targeting myeloid-derived suppressor cells to enhance natural killer cell-based immunotherapy. Pharmacol Ther. 235:1081142022. View Article : Google Scholar : PubMed/NCBI | |
Tian X, Shen H, Li Z, Wang T and Wang S: Tumor-derived exosomes, myeloid-derived suppressor cells, and tumor microenvironment. J Hematol Oncol. 12:842019. View Article : Google Scholar : PubMed/NCBI | |
Dumitru CA, Moses K, Trellakis S, Lang S and Brandau S: Neutrophils and granulocytic myeloid-derived suppressor cells: Immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol Immunother. 61:1155–1167. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gunaydin G, Kesikli SA and Guc D: Cancer associated fibroblasts have phenotypic and functional characteristics similar to the fibrocytes that represent a novel MDSC subset. Oncoimmunology. 4:e10349182015. View Article : Google Scholar : PubMed/NCBI | |
Mazza EM, Zoso A, Mandruzzato S, Bronte V, Serafini P, Inverardi L and Bicciato S: Gene expression profiling of human fibrocytic myeloid-derived suppressor cells (f-MDSCs). Genom Data. 2:389–392. 2014. View Article : Google Scholar | |
Bizymi N, Georgopoulou A, Mastrogamvraki N, Matheakakis A, Gontika I, Fragiadaki I, Mavroudi I and Papadaki HA: Myeloid-derived suppressor cells (MDSC) in the umbilical cord blood: Biological significance and possible therapeutic applications. J Clin Med. 11:7272022. View Article : Google Scholar : PubMed/NCBI | |
Haile LA, Gamrekelashvili J, Manns MP, Korangy F and Greten TF: CD49d is a new marker for distinct myeloid-derived suppressor cell subpopulations in mice. J Immunol. 185:203–210. 2010. View Article : Google Scholar : PubMed/NCBI | |
Alshetaiwi H, Pervolarakis N, McIntyre LL, Ma D, Nguyen Q, Rath JA, Nee K, Hernandez G, Evans K, Torosian L, et al: Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Sci Immunol. 5:eaay60172020. View Article : Google Scholar : PubMed/NCBI | |
Dienstmann R, Connor K and Byrne AT; COLOSSUS Consortium: Precision therapy in RAS mutant colorectal cancer. Gastroenterology. 158:806–811. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, et al: The genomic landscapes of human breast and colorectal cancers. Science. 318:1108–1113. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vakiani E, Janakiraman M, Shen R, Sinha R, Zeng Z, Shia J, Cercek A, Kemeny N, D'Angelica M, Viale A, et al: Comparative genomic analysis of primary versus metastatic colorectal carcinomas. J Clin Oncol. 30:2956–2962. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liao W, Overman MJ, Boutin AT, Shang X, Zhao D, Dey P, Li J, Wang G, Lan Z, Li J, et al: KRAS-IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer. Cancer Cell. 35:559–572.e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wong CC, Xu J, Bian X, Wu JL, Kang W, Qian Y, Li W, Chen H, Gou H, Liu D, et al: In colorectal cancer cells with mutant KRAS, SLC25A22-mediated glutaminolysis reduces DNA demethylation to increase WNT signaling, stemness, and drug resistance. Gastroenterology. 159:2163–2180.e6. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Peng Y, Ji F, Chen H, Kang W, Chan LS, Gou H, Lin Y, Huang P, Chen D, et al: Targeting of SLC25A22 boosts the immunotherapeutic response in KRAS-mutant colorectal cancer. Nat Commun. 14:46772023. View Article : Google Scholar : PubMed/NCBI | |
Johnson B: Targeting myeloid-derived suppressor cell trafficking as a novel immunotherapeutic approach in microsatellite stable colorectal cancer. Cancers (Basel). 15:54842023. View Article : Google Scholar : PubMed/NCBI | |
Bao Y, Zhai J, Chen H, Wong CC, Liang C, Ding Y, Huang D, Gou H, Chen D, Pan Y, et al: Targeting m6A reader YTHDF1 augments antitumour immunity and boosts anti-PD-1 efficacy in colorectal cancer. Gut. 72:1497–1509. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li Y, He X, Lu X, Gong Z, Li Q, Zhang L, Yang R, Wu C, Huang J, Ding J, et al: METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions. Nat Commun. 13:63502022. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Pan Y, Zhou Q, Liang C, Wong CC, Zhou Y, Huang D, Liu W, Zhai J, Gou H, et al: METTL3 inhibits antitumor immunity by targeting m6A-BHLHE41-CXCL1/CXCR2 axis to promote colorectal cancer. Gastroenterology. 163:891–907. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhai J, Chen H, Wong CC, Peng Y, Gou H, Zhang J, Pan Y, Chen D, Lin Y, Wang S, et al: ALKBH5 drives immune suppression via targeting AXIN2 to promote colorectal cancer and is a target for boosting immunotherapy. Gastroenterology. 165:445–462. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhao D, Wu L, Hong M, Zheng S, Wu X, Ye H, Chen F, Zhang D, Liu X, Meng X, et al: DKK-1 and its influences on bone destruction: A comparative study in collagen-induced arthritis mice and rheumatoid arthritis patients. Inflammation. 47:129–144. 2024. View Article : Google Scholar | |
Fujimura T, Kambayashi Y and Aiba S: Crosstalk between regulatory T cells (Tregs) and myeloid derived suppressor cells (MDSCs) during melanoma growth. Oncoimmunology. 1:1433–1434. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li N, Kang Y, Wang L, Huff S, Tang R, Hui H, Agrawal K, Gonzalez GM, Wang Y, Patel SP and Rana TM: ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci USA. 117:20159–20170. 2020. View Article : Google Scholar : PubMed/NCBI | |
Husain Z, Seth P and Sukhatme VP: Tumor-derived lactate and myeloid-derived suppressor cells: Linking metabolism to cancer immunology. Oncoimmunology. 2:e263832013. View Article : Google Scholar | |
Hayes C, Donohoe CL, Davern M and Donlon NE: The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment. Cancer Lett. 500:75–86. 2021. View Article : Google Scholar | |
Bejarano L, Jordāo MJC and Joyce JA: Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11:933–959. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hegde S, Leader AM and Merad M: MDSC: Markers, development, states, and unaddressed complexity. Immunity. 54:875–884. 2021. View Article : Google Scholar : PubMed/NCBI | |
Walz A, Peveri P, Aschauer H and Baggiolini M: Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochem Biophys Res Commun. 149:755–761. 1987. View Article : Google Scholar : PubMed/NCBI | |
Schulz O, Hammerschmidt SI, Moschovakis GL and Förster R: Chemokines and chemokine receptors in lymphoid tissue dynamics. Annu Rev Immunol. 34:203–242. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li BH, Garstka MA and Li ZF: Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor. Mol Immunol. 117:201–215. 2020. View Article : Google Scholar | |
McClellan JL, Davis JM, Steiner JL, Enos RT, Jung SH, Carson JA, Pena MM, Carnevale KA, Berger FG and Murphy EA: Linking tumor-associated macrophages, inflammation, and intestinal tumorigenesis: Role of MCP-1. Am J Physiol Gastrointest Liver Physiol. 303:G1087–1095. 2012. View Article : Google Scholar : PubMed/NCBI | |
Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA and Pollard JW: CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 475:222–225. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chang YH, Huang YL, Tsai HC, Chang AC, Ko CY, Fong YC and Tang CH: Chemokine ligand 2 promotes migration in osteosarcoma by regulating the miR-3659/MMP-3 axis. Biomedicines. 11:27682023. View Article : Google Scholar : PubMed/NCBI | |
Behfar S, Hassanshahi G, Nazari A and Khorramdelazad H: A brief look at the role of monocyte chemoattractant protein-1 (CCL2) in the pathophysiology of psoriasis. Cytokine. 110:226–231. 2018. View Article : Google Scholar | |
Chun E, Lavoie S, Michaud M, Gallini CA, Kim J, Soucy G, Odze R, Glickman JN and Garrett WS: CCL2 promotes colorectal carcinogenesis by enhancing polymorphonuclear myeloid-derived suppressor cell population and function. Cell Rep. 12:244–257. 2015. View Article : Google Scholar : PubMed/NCBI | |
Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, De Palma A, Mauri P, Monegal A, Rescigno M, et al: Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med. 208:1949–1962. 2011. View Article : Google Scholar : PubMed/NCBI | |
Katoh H, Wang D, Daikoku T, Sun H, Dey SK and Dubois RN: CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell. 24:631–644. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Ding Y, Deng Y, Zheng Y and Wang S: Role of myeloid-derived suppressor cells in the promotion and immunotherapy of colitis-associated cancer. J Immunother Cancer. 8:e0006092020. View Article : Google Scholar : PubMed/NCBI | |
Grauers Wiktorin H, Nilsson MS, Kiffin R, Sander FE, Lenox B, Rydström A, Hellstrand K and Martner A: Histamine targets myeloid-derived suppressor cells and improves the anti-tumor efficacy of PD-1/PD-L1 checkpoint blockade. Cancer Immunol Immunother. 68:163–174. 2019. View Article : Google Scholar : | |
Martin RK, Saleem SJ, Folgosa L, Zellner HB, Damle SR, Nguyen GK, Ryan JJ, Bear HD, Irani AM and Conrad DH: Mast cell histamine promotes the immunoregulatory activity of myeloid-derived suppressor cells. J Leukoc Biol. 96:151–159. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sulsenti R and Jachetti E: Frenemies in the microenvironment: Harnessing mast cells for cancer immunotherapy. Pharmaceutics. 15:16922023. View Article : Google Scholar : PubMed/NCBI | |
Obermajer N, Muthuswamy R, Lesnock J, Edwards RP and Kalinski P: Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood. 118:5498–5505. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zelenay S, van der Veen AG, Böttcher JP, Snelgrove KJ, Rogers N, Acton SE, Chakravarty P, Girotti MR, Marais R, Quezada SA, et al: Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell. 162:1257–1270. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, He Z, Ye J, Liu Z, She X, Gao X and Liang R: Progress in understanding the IL-6/STAT3 pathway in colorectal cancer. Onco Targets Ther. 13:13023–13032. 2020. View Article : Google Scholar : PubMed/NCBI | |
Su YL, Banerjee S, White SV and Kortylewski M: STAT3 in tumor-associated myeloid cells: Multitasking to disrupt immunity. Int J Mol Sci. 19:18032018. View Article : Google Scholar : PubMed/NCBI | |
Sinha P, Clements VK, Fulton AM and Ostrand-Rosenberg S: Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res. 67:4507–4513. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tang C, Sun H, Kadoki M, Han W, Ye X, Makusheva Y, Deng J, Feng B, Qiu D, Tan Y, et al: Blocking Dectin-1 prevents colorectal tumorigenesis by suppressing prostaglandin E2 production in myeloid-derived suppressor cells and enhancing IL-22 binding protein expression. Nat Commun. 14:14932023. View Article : Google Scholar : PubMed/NCBI | |
Lu W, Yu W, He J, Liu W, Yang J, Lin X, Zhang Y, Wang X, Jiang W, Luo J, et al: Reprogramming immunosuppressive myeloid cells facilitates immunotherapy for colorectal cancer. EMBO Mol Med. 13:e127982021. View Article : Google Scholar : | |
Molfetta R and Paolini R: The controversial role of intestinal mast cells in colon cancer. Cells. 12:4592023. View Article : Google Scholar : PubMed/NCBI | |
Cheon EC, Khazaie K, Khan MW, Strouch MJ, Krantz SB, Phillips J, Blatner NR, Hix LM, Zhang M, Dennis KL, et al: Mast cell 5-lipoxygenase activity promotes intestinal polyposis in APCDelta468 mice. Cancer Res. 71:1627–1636. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ostrand-Rosenberg S and Fenselau C: Myeloid-derived suppressor cells: Immune-suppressive cells that impair antitumor immunity and are sculpted by their environment. J Immunol. 200:422–431. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rahma OE and Hodi FS: The Intersection between tumor angiogenesis and immune suppression. Clin Cancer Res. 25:5449–5457. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J, Cheng Z, Shah SV, Wang GJ, Zhang L, et al: Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer. 124:2621–2633. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fenselau C and Ostrand-Rosenberg S: Molecular cargo in myeloid-derived suppressor cells and their exosomes. Cell Immunol. 359:1042582021. View Article : Google Scholar : | |
Gu J, Lv X, Li W, Li G, He X, Zhang Y, Shi L and Zhang X: Deciphering the mechanism of Peptostreptococcus anaerobius-induced chemoresistance in colorectal cancer: The important roles of MDSC recruitment and EMT activation. Front Immunol. 14:12306812023. View Article : Google Scholar : PubMed/NCBI | |
Abed J, Emgård JEM, Zamir G, Faroja M, Almogy G, Grenov A, Sol A, Naor R, Pikarsky E, Atlan KA, et al: Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed gal-GalNAc. Cell Host Microbe. 20:215–225. 2016. View Article : Google Scholar : PubMed/NCBI | |
Han J, Zhang B, Zhang Y, Yin T, Cui Y, Liu J, Yang Y, Song H and Shang D: Gut microbiome: Decision-makers in the microenvironment of colorectal cancer. Front Cell Infect Microbiol. 13:12999772023. View Article : Google Scholar : | |
Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold GL, et al: Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 14:207–215. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hashemi Goradel N, Heidarzadeh S, Jahangiri S, Farhood B, Mortezaee K, Khanlarkhani N and Negahdari B: Fusobacterium nucleatum and colorectal cancer: A mechanistic overview. J Cell Physiol. 234:2337–2344. 2019. View Article : Google Scholar | |
Cassetta L, Baekkevold ES, Brandau S, Bujko A, Cassatella MA, Dorhoi A, Krieg C, Lin A, Loré K, Marini O, et al: Deciphering myeloid-derived suppressor cells: Isolation and markers in humans, mice and non-human primates. Cancer Immunol Immunother. 68:687–697. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Yi M, Niu M, Mei Q and Wu K: Myeloid-derived suppressor cells: An emerging target for anticancer immunotherapy. Mol Cancer. 21:1842022. View Article : Google Scholar : PubMed/NCBI | |
Gabrilovich DI and Nagaraj S: Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 9:162–174. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, Basso G, Brombacher F, Borrello I, Zanovello P, et al: Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest. 116:2777–2790. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bronte V and Zanovello P: Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol. 5:641–654. 2005. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez PC, Quiceno DG and Ochoa AC: L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood. 109:1568–1573. 2007. View Article : Google Scholar | |
Zheng Y, Yao Y, Ge T, Ge S, Jia R, Song X and Zhuang A: Amino acid metabolism reprogramming: Shedding new light on T cell anti-tumor immunity. J Exp Clin Cancer Res. 42:2912023. View Article : Google Scholar : PubMed/NCBI | |
Fujimura T, Mahnke K and Enk AH: Myeloid derived suppressor cells and their role in tolerance induction in cancer. J Dermatol Sci. 59:1–6. 2010. View Article : Google Scholar : PubMed/NCBI | |
Steggerda SM, Bennett MK, Chen J, Emberley E, Huang T, Janes JR, Li W, MacKinnon AL, Makkouk A, Marguier G, et al: Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J Immunother Cancer. 5:1012017. View Article : Google Scholar : PubMed/NCBI | |
Portale F and Di Mitri D: NK cells in cancer: Mechanisms of dysfunction and therapeutic potential. Int J Mol Sci. 24:95212023. View Article : Google Scholar : PubMed/NCBI | |
Raber PL, Thevenot P, Sierra R, Wyczechowska D, Halle D, Ramirez ME, Ochoa AC, Fletcher M, Velasco C, Wilk A, et al: Subpopulations of myeloid-derived suppressor cells impair T cell responses through independent nitric oxide-related pathways. Int J Cancer. 134:2853–2864. 2014. View Article : Google Scholar | |
Li W, Zhang X, Chen Y, Xie Y, Liu J, Feng Q, Wang Y, Yuan W and Ma J: G-CSF is a key modulator of MDSC and could be a potential therapeutic target in colitis-associated colorectal cancers. Protein Cell. 7:130–140. 2016. View Article : Google Scholar : PubMed/NCBI | |
OuYang LY, Wu XJ, Ye SB, Zhang RX, Li ZL, Liao W, Pan ZZ, Zheng LM, Zhang XS, Wang Z, et al: Tumor-induced myeloid-derived suppressor cells promote tumor progression through oxidative metabolism in human colorectal cancer. J Transl Med. 13:472015. View Article : Google Scholar : PubMed/NCBI | |
Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC and Gabrilovich DI: Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol. 182:5693–5701. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J and Gabrilovich DI: Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med. 13:828–835. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jachetti E, Sangaletti S, Chiodoni C, Ferrara R and Colombo MP: Modulation of PD-1/PD-L1 axis in myeloid-derived suppressor cells by anti-cancer treatments. Cell Immunol. 362:1043012021. View Article : Google Scholar : PubMed/NCBI | |
Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V and Chouaib S: PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 211:781–790. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Powis de Tenbossche CG, Cané S, Colau D, van Baren N, Lurquin C, Schmitt-Verhulst AM, Liljeström P, Uyttenhove C and Van den Eynde BJ: Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes. Nat Commun. 8:14042017. View Article : Google Scholar : PubMed/NCBI | |
Trovato R, Canè S, Petrova V, Sartoris S, Ugel S and De Sanctis F: The engagement between MDSCs and Metastases: Partners in crime. Front Oncol. 10:1652020. View Article : Google Scholar : PubMed/NCBI | |
Gabrilovich DI, Ostrand-Rosenberg S and Bronte V: Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 12:253–268. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lasser SA, Ozbay Kurt FG, Arkhypov I, Utikal J and Umansky V: Myeloid-derived suppressor cells in cancer and cancer therapy. Nat Rev Clin Oncol. 21:147–164. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lu C, Redd PS, Lee JR, Savage N and Liu K: The expression profiles and regulation of PD-L1 in tumor-induced myeloid-derived suppressor cells. Oncoimmunology. 5:e12471352016. View Article : Google Scholar | |
Chiu DK, Tse AP, Xu IM, Di Cui J, Lai RK, Li LL, Koh HY, Tsang FH, Wei LL, Wong CM, et al: Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nat Commun. 8:5172017. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Qu Z, Sun F, Han L, Li L, Yan S, Stabile LP, Chen LF, Siegfried JM and Xiao G: Myeloid STAT3 promotes lung tumorigenesis by transforming tumor immunosurveillance into tumor-promoting inflammation. Cancer Immunol Res. 5:257–268. 2017. View Article : Google Scholar : PubMed/NCBI | |
Halaby MJ and McGaha TL: Amino acid transport and metabolism in myeloid function. Front Immunol. 12:6952382021. View Article : Google Scholar : PubMed/NCBI | |
Prendergast GC, Malachowski WJ, Mondal A, Scherle P and Muller AJ: Indoleamine 2,3-dioxygenase and its therapeutic inhibition in cancer. Int Rev Cell Mol Biol. 336:175–203. 2018. View Article : Google Scholar : PubMed/NCBI | |
Arshad J, Rao A, Repp ML, Rao R, Wu C and Merchant JL: Myeloid-derived suppressor cells: Therapeutic target for gastrointestinal cancers. Int J Mol Sci. 25:29852024. View Article : Google Scholar : PubMed/NCBI | |
Neurath MF, Weigmann B, Finotto S, Glickman J, Nieuwenhuis E, Iijima H, Mizoguchi A, Mizoguchi E, Mudter J, Galle PR, et al: The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn's disease. J Exp Med. 195:1129–1143. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lúdvíksson BR, Seegers D, Resnick AS and Strober W: The effect of TGF-beta1 on immune responses of naïve versus memory CD4+ Th1/Th2 T cells. Eur J Immunol. 30:2101–2111. 2000. View Article : Google Scholar | |
Singh S, Gouri V and Samant M: TGF-β in correlation with tumor progression, immunosuppression and targeted therapy in colorectal cancer. Med Oncol. 40:3352023. View Article : Google Scholar | |
Takaku S, Terabe M, Ambrosino E, Peng J, Lonning S, McPherson JM and Berzofsky JA: Blockade of TGF-beta enhances tumor vaccine efficacy mediated by CD8(+) T cells. Int J Cancer. 126:1666–1674. 2010. View Article : Google Scholar | |
Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM and Chen SH: Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 66:1123–1131. 2006. View Article : Google Scholar : PubMed/NCBI | |
Han J, Dong L, Wu M and Ma F: Dynamic polarization of tumor-associated macrophages and their interaction with intratumoral T cells in an inflamed tumor microenvironment: From mechanistic insights to therapeutic opportunities. Front Immunol. 14:11603402023. View Article : Google Scholar : PubMed/NCBI | |
Sinha P, Clements VK, Bunt SK, Albelda SM and Ostrand-Rosenberg S: Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol. 179:977–983. 2007. View Article : Google Scholar : PubMed/NCBI | |
Peng P, Lou Y, Wang S, Wang J, Zhang Z, Du P, Zheng J, Liu P and Xu LX: Activated NK cells reprogram MDSCs via NKG2D-NKG2DL and IFN-γ to modulate antitumor T-cell response after cryo-thermal therapy. J Immunother Cancer. 10:e0057692022. View Article : Google Scholar | |
Yue J, Li J, Ma J, Zhai Y, Shen L, Zhang W, Li L and Fu R: Myeloid-derived suppressor cells inhibit natural killer cells in myelodysplastic syndromes through the TIGIT/CD155 pathway. Hematology. 28:21663332023. View Article : Google Scholar : PubMed/NCBI | |
Liu G, Bi Y, Shen B, Yang H, Zhang Y, Wang X, Liu H, Lu Y, Liao J, Chen X and Chu Y: SIRT1 limits the function and fate of myeloid-derived suppressor cells in tumors by orchestrating HIF-1α-dependent glycolysis. Cancer Res. 74:727–737. 2014. View Article : Google Scholar | |
O'Donnell C, Mahmoud A, Keane J, Murphy C, White D, Carey S, O'Riordain M, Bennett MW, Brint E and Houston A: An antitumorigenic role for the IL-33 receptor, ST2L, in colon cancer. Br J Cancer. 114:37–43. 2016. View Article : Google Scholar : | |
Wang D, Sun H, Wei J, Cen B and DuBois RN: CXCL1 is critical for premetastatic niche formation and metastasis in colorectal cancer. Cancer Res. 77:3655–3665. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Bado I, Wang H, Zhang W, Rosen JM and Zhang XHF: Metastasis organotropism: Redefining the congenial soil. Dev Cell. 49:375–391. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li B, Zhang S, Huang N, Chen H, Wang P, Yang J and Li Z: CCL9/CCR1 induces myeloid-derived suppressor cell recruitment to the spleen in a murine H22 orthotopic hepatoma model. Oncol Rep. 41:608–618. 2019. | |
Cui TX, Kryczek I, Zhao L, Zhao E, Kuick R, Roh MH, Vatan L, Szeliga W, Mao Y, Thomas DG, et al: Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity. 39:611–621. 2013. View Article : Google Scholar : PubMed/NCBI | |
Di Mitri D, Toso A, Chen JJ, Sarti M, Pinton S, Jost TR, D'Antuono R, Montani E, Garcia-Escudero R, Guccini I, et al: Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer. Nature. 515:134–137. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yan HH, Pickup M, Pang Y, Gorska AE, Li Z, Chytil A, Geng Y, Gray JW, Moses HL and Yang L: Gr-1+CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Res. 70:6139–6149. 2010. View Article : Google Scholar : PubMed/NCBI | |
Long L, Xiong W, Lin F, Hou J, Chen G, Peng T, He Y, Wang R, Xu Q and Huang Y: Regulating lactate-related immunometabolism and EMT reversal for colorectal cancer liver metastases using shikonin targeted delivery. J Exp Clin Cancer Res. 42:1172023. View Article : Google Scholar : PubMed/NCBI | |
Taki M, Abiko K, Ukita M, Murakami R, Yamanoi K, Yamaguchi K, Hamanishi J, Baba T, Matsumura N and Mandai M: Tumor immune microenvironment during epithelial-mesenchymal transition. Clin Cancer Res. 27:4669–4679. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Jia A, Bi Y, Wang Y, Yang Q, Cao Y, Li Y and Liu G: Targeting myeloid-derived suppressor cells in cancer immunotherapy. Cancers (Basel). 12:26262020. View Article : Google Scholar : PubMed/NCBI | |
Qu P, Wang LZ and Lin PC: Expansion and functions of myeloid-derived suppressor cells in the tumor microenvironment. Cancer Lett. 380:253–256. 2016. View Article : Google Scholar | |
De Cicco P, Ercolano G and Ianaro A: The new era of cancer immunotherapy: Targeting myeloid-derived suppressor cells to overcome immune evasion. Front Immunol. 11:16802020. View Article : Google Scholar : PubMed/NCBI | |
Law AMK, Valdes-Mora F and Gallego-Ortega D: Myeloid-derived suppressor cells as a therapeutic target for cancer. Cells. 9:5612020. View Article : Google Scholar : PubMed/NCBI | |
Li W, Wu K, Zhao E, Shi L, Li R, Zhang P, Yin Y, Shuai X, Wang G and Tao K: HMGB1 recruits myeloid derived suppressor cells to promote peritoneal dissemination of colon cancer after resection. Biochem Biophys Res Commun. 436:156–161. 2013. View Article : Google Scholar : PubMed/NCBI | |
Eriksson E, Wenthe J, Irenaeus S, Loskog A and Ullenhag G: Gemcitabine reduces MDSCs, tregs and TGFβ-1 while restoring the teff/treg ratio in patients with pancreatic cancer. J Transl Med. 14:2822016. View Article : Google Scholar | |
John David K, Amy VP, Natasha MS, Asha NK and Kebin L: 5-Fluorouracil regulation of myeloid-derived suppressor cell differentiation in vitro and in vivo. J Immunol. 198(Suppl 1): S205.52017. View Article : Google Scholar | |
Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, Martin F, Apetoh L, Rébé C and Ghiringhelli F: 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 70:3052–3061. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kanterman J, Sade-Feldman M, Biton M, Ish-Shalom E, Lasry A, Goldshtein A, Hubert A and Baniyash M: Adverse immunoregulatory effects of 5FU and CPT11 chemotherapy on myeloid-derived suppressor cells and colorectal cancer outcomes. Cancer Res. 74:6022–6035. 2014. View Article : Google Scholar : PubMed/NCBI | |
Talmadge JE, Hood KC, Zobel LC, Shafer LR, Coles M and Toth B: Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion. Int Immunopharmacol. 7:140–151. 2007. View Article : Google Scholar | |
Osada T, Chong G, Tansik R, Hong T, Spector N, Kumar R, Hurwitz HI, Dev I, Nixon AB, Lyerly HK, et al: The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol Immunother. 57:1115–1124. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dominguez GA, Condamine T, Mony S, Hashimoto A, Wang F, Liu Q, Forero A, Bendell J, Witt R, Hockstein N, et al: selective targeting of myeloid-derived suppressor cells in cancer patients using DS-8273a, an agonistic TRAIL-R2 antibody. Clin Cancer Res. 23:2942–2950. 2017. View Article : Google Scholar : | |
Fultang L, Panetti S, Ng M, Collins P, Graef S, Rizkalla N, Booth S, Lenton R, Noyvert B, Shannon-Lowe C, et al: MDSC targeting with Gemtuzumab ozogamicin restores T cell immunity and immunotherapy against cancers. EBioMedicine. 47:235–246. 2019. View Article : Google Scholar : PubMed/NCBI | |
De Sanctis F, Solito S, Ugel S, Molon B, Bronte V and Marigo I: MDSCs in cancer: Conceiving new prognostic and therapeutic targets. Biochim Biophys Acta. 1865:35–48. 2016. | |
Hinshaw DC and Shevde LA: The tumor microenvironment innately modulates cancer progression. Cancer Res. 79:4557–4566. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Nefedova Y, Lei A and Gabrilovich D: Neutrophils and PMN-MDSC: Their biological role and interaction with stromal cells. Semin Immunol. 35:19–28. 2018. View Article : Google Scholar | |
Park SM and Youn JI: Role of myeloid-derived suppressor cells in immune checkpoint inhibitor therapy in cancer. Arch Pharm Res. 42:560–566. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Ma XL, Wei YQ and Wei XW: Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer. 1871:289–312. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yan G, Zhao H, Zhang Q, Zhou Y, Wu L, Lei J, Wang X, Zhang J, Zhang X, Zheng L, et al: A RIPK3-PGE2 circuit mediates myeloid-derived suppressor cell-potentiated colorectal carcinogenesis. Cancer Res. 78:5586–5599. 2018. View Article : Google Scholar : PubMed/NCBI | |
Umansky V, Blattner C, Gebhardt C and Utikal J: CCR5 in recruitment and activation of myeloid-derived suppressor cells in melanoma. Cancer Immunol Immunother. 66:1015–1023. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tan MCB, Goedegebuure PS, Belt BA, Flaherty B, Sankpal N, Gillanders WE, Eberlein TJ, Hsieh CS and Linehan DC: Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J Immunol. 182:1746–1755. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Haney KM, Richardson AC, Wilson E, Gewirtz DA, Ware JL, Zehner ZE and Zhang Y: Anibamine, a natural product CCR5 antagonist, as a novel lead for the development of anti-prostate cancer agents. Bioorg Med Chem Lett. 20:4627–4630. 2010. View Article : Google Scholar : PubMed/NCBI | |
Velasco-Velázquez M, Jiao X, De La Fuente M, Pestell TG, Ertel A, Lisanti MP and Pestell RG: CCR5 antagonist blocks metastasis of basal breast cancer cells. Cancer Res. 72:3839–3850. 2012. View Article : Google Scholar : PubMed/NCBI | |
Deming DA: Advances in immunotherapeutic strategies for colorectal cancer commentary on: tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in cancer patients by Halama et al. J Immunother Cancer. 4:932016. View Article : Google Scholar : PubMed/NCBI | |
Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH and Rüttinger D: Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 5:532017. View Article : Google Scholar : PubMed/NCBI | |
Holmgaard RB, Zamarin D, Lesokhin A, Merghoub T and Wolchok JD: Targeting myeloid-derived suppressor cells with colony stimulating factor-1 receptor blockade can reverse immune resistance to immunotherapy in indoleamine 2,3-dioxygenase-expressing tumors. EBioMedicine. 6:50–58. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mitchem JB, Brennan DJ, Knolhoff BL, Belt BA, Zhu Y, Sanford DE, Belaygorod L, Carpenter D, Collins L, Piwnica-Worms D, et al: Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 73:1128–1141. 2013. View Article : Google Scholar | |
Lonardi S, Licini S, Micheletti A, Finotti G, Vermi W and Cassatella MA: Potential contribution of tumor-associated slan+ cells as anti-CSF-1R targets in human carcinoma. J Leukoc Biol. 103:559–564. 2018. View Article : Google Scholar | |
Lin S, Wang J, Wang L, Wen J, Guo Y, Qiao W, Zhou J, Xu G and Zhi F: Phosphodiesterase-5 inhibition suppresses colonic inflammation-induced tumorigenesis via blocking the recruitment of MDSC. Am J Cancer Res. 7:41–52. 2017.PubMed/NCBI | |
Liang H, Deng L, Hou Y, Meng X, Huang X, Rao E, Zheng W, Mauceri H, Mack M, Xu M, et al: Host STING-dependent MDSC mobilization drives extrinsic radiation resistance. Nat Commun. 8:17362017. View Article : Google Scholar : PubMed/NCBI | |
De Santo C, Serafini P, Marigo I, Dolcetti L, Bolla M, Del Soldato P, Melani C, Guiducci C, Colombo MP, Iezzi M, et al: Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci USA. 102:4185–4190. 2005. View Article : Google Scholar : PubMed/NCBI | |
Molon B, Viola A and Bronte V: Smoothing T cell roads to the tumor: Chemokine post-translational regulation. Oncoimmunology. 1:390–392. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen HM, Ma G, Gildener-Leapman N, Eisenstein S, Coakley BA, Ozao J, Mandeli J, Divino C, Schwartz M, Sung M, et al: Myeloid-derived suppressor cells as an immune parameter in patients with concurrent sunitinib and stereotactic body radiotherapy. Clin Cancer Res. 21:4073–4085. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nagaraj S, Youn JI, Weber H, Iclozan C, Lu L, Cotter MJ, Meyer C, Becerra CR, Fishman M, Antonia S, et al: Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin Cancer Res. 16:1812–1823. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, Boireau W, Rouleau A, Simon B, Lanneau D, et al: Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest. 120:457–471. 2010.PubMed/NCBI | |
Bertocchi A, Carloni S, Ravenda PS, Bertalot G, Spadoni I, Lo Cascio A, Gandini S, Lizier M, Braga D, Asnicar F, et al: Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver. Cancer Cell. 39:708–724.e11. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mei Y, Zhu Y, Yong KSM, Hanafi ZB, Gong H, Liu Y, Teo HY, Hussain M, Song Y, Chen Q and Liu H: IL-37 dampens immunosuppressive functions of MDSCs via metabolic reprogramming in the tumor microenvironment. Cell Rep. 43:1138352024. View Article : Google Scholar : PubMed/NCBI | |
Hengesbach LM and Hoag KA: Physiological concentrations of retinoic acid favor myeloid dendritic cell development over granulocyte development in cultures of bone marrow cells from mice. J Nutr. 134:2653–2659. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nefedova Y, Fishman M, Sherman S, Wang X, Beg AA and Gabrilovich DI: Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res. 67:11021–11028. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ, Lush RM, Antonia S and Gabrilovich DI: All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 66:9299–9307. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tu SP, Jin H, Shi JD, Zhu LM, Suo Y, Lu G, Liu A, Wang TC and Yang CS: Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev Res (Phila). 5:205–215. 2012. View Article : Google Scholar | |
Carroll RE, Benya RV, Turgeon DK, Vareed S, Neuman M, Rodriguez L, Kakarala M, Carpenter PM, McLaren C, Meyskens FL Jr and Brenner DE: Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev Res (Phila). 4:354–364. 2011. View Article : Google Scholar : PubMed/NCBI | |
Daurkin I, Eruslanov E, Vieweg J and Kusmartsev S: Generation of antigen-presenting cells from tumor-infiltrated CD11b myeloid cells with DNA demethylating agent 5-aza-2′-deoxycytidine. Cancer Immunol Immunother. 59:697–706. 2010. View Article : Google Scholar | |
Zoglmeier C, Bauer H, Noerenberg D, Wedekind G, Bittner P, Sandholzer N, Rapp M, Anz D, Endres S and Bourquin C: CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin Cancer Res. 17:1765–1775. 2011. View Article : Google Scholar : PubMed/NCBI | |
Meyer C, Cagnon L, Costa-Nunes CM, Baumgaertner P, Montandon N, Leyvraz L, Michielin O, Romano E and Speiser DE: Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol Immunother. 63:247–257. 2014. View Article : Google Scholar | |
Di Giacomo AM, Schenker M, Medioni J, Mandziuk S, Majem M, Gravis G, Cornfeld M, Ranganathan S, Lou S and Csoszi T: A phase II study of retifanlimab, a humanized anti-PD-1 monoclonal antibody, in patients with solid tumors (POD1UM-203). ESMO Open. 9:1023872024. View Article : Google Scholar : PubMed/NCBI | |
Kim W, Chu TH, Nienhüser H, Jiang Z, Del Portillo A, Remotti HE, White RA, Hayakawa Y, Tomita H, Fox JG, et al: PD-1 signaling promotes tumor-infiltrating myeloid-derived suppressor cells and gastric tumorigenesis in mice. Gastroenterology. 160:781–796. 2021. View Article : Google Scholar | |
Kalyan A, Kircher S, Shah H, Mulcahy M and Benson A: Updates on immunotherapy for colorectal cancer. J Gastrointest Oncol. 9:160–169. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Zheng X, Zhang J, Jiang X, Wang J, Li Y, Li X, Shen G, Peng J, Zheng P, et al: CD300ld on neutrophils is required for tumour-driven immune suppression. Nature. 621:830–839. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kumar V, Cheng P, Condamine T, Mony S, Languino LR, McCaffrey JC, Hockstein N, Guarino M, Masters G, Penman E, et al: CD45 phosphatase inhibits STAT3 transcription factor activity in myeloid cells and promotes tumor-associated macrophage differentiation. Immunity. 44:303–315. 2016. View Article : Google Scholar : PubMed/NCBI | |
Su MT, Kumata S, Endo S, Okada Y and Takai T: LILRB4 promotes tumor metastasis by regulating MDSCs and inhibiting miR-1 family miRNAs. Oncoimmunology. 11:20609072022. View Article : Google Scholar : PubMed/NCBI | |
Ostrand-Rosenberg S, Beury DW, Parker KH and Horn LA: Survival of the fittest: How myeloid-derived suppressor cells survive in the inhospitable tumor microenvironment. Cancer Immunol Immunother. 69:215–221. 2020. View Article : Google Scholar : | |
Beury DW, Carter KA, Nelson C, Sinha P, Hanson E, Nyandjo M, Fitzgerald PJ, Majeed A, Wali N and Ostrand-Rosenberg S: Myeloid-derived suppressor cell survival and function are regulated by the transcription factor Nrf2. J Immunol. 196:3470–3478. 2016. View Article : Google Scholar : PubMed/NCBI | |
Condamine T, Kumar V, Ramachandran IR, Youn JI, Celis E, Finnberg N, El-Deiry WS, Winograd R, Vonderheide RH, English NR, et al: ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-mediated apoptosis. J Clin Invest. 124:2626–2639. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zheng L, Shang W, Yang Z, Li T, Liu F, Shao W, Lv L, Chai L, Qu L, et al: Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ. 29:2190–2202. 2022. View Article : Google Scholar : PubMed/NCBI | |
Conche C, Finkelmeier F, Pešić M, Nicolas AM, Böttger TW, Kennel KB, Denk D, Ceteci F, Mohs K, Engel E, et al: Combining ferroptosis induction with MDSC blockade renders primary tumours and metastases in liver sensitive to immune checkpoint blockade. Gut. 72:1774–1782. 2023. View Article : Google Scholar : PubMed/NCBI | |
Bebelman MP, Smit MJ, Pegtel DM and Baglio SR: Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther. 188:1–11. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, Song FY, Wang FF, Zhu XH, Liao WJ, et al: CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 18:912019. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Zeng S, Gong Z and Yan Y: Exosome-based immunotherapy: A promising approach for cancer treatment. Mol Cancer. 19:1602020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yin K, Tian J, Xia X, Ma J, Tang X, Xu H and Wang S: Granulocytic myeloid-derived suppressor cells promote the stemness of colorectal cancer cells through exosomal S100A9. Adv Sci (Weinh). 6:19012782019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liu H, Zhang Z, Bian D, Shao K, Wang S and Ding Y: G-MDSC-derived exosomes mediate the differentiation of M-MDSC into M2 macrophages promoting colitis-to-cancer transition. J Immunother Cancer. 11:e0061662023. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang G, Song J, Li Z, Zhang Z and Yuan W: Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer. 17:1472018. View Article : Google Scholar : PubMed/NCBI | |
Matsumura T, Sugimachi K, Iinuma H, Takahashi Y, Kurashige J, Sawada G, Ueda M, Uchi R, Ueo H, Takano Y, et al: Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br J Cancer. 113:275–281. 2015. View Article : Google Scholar : PubMed/NCBI | |
Markowitz SD and Bertagnolli MM: Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med. 361:2449–2460. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huang D, Sun W, Zhou Y, Li P, Chen F, Chen H, Xia D, Xu E, Lai M, Wu Y and Zhang H: Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev. 37:173–187. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jayaraman P, Parikh F, Newton JM, Hanoteau A, Rivas C, Krupar R, Rajapakshe K, Pathak R, Kanthaswamy K, MacLaren C, et al: TGF-β1 programmed myeloid-derived suppressor cells (MDSC) acquire immune-stimulating and tumor killing activity capable of rejecting established tumors in combination with radiotherapy. Oncoimmunology. 7:e14908532018. View Article : Google Scholar | |
Li X, Wen D, Li X, Yao C, Chong W and Chen H: Identification of an immune signature predicting prognosis risk and lymphocyte infiltration in colon cancer. Front Immunol. 11:16782020. View Article : Google Scholar : PubMed/NCBI | |
Javle MM, Bridgewater JA, Gbolahan OB, Jungels C, Cho MT, Papadopoulos KP, Thistlethwaite FC, Canon JLR, Cheng L, Ioannidis S, et al: A phase I/II study of safety and efficacy of the arginase inhibitor INCB001158 plus chemotherapy in patients (Pts) with advanced biliary tract cancers. J Clin Oncol. 39(Suppl 3): S3112021. View Article : Google Scholar | |
Lorentzen CL, Martinenaite E, Kjeldsen JW, Holmstroem RB, Mørk SK, Pedersen AW, Ehrnrooth E, Andersen MH and Svane IM: Arginase-1 targeting peptide vaccine in patients with metastatic solid tumors-A phase I trial. Front Immunol. 13:10230232022. View Article : Google Scholar | |
Zeng Z, Lan T, Wei Y and Wei X: CCL5/CCR5 axis in human diseases and related treatments. Genes Dis. 9:12–27. 2022. View Article : Google Scholar | |
Snajdauf M, Havlova K, Vachtenheim J Jr, Ozaniak A, Lischke R, Bartunkova J, Smrz D and Strizova Z: The TRAIL in the treatment of human cancer: An update on clinical trials. Front Mol Biosci. 8:6283322021. View Article : Google Scholar : PubMed/NCBI | |
Isambert N, Hervieu A, Rébé C, Hennequin A, Borg C, Zanetta S, Chevriaux A, Richard C, Derangère V, Limagne E, et al: Fluorouracil and bevacizumab plus anakinra for patients with metastatic colorectal cancer refractory to standard therapies (IRAFU): A single-arm phase 2 study. Oncoimmunology. 7:e14743192018. View Article : Google Scholar : PubMed/NCBI | |
Schmitz-Winnenthal FH, Hohmann N, Schmidt T, Podola L, Friedrich T, Lubenau H, Springer M, Wieckowski S, Breiner KM, Mikus G, et al: A phase 1 trial extension to assess immunologic efficacy and safety of prime-boost vaccination with VXM01, an oral T cell vaccine against VEGFR2, in patients with advanced pancreatic cancer. Oncoimmunology. 7:e13035842018. View Article : Google Scholar : PubMed/NCBI | |
Johnson B, Kopetz S, Hwang H, Yuan Y, DePinho RA, Zebala J and Overman MJ: STOPTRAFFIC-1: A phase I/II trial of SX-682 in combination with nivolumab for refractory RAS-mutated microsatellite stable (MSS) metastatic colorectal cancer (mCRC). J Clin Oncol. 40(Suppl 16): TPS36382022. View Article : Google Scholar | |
Hanna CR, O'Cathail SM, Graham J, Adams R and Roxburgh CSD: Immune checkpoint inhibition as a strategy in the neoadjuvant treatment of locally advanced rectal cancer. J Immunother Precis Oncol. 4:86–104. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lizardo DY, Kuang C, Hao S, Yu J, Huang Y and Zhang L: Immunotherapy efficacy on mismatch repair-deficient colorectal cancer: From bench to bedside. Biochim Biophys Acta Rev Cancer. 1874:1884472020. View Article : Google Scholar : PubMed/NCBI | |
Hull MA, Ow PL, Ruddock S, Brend T, Smith AF, Marshall H, Song M, Chan AT, Garrett WS, Yilmaz O, et al: Randomised, placebo-controlled, phase 3 trial of the effect of the omega-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA) on colorectal cancer recurrence and survival after surgery for resectable liver metastases: EPA for metastasis trial 2 (EMT2) study protocol. BMJ Open. 13:e0774272023. View Article : Google Scholar |