Functions and mechanisms of RNA m6A regulators in breast cancer (Review)
- Authors:
- Yibei Yang
- Feng Gao
- Lanqi Ren
- Ning Ren
- Junjie Pan
- Qiaoping Xu
-
Affiliations: Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China, Department of Urology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310000, P.R. China, Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310051, P.R. China - Published online on: July 26, 2024 https://doi.org/10.3892/ijo.2024.5674
- Article Number: 86
-
Copyright : © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI | |
Patel S: Breast cancer: Lesser-known facets and hypotheses. Biomed Pharmacother. 98:499–506. 2018. View Article : Google Scholar | |
Zhu Z, Albadawy E, Saha A, Zhang J, Harowicz MR and Mazurowski MA: Deep learning for identifying radiogenomic associations in breast cancer. Comput Biol Med. 109:85–90. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lord SJ, Bahlmann K, O'Connell DL, Kiely BE, Daniels B, Pearson SA, Beith J, Bulsara MK and Houssami N: De novo and recurrent metastatic breast cancer-A systematic review of population-level changes in survival since 1995. EClinicalMedicine. 44:1012822022. View Article : Google Scholar | |
Dai D, Wang H, Zhu L, Jin H and Wang X: N6-methyladenosine links RNA metabolism to cancer progression. Cell Death Dis. 9:1242018. View Article : Google Scholar : PubMed/NCBI | |
Hyun K, Jeon J, Park K and Kim J: Writing, erasing and reading histone lysine methylations. Exp Mol Med. 49:e3242017. View Article : Google Scholar : PubMed/NCBI | |
An Y and Duan H: The role of m6A RNA methylation in cancer metabolism. Mol Cancer. 21:142022. View Article : Google Scholar : PubMed/NCBI | |
Lin H, Wang Y, Wang P, Long F and Wang T: Mutual regulation between N6-methyladenosine (m6A) modification and circular RNAs in cancer: Impacts on therapeutic resistance. Mol Cancer. 21:1482022. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Zou H, Dang Q, Xu H, Liu L, Zhang Y, Lv J, Li H, Zhou Z and Han X: Biological and pharmacological roles of m6A modifications in cancer drug resistance. Mol Cancer. 21:2202022. View Article : Google Scholar | |
Deng LJ, Deng WQ, Fan SR, Chen MF, Qi M, Lyu WY, Qi Q, Tiwari AK, Chen JX, Zhang DM and Chen ZS: m6A modification: Recent advances, anticancer targeted drug discovery and beyond. Mol Cancer. 21:522022. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Goding Sauer A, Jemal A and Siegel RL: Breast cancer statistics, 2019. CA Cancer J Clin. 69:438–451. 2019. View Article : Google Scholar : PubMed/NCBI | |
Loibl S, Poortmans P, Morrow M, Denkert C and Curigliano G: Breast cancer. Lancet. 397:1750–1769. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hong R and Xu B: Breast cancer: an up-to-date review and future perspectives. Cancer Commun (Lond). 42:913–936. 2022. View Article : Google Scholar : PubMed/NCBI | |
Golshan M, Loibl S, Wong SM, Houber JB, O'Shaughnessy J, Rugo HS, Wolmark N, McKee MD, Maag D, Sullivan DM, et al: Breast conservation after neoadjuvant chemotherapy for triple-negative breast cancer: Surgical results from the brightness randomized clinical trial. JAMA Surg. 155:e1954102020. View Article : Google Scholar : PubMed/NCBI | |
Waks AG and Winer EP: Breast cancer treatment: A review. JAMA. 321:288–300. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jääskeläinen A, Roininen N, Karihtala P and Jukkola A: High parity predicts poor outcomes in patients with luminal B-like (HER2 negative) early breast cancer: A prospective finnish single-center study. Front Oncol. 10:14702020. View Article : Google Scholar : PubMed/NCBI | |
Choong GM, Cullen GD and O'Sullivan CC: Evolving standards of care and new challenges in the management of HER2-positive breast cancer. CA Cancer J Clin. 70:355–374. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu KD, Ye FG, He M, Fan L, Ma D, Mo M, Wu J, Liu GY, Di GH, Zeng XH, et al: Effect of adjuvant paclitaxel and carboplatin on survival in women with triple-negative breast cancer: A phase 3 randomized clinical trial. JAMA Oncol. 6:1390–1396. 2020. View Article : Google Scholar : PubMed/NCBI | |
Garrido-Castro AC, Lin NU and Polyak K: Insights into molecular classifications of triple-negative breast cancer: Improving patient selection for treatment. Cancer Discov. 9:176–198. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gaudet MM, Gierach GL, Carter BD, Luo J, Milne RL, Weiderpass E, Giles GG, Tamimi RM, Eliassen AH, Rosner B, et al: Pooled analysis of nine cohorts reveals breast cancer risk factors by tumor molecular subtype. Cancer Res. 78:6011–6021. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nur U, El Reda D, Hashim D and Weiderpass E: A prospective investigation of oral contraceptive use and breast cancer mortality: Findings from the Swedish women's lifestyle and health cohort. BMC Cancer. 19:8072019. View Article : Google Scholar : PubMed/NCBI | |
Trabert B, Sherman ME, Kannan N and Stanczyk FZ: Progesterone and breast cancer. Endocr Rev. 41:320–344. 2020. View Article : Google Scholar : | |
Reiner AS, Sisti J, John EM, Lynch CF, Brooks JD, Mellemkjær L, Boice JD, Knight JA, Concannon P, Capanu M, et al: Breast cancer family history and contralateral breast cancer risk in young women: an update from the women's environmental cancer and radiation epidemiology study. J Clin Oncol. 36:1513–1520. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ho PJ, Ho WK, Khng AJ, Yeoh YS, Tan BK, Tan EY, Lim GH, Tan SM, Tan VKM, Yip CH, et al: Overlap of high-risk individuals predicted by family history, and genetic and non-genetic breast cancer risk prediction models: Implications for risk stratification. BMC Med. 20:1502022. View Article : Google Scholar : PubMed/NCBI | |
Lu HM, Li S, Black MH, Lee S, Hoiness R, Wu S, Mu W, Huether R, Chen J, Sridhar S, et al: Association of breast and ovarian cancers with predisposition genes identified by large-scale sequencing. JAMA Oncol. 5:51–57. 2019. View Article : Google Scholar : | |
Breast Cancer Association Consortium; Dorling L, Carvalho S, Allen J, González-Neira A, Luccarini C, Wahlström C, Pooley KA, Parsons MT, Fortuno C, et al: Breast cancer risk genes-association analysis in more than 113,000 women. N Engl J Med. 384:428–439. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ru W, Zhang X, Yue B, Qi A, Shen X, Huang Y, Lan X, Lei C and Chen H: Insight into m6A methylation from occurrence to functions. Open Biol. 10:2000912020. View Article : Google Scholar | |
Li Z, Peng Y, Li J, Chen Z, Chen F, Tu J, Lin S and Wang H: N6-methyladenosine regulates glycolysis of cancer cells through PDK4. Nat Commun. 11:25782020. View Article : Google Scholar | |
Huang H, Weng H and Chen J: m6A modification in coding and non-coding RNAs: Roles and therapeutic implications in cancer. Cancer Cell. 37:270–288. 2020. View Article : Google Scholar : PubMed/NCBI | |
Choe J, Lin S, Zhang W, Liu Q, Wang L, Ramirez-Moya J, Du P, Kim W, Tang S, Sliz P, et al: mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature. 561:556–560. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 485:201–206. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shi B, Liu WW, Yang K, Jiang GM and Wang H: The role, mechanism, and application of RNA methyltransferase METTL14 in gastrointestinal cancer. Mol Cancer. 21:1632022. View Article : Google Scholar : PubMed/NCBI | |
Zaccara S, Ries RJ and Jaffrey SR: Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 20:608–624. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Wang Y, Su H, Zhang X, Chen H and Yu J: RNA N6-methyladenine modification, cellular reprogramming, and cancer stemness. Front Cell Dev Biol. 10:9352242022. View Article : Google Scholar | |
Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z, Gong Z, Wang Q, Huang J, Tang C, et al: Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature. 534:575–578. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zeng C, Huang W, Li Y and Weng H: Roles of METTL3 in cancer: mechanisms and therapeutic targeting. J Hematol Oncol. 13:1172020. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Peng C, Chen J, Chen D, Yang B, He B, Hu W, Zhang Y, Liu H, Dai L, et al: WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol Cancer. 18:1272019. View Article : Google Scholar : PubMed/NCBI | |
Su R, Dong L, Li Y, Gao M, He PC, Liu W, Wei J, Zhao Z, Gao L, Han L, et al: METTL16 exerts an m6A-independent function to facilitate translation and tumorigenesis. Nat Cell Biol. 24:205–216. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Ouyang Z, Sui X, Qi M, Li M, He Y, Cao Y, Cao Q, Lu Q, Zhou S, et al: Oocyte competence is maintained by m6A methyltransferase KIAA1429-mediated RNA metabolism during mouse follicular development. Cell Death Differ. 27:2468–2483. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tan C, Xia P, Zhang H, Xu K, Liu P, Guo D and Liu Z: YY1-Targeted RBM15B promotes hepatocellular carcinoma cell proliferation and sorafenib resistance by promoting TRAM2 expression in an m6A-dependent manner. Front Oncol. 12:8730202022. View Article : Google Scholar : PubMed/NCBI | |
Wen J, Lv R, Ma H, Shen H, He C, Wang J, Jiao F, Liu H, Yang P, Tan L, et al: Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol Cell. 69:1028–1038.e6. 2018. View Article : Google Scholar | |
Wang T, Kong S, Tao M and Ju S: The potential role of RNA N6-methyladenosine in Cancer progression. Mol Cancer. 19:882020. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Song C, Wang N, Li S, Liu Q, Sun Z, Wang K, Yu SC and Yang Q: NADP modulates RNA m6A methylation and adipogenesis via enhancing FTO activity. Nat Chem Biol. 16:1394–1402. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bartosovic M, Molares HC, Gregorova P, Hrossova D, Kudla G and Vanacova S: N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3'-end processing. Nucleic Acids Res. 45:11356–11370. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tang B, Yang Y, Kang M, Wang Y, Wang Y, Bi Y, He S and Shimamoto F: m6A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling. Mol Cancer. 19:32020. View Article : Google Scholar | |
Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C and Chen Y: The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 6:742021. View Article : Google Scholar : PubMed/NCBI | |
Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, Ma J and Wu L: YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun. 7:126262016. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H and He C: N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 161:1388–1399. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Zhong X, Xia M and Zhong J: The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases. Mol Ther Nucleic Acids. 26:1270–1279. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zaccara S and Jaffrey SR: A unified model for the function of YTHDF proteins in regulating m6A-modified mRNA. Cell. 181:1582–1595.e18. 2020. View Article : Google Scholar | |
Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, et al: Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell. 61:507–519. 2016. View Article : Google Scholar : PubMed/NCBI | |
Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P, et al: YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife. 6:e313112017. View Article : Google Scholar | |
Mao Y, Dong L, Liu XM, Guo J, Ma H, Shen B and Qian SB: m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2. Nat Commun. 10:53322019. View Article : Google Scholar | |
Wu B, Su S, Patil DP, Liu H, Gan J, Jaffrey SR and Ma J: Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nat Commun. 9:4202018. View Article : Google Scholar : PubMed/NCBI | |
Sun CY, Cao D, Du BB, Chen CW and Liu D: The role of Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) as m6A readers in cancer. Int J Biol Sci. 18:2744–2758. 2022. View Article : Google Scholar : | |
Liu T, Wei Q, Jin J, Luo Q, Liu Y, Yang Y, Cheng C, Li L, Pi J, Si Y, et al: The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 48:3816–3831. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang Y, Du Y, Zhou M, Hu Y and Zhang S: Emerging roles of N6-methyladenosine (m6A) modification in breast cancer. Cell Biosci. 10:1362020. View Article : Google Scholar | |
Li Y, Xiao J, Bai J, Tian Y, Qu Y, Chen X, Wang Q, Li X, Zhang Y and Xu J: Molecular characterization and clinical relevance of m6A regulators across 33 cancer types. Mol Cancer. 18:1372019. View Article : Google Scholar | |
Wei M, Bai JW, Niu L, Zhang YQ, Chen HY and Zhang GJ: The complex roles and therapeutic implications of m6A modifications in breast cancer. Front Cell Dev Biol. 8:6150712021. View Article : Google Scholar | |
Han H, Yang C, Zhang S, Cheng M, Guo S, Zhu Y, Ma J, Liang Y, Wang L, Zheng S, et al: METTL3-mediated m6A mRNA modification promotes esophageal cancer initiation and progression via Notch signaling pathway. Mol Ther Nucleic Acids. 26:333–346. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Wei L, Law CT, Tsang FH, Shen J, Cheng CL, Tsang LH, Ho DW, Chiu DK, Lee JM, et al: RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 67:2254–2270. 2018. View Article : Google Scholar | |
Jin H, Ying X, Que B, Wang X, Chao Y, Zhang H, Yuan Z, Qi D, Lin S, Min W, et al: N6-methyladenosine modification of ITGA6 mRNA promotes the development and progression of bladder cancer. EBioMedicine. 47:195–207. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Bai R, Li M, Ye H, Wu C, Wang C, Li S, Tan L, Mai D, Li G, et al: Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat Commun. 10:18582019. View Article : Google Scholar | |
Ma S, Chen C, Ji X, Liu J, Zhou Q, Wang G, Yuan W, Kan Q and Sun Z: The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol. 12:1212019. View Article : Google Scholar : PubMed/NCBI | |
Xie JW, Huang XB, Chen QY, Ma YB, Zhao YJ, Liu LC, Wang JB, Lin JX, Lu J, Cao LL, et al: m6A modification-mediated BATF2 acts as a tumor suppressor in gastric cancer through inhibition of ERK signaling. Mol Cancer. 19:1142020. View Article : Google Scholar | |
Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, Sun G, Lu Z, Huang Y, Yang CG, et al: m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 18:2622–2634. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zheng W, Dong X, Zhao Y, Wang S, Jiang H, Zhang M, Zheng X and Gu M: Multiple functions and mechanisms underlying the role of METTL3 in human cancers. Front Oncol. 9:14032019. View Article : Google Scholar | |
Wang G, Dai Y, Li K, Cheng M, Xiong G, Wang X, Chen S, Chen Z, Chen J, Xu X, et al: Deficiency of Mettl3 in bladder cancer stem cells inhibits bladder cancer progression and angiogenesis. Front Cell Dev Biol. 9:6277062021. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Zheng C, Jin Y, Bao B, Wang D, Hou K, Feng J, Tang S, Qu X, Liu Y, et al: Reduced expression of METTL3 promotes metastasis of triple-negative breast cancer by m6A methylation-mediated COL3A1 up-regulation. Front Oncol. 10:11262020. View Article : Google Scholar : PubMed/NCBI | |
Wan W, Ao X, Chen Q, Yu Y, Ao L, Xing W, Guo W, Wu X, Pu C, Hu X, et al: METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N6-methyladenosine modification of PD-L1 mRNA in breast cancer. Mol Cancer. 21:602022. View Article : Google Scholar | |
Cai X, Wang X, Cao C, Gao Y, Zhang S, Yang Z, Liu Y, Zhang X, Zhang W and Ye L: HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett. 415:11–19. 2018. View Article : Google Scholar | |
Ma J, Zhang J, Weng YC and Wang JC: EZH2-mediated microRNA-139-5p regulates epithelial-mesenchymal transition and lymph node metastasis of pancreatic cancer. Mol Cells. 41:868–880. 2018.PubMed/NCBI | |
Hu S, Song Y, Zhou Y, Jiao Y and Li G: METTL3 accelerates breast cancer progression via regulating EZH2 m6A modification. J Healthc Eng. 2022:57944222022. | |
Li W, Xue D, Xue M, Zhao J, Liang H, Liu Y and Sun T: Fucoidan inhibits epithelial-to-mesenchymal transition via regulation of the HIF-1α pathway in mammary cancer cells under hypoxia. Oncol Lett. 18:330–338. 2019.PubMed/NCBI | |
Zhao C, Ling X, Xia Y, Yan B and Guan Q: The m6A methyltransferase METTL3 controls epithelial-mesenchymal transition, migration and invasion of breast cancer through the MALAT1/miR-26b/HMGA2 axis. Cancer Cell Int. 21:4412021. View Article : Google Scholar : PubMed/NCBI | |
Qian JY, Gao J, Sun X, Cao MD, Shi L, Xia TS, Zhou WB, Wang S, Ding Q and Wei JF: KIAA1429 acts as an oncogenic factor in breast cancer by regulating CDK1 in an N6-methyladenosine-independent manner. Oncogene. 38:6123–6141. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Dai XY, Qian JY, Xu F, Wang ZW, Xia T, Zhou XJ, Li XX, Shi L, Wei JF and Ding Q: SMC1A regulated by KIAA1429 in m6A-independent manner promotes EMT progress in breast cancer. Mol Ther Nucleic Acids. 27:133–146. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhou S, Bai ZL, Xia D, Zhao ZJ, Zhao R, Wang YY and Zhe H: FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting β-catenin through mRNA demethylation. Mol Carcinog. 57:590–597. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Ren D, Du Z, Wang H, Zhang H and Jin Y: m6A demethylase FTO facilitates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression. Biochem Biophys Res Commun. 502:456–464. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shimura T, Kandimalla R, Okugawa Y, Ohi M, Toiyama Y, He C and Goel A: Novel evidence for m6A methylation regulators as prognostic biomarkers and FTO as a potential therapeutic target in gastric cancer. Br J Cancer. 126:228–237. 2022. View Article : Google Scholar | |
Azzam SK, Alsafar H and Sajini AA: FTO m6A demethylase in obesity and cancer: implications and underlying molecular mechanisms. Int J Mol Sci. 23:38002022. View Article : Google Scholar : PubMed/NCBI | |
Zheng QK, Ma C, Ullah I, Hu K, Ma RJ, Zhang N and Sun ZG: Roles of N6-methyladenosine demethylase FTO in malignant tumors progression. Onco Targets Ther. 14:4837–4846. 2021. View Article : Google Scholar : PubMed/NCBI | |
Niu Y, Lin Z, Wan A, Chen H, Liang H, Sun L, Wang Y, Li X, Xiong XF, Wei B, et al: RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Mol Cancer. 18:462019. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Ye S, Zhang N, Zheng S, Liu H, Zhou K, Wang L, Cao Y, Sun P and Wang T: The FTO/miR-181b-3p/ARL5B signaling pathway regulates cell migration and invasion in breast cancer. Cancer Commun (Lond). 40:484–500. 2020. View Article : Google Scholar : PubMed/NCBI | |
Basu A: The interplay between apoptosis and cellular senescence: Bcl-2 family proteins as targets for cancer therapy. Pharmacol Ther. 230:1079432022. View Article : Google Scholar | |
Gao X, Wang Y, Lu F, Chen X, Yang D, Cao Y, Zhang W, Chen J, Zheng L, Wang G, et al: Extracellular vesicles derived from oesophageal cancer containing P4HB promote muscle wasting via regulating PHGDH/Bcl-2/caspase-3 pathway. J Extracell Vesicles. 10:e120602021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wang R, Zhang L, Li J, Lou K and Shi B: The lipid metabolism gene FTO influences breast cancer cell energy metabolism via the PI3K/AKT signaling pathway. Oncol Lett. 13:4685–4690. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qu J, Yan H, Hou Y, Cao W, Liu Y, Zhang E, He J and Cai Z: RNA demethylase ALKBH5 in cancer: From mechanisms to therapeutic potential. J Hematol Oncol. 15:82022. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Wu D, Ning J, Liu W and Zhang D: Changes of N6-methyladenosine modulators promote breast cancer progression. BMC Cancer. 19:3262019. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Liu H, Xiao X, Yu Q, Deng R, Hua L, Wang J and Wang X: Bone marrow mesenchymal stem cell-derived exosomes inhibit triple-negative breast cancer cell stemness and metastasis via an ALKBH5-dependent mechanism. Cancers (Basel). 14:60592022. View Article : Google Scholar : PubMed/NCBI | |
Fry NJ, Law BA, Ilkayeva OR, Carraway KR and Mansfield KD: N6-methyladenosine contributes to cellular phenotype in a genetically-defined model of breast cancer progression. Oncotarget. 9:31231–31243. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, He X and Semenza GL: Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA. 113:E2047–E2056. 2016. | |
Zhang C, Zhi WI, Lu H, Samanta D, Chen I, Gabrielson E and Semenza GL: Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells. Oncotarget. 7:64527–64542. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, You X, Zheng Y, Shen Y, Xiong X and Sun Y: The UBE2C/CDH1/DEPTOR axis is an oncogene and tumor suppressor cascade in lung cancer cells. J Clin Invest. 133:e1624342023. View Article : Google Scholar : | |
Wang Y, Xie Y, Niu Y, Song P, Liu Y, Burnett J, Yang Z, Sun D, Ran Y, Li Y and Sun L: Carboxypeptidase A4 negatively correlates with p53 expression and regulates the stemness of breast cancer cells. Int J Med Sci. 18:1753–1759. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Yu Y, Yang M, Huang H, Ma S, Hu J, Xi Z, Guo H, Yao G, Yang L, et al: YTHDF1 promotes breast cancer progression by facilitating FOXM1 translation in an m6A-dependent manner. Cell Biosci. 12:192022. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Dong D, Xia Y, Hao L, Wang W and Zhao C: YTHDF1 promotes breast cancer cell growth, DNA damage repair and chemoresistance. Cell Death Dis. 13:2302022. View Article : Google Scholar : PubMed/NCBI | |
Anita R, Paramasivam A, Priyadharsini JV and Chitra S: The m6A readers YTHDF1 and YTHDF3 aberrations associated with metastasis and predict poor prognosis in breast cancer patients. Am J Cancer Res. 10:2546–2554. 2020.PubMed/NCBI | |
Zhong L, Liao D, Zhang M, Zeng C, Li X, Zhang R, Ma H and Kang T: YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett. 442:252–261. 2019. View Article : Google Scholar | |
Chen YG, Chen R, Ahmad S, Verma R, Kasturi SP, Amaya L, Broughton JP, Kim J, Cadena C, Pulendran B, et al: N6-methyladenosine modification controls circular RNA immunity. Mol Cell. 76:96–109.e9. 2019. View Article : Google Scholar : PubMed/NCBI | |
Paris J, Morgan M, Campos J, Spencer GJ, Shmakova A, Ivanova I, Mapperley C, Lawson H, Wotherspoon DA, Sepulveda C, et al: Targeting the RNA m6A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia. Cell Stem Cell. 25:137–148.e6. 2019. View Article : Google Scholar | |
Dixit D, Prager BC, Gimple RC, Poh HX, Wang Y, Wu Q, Qiu Z, Kidwell RL, Kim LJY, Xie Q, et al: The RNA m6A Reader YTHDF2 maintains oncogene expression and is a targetable dependency in glioblastoma stem cells. Cancer Discov. 11:480–499. 2021. View Article : Google Scholar : | |
Li J, Xie H, Ying Y, Chen H, Yan H, He L, Xu M, Xu X, Liang Z, Liu B, et al: YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer. Mol Cancer. 19:1522020. View Article : Google Scholar : PubMed/NCBI | |
Einstein JM, Perelis M, Chaim IA, Meena JK, Nussbacher JK, Tankka AT, Yee BA, Li H, Madrigal AA, Neill NJ, et al: Inhibition of YTHDF2 triggers proteotoxic cell death in MYC-driven breast cancer. Mol Cell. 81:3048–3064.e9. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li A, Chen YS, Ping XL, Yang X, Xiao W, Yang Y, Sun HY, Zhu Q, Baidya P, Wang X, et al: Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res. 27:444–447. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Jin X, Nie Q, Chen M, Guo W, Chen L, Li Y, Chen X, Zhang W, Chen H, et al: YTHDF3 facilitates triple-negative breast cancer progression and metastasis by stabilizing ZEB1 mRNA in an m6A-dependent manner. Ann Transl Med. 10:832022. View Article : Google Scholar | |
Chang G, Shi L, Ye Y, Shi H, Zeng L, Tiwary S, Huse JT, Huo L, Ma L, Ma Y, et al: YTHDF3 induces the translation of m6A-enriched gene transcripts to promote breast cancer brain metastasis. Cancer Cell. 38:857–871.e7. 2020. View Article : Google Scholar | |
Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL, et al: Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 20:285–295. 2018. View Article : Google Scholar : PubMed/NCBI | |
Müller S, Glaß M, Singh AK, Haase J, Bley N, Fuchs T, Lederer M, Dahl A, Huang H, Chen J, et al: IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Res. 47:375–390. 2019. View Article : Google Scholar : | |
Qiao YS, Zhou JH, Jin BH, Wu YQ and Zhao B: LINC00483 is regulated by IGF2BP1 and participates in the progression of breast cancer. Eur Rev Med Pharmacol Sci. 25:1379–1386. 2021.PubMed/NCBI | |
Shi W, Tang Y, Lu J, Zhuang Y and Wang J: MIR210HG promotes breast cancer progression by IGF2BP1 mediated m6A modification. Cell Biosci. 12:382022. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Zhang Q, Yin X, Ye J, Gao S, Chen C, Yang Y, Wu B, Fu Y, Zhang H, et al: Stabilization of IGF2BP1 by USP10 promotes breast cancer metastasis via CPT1A in an m6A-dependent manner. Int J Biol Sci. 19:449–464. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zeng F, Yao M, Wang Y, Zheng W, Liu S, Hou Z, Cheng X, Sun S, Li T, Zhao H, et al: Fatty acid β-oxidation promotes breast cancer stemness and metastasis via the miRNA-328-3p-CPT1A pathway. Cancer Gene Ther. 29:383–395. 2022. View Article : Google Scholar | |
Xiong Y, Liu Z, Li Z, Wang S, Shen N, Xin Y and Huang T: Long non-coding RNA nuclear paraspeckle assembly transcript 1 interacts with microRNA-107 to modulate breast cancer growth and metastasis by targeting carnitine palmitoyltransferase-1. Int J Oncol. 55:1125–1136. 2019.PubMed/NCBI | |
Wang Z, Tong D, Han C, Zhao Z, Wang X, Jiang T, Li Q, Liu S, Chen L, Chen Y, et al: Blockade of miR-3614 maturation by IGF2BP3 increases TRIM25 expression and promotes breast cancer cell proliferation. EBioMedicine. 41:357–369. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang CQ, Tang CH, Wang Y, Huang BF, Hu GN, Wang Q and Shao JK: Upregulated WTAP expression appears to both promote breast cancer growth and inhibit lymph node metastasis. Sci Rep. 12:10232022. View Article : Google Scholar : PubMed/NCBI | |
Ou B, Liu Y, Yang X, Xu X, Yan Y and Zhang J: C5aR1-positive neutrophils promote breast cancer glycolysis through WTAP-dependent m6A methylation of ENO1. Cell Death Dis. 12:7372021. View Article : Google Scholar : PubMed/NCBI | |
Huang T, Cao L, Feng N, Xu B, Dong Y and Wang M: N6-methyladenosine (m6A)-mediated lncRNA DLGAP1-AS1enhances breast canceradriamycin resistance through miR-299-3p/WTAP feedback loop. Bioengineered. 12:10935–10944. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fan Y, Li X, Sun H, Gao Z, Zhu Z and Yuan K: Role of WTAP in cancer: From mechanisms to the therapeutic potential. Biomolecules. 12:12242022. View Article : Google Scholar : PubMed/NCBI | |
Howley BV and Howe PH: TGF-beta signaling in cancer: Post-transcriptional regulation of EMT via hnRNP E1. Cytokine. 118:19–26. 2019. View Article : Google Scholar | |
Howley BV, Mohanty B, Dalton A, Grelet S, Karam J, Dincman T and Howe PH: The ubiquitin E3 ligase ARIH1 regulates hnRNP E1 protein stability, EMT and breast cancer progression. Oncogene. 41:1679–1690. 2022. View Article : Google Scholar : PubMed/NCBI | |
Loh TJ, Moon H, Cho S, Jang H, Liu YC, Tai H, Jung DW, Williams DR, Kim HR, Shin MG, et al: CD44 alternative splicing and hnRNP A1 expression are associated with the metastasis of breast cancer. Oncol Rep. 34:1231–1238. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Zhao W, Liu Y, Tan X, Li X, Zou Q, Xiao Z, Xu H, Wang Y and Yang X: Function of HNRNPC in breast cancer cells by controlling the dsRNA-induced interferon response. EMBO J. 37:e990172018. View Article : Google Scholar : PubMed/NCBI | |
Duijf PHG, Nanayakkara D, Nones K, Srihari S, Kalimutho M and Khanna KK: Mechanisms of genomic instability in breast cancer. Trends Mol Med. 25:595–611. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hong J, Xu K and Lee JH: Biological roles of the RNA m6A modification and its implications in cancer. Exp Mol Med. 54:1822–1832. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xiang Y, Laurent B, Hsu CH, Nachtergaele S, Lu Z, Sheng W, Xu C, Chen H, Ouyang J, Wang S, et al: RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature. 543:573–576. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Chen L, Peng D, Jiang A, He Y, Zeng Y, Xie C, Zhou H, Luo X, Liu H, et al: METTL3 and N6-methyladenosine promote homologous recombination-mediated repair of DSBs by modulating DNA-RNA hybrid accumulation. Mol Cell. 79:425–442.e7. 2020. View Article : Google Scholar : PubMed/NCBI | |
D'Alessandro G, Whelan DR, Howard SM, Vitelli V, Renaudin X, Adamowicz M, Iannelli F, Jones-Weinert CW, Lee M, Matti V, et al: BRCA2 controls DNA:RNA hybrid level at DSBs by mediating RNase H2 recruitment. Nat Commun. 9:53762018. View Article : Google Scholar : PubMed/NCBI | |
Abakir A, Giles TC, Cristini A, Foster JM, Dai N, Starczak M, Rubio-Roldan A, Li M, Eleftheriou M, Crutchley J, et al: N6-methyladenosine regulates the stability of RNA: DNA hybrids in human cells. Nat Genet. 52:48–55. 2020. View Article : Google Scholar | |
Wei J, Yin Y, Zhou J, Chen H, Peng J, Yang J and Tang Y: METTL3 potentiates resistance to cisplatin through m6A modification of TFAP2C in seminoma. J Cell Mol Med. 24:11366–11380. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Yang S, Cui YH, Wei J, Shah P, Park G, Cui X, He C and He YY: METTL14 facilitates global genome repair and suppresses skin tumorigenesis. Proc Natl Acad Sci USA. 118:e20259481182021. View Article : Google Scholar : PubMed/NCBI | |
Miranda-Gonçalves V, Lobo J, Guimarães-Teixeira C, Barros-Silva D, Guimarães R, Cantante M, Braga I, Maurício J, Oing C, Honecker F, et al: The component of the m6A writer complex VIRMA is implicated in aggressive tumor phenotype, DNA damage response and cisplatin resistance in germ cell tumors. J Exp Clin Cancer Res. 40:2682021. View Article : Google Scholar | |
Qu F, Tsegay PS and Liu Y: N6-methyladenosine, DNA repair, and genome stability. Front Mol Biosci. 8:6458232021. View Article : Google Scholar | |
Ji HL, Hong J, Zhang Z, de la Peña Avalos B, Proietti CJ, Deamicis AR, Guzmán GP, Lam HM, Garcia J, Roudier MP, et al: Regulation of telomere homeostasis and genomic stability in cancer by N6-adenosine methylation (m6A). Sci Adv. 7:eabg70732021. View Article : Google Scholar | |
Maciejowski J and de Lange T: Telomeres in cancer: Tumour suppression and genome instability. Nat Rev Mol Cell Biol. 18:175–186. 2017. View Article : Google Scholar : PubMed/NCBI | |
Batra RN, Lifshitz A, Vidakovic AT, Chin SF, Sati-Batra A, Sammut SJ, Provenzano E, Ali HR, Dariush A, Bruna A, et al: DNA methylation landscapes of 1538 breast cancers reveal a replication-linked clock, epigenomic instability and cis-regulation. Nat Commun. 12:54062021. View Article : Google Scholar : PubMed/NCBI | |
Lippert TH, Ruoff HJ and Volm M: Intrinsic and acquired drug resistance in malignant tumors. The main reason for therapeutic failure. Arzneimittelforschung. 58:261–264. 2008.PubMed/NCBI | |
Taketo K, Konno M, Asai A, Koseki J, Toratani M, Satoh T, Doki Y, Mori M, Ishii H and Ogawa K: The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. Int J Oncol. 52:621–629. 2018.PubMed/NCBI | |
Liu X, Gonzalez G, Dai X, Miao W, Yuan J, Huang M, Bade D, Li L, Sun Y and Wang Y: Adenylate kinase 4 modulates the resistance of breast cancer cells to tamoxifen through an m6A-based epitranscriptomic mechanism. Mol Ther. 28:2593–2604. 2020. View Article : Google Scholar : PubMed/NCBI | |
Petri BJ, Piell KM, South Whitt GC, Wilt AE and Klinge CM, Lehman NL, Clem BF, Nystoriak MA, Wysoczynski M and Klinge CM: HNRNPA2B1 regulates tamoxifen- and fulvestrant-sensitivity and hallmarks of endocrine resistance in breast cancer cells. Cancer Lett. 518:152–168. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Yuan J, Zhang X, Li L, Dai X, Chen Q and Wang Y: ATF3 modulates the resistance of breast cancer cells to tamoxifen through an N6-methyladenosine-based epitranscriptomic mechanism. Chem Res Toxicol. 34:1814–1821. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pan X, Hong X, Li S, Meng P and Xiao F: METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating pri-microRNA-221-3p maturation in a m6A-dependent manner. Exp Mol Med. 53:91–102. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li E, Xia M, Du Y, Long F, Pan F, He L, Hu Z and Guo Z: METTL3 promotes homologous recombination repair and modulates chemotherapeutic response by regulating the EGF/Rad51 axis. bioRxiv. 2021. | |
Li S, Jiang F, Chen F, Deng Y and Pan X: Effect of m6A methyltransferase METTL3-mediated MALAT1/E2F1/AGR2 axis on adriamycin resistance in breast cancer. J Biochem Mol Toxicol. 36:e229222022. View Article : Google Scholar | |
Wu Y, Wang Z, Han L, Guo Z, Yan B, Guo L, Zhao H, Wei M, Hou N, Ye J, et al: PRMT5 regulates RNA m6A demethylation for doxorubicin sensitivity in breast cancer. Mol Ther. 30:2603–2617. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Cheng Z, Xu J, Lai M, Liu L, Zuo M and Dang L: Fat mass and obesity-associated protein (FTO) mediates signal transducer and activator of transcription 3 (STAT3)-drived resistance of breast cancer to doxorubicin. Bioengineered. 21:1874–1889. 2021. View Article : Google Scholar | |
Liu X, Li P, Huang Y, Li H, Liu X, Du Y, Lin X, Chen D, Liu H and Zhou Y: M6A demethylase ALKBH5 regulates FOXO1 mRNA stability and chemoresistance in triple-negative breast cancer. Redox Biol. 69:1029932024. View Article : Google Scholar | |
Ou B, Liu Y, Gao Z, Xu J, Yan Y, Li Y and Zhang J: Senescent neutrophils-derived exosomal piRNA-17560 promotes chemoresistance and EMT of breast cancer via FTO-mediated m6A demethylation. Cell Death Dis. 13:9052022. View Article : Google Scholar : PubMed/NCBI | |
Zhuang H, Yu B, Tao D, Xu X, Xu Y, Wang J, Jiao Y and Wang L: The role of m6A methylation in therapy resistance in cancer. Mol Cancer. 22:912023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang L, Sun XL, Lu YC, Chen S, Pei DS and Zhang LS: NRP1 contributes to stemness and potentiates radioresistance via WTAP-mediated m6A methylation of Bcl-2 mRNA in breast cancer. Apoptosis. 28:233–246. 2023. View Article : Google Scholar |