NLRC4, inflammation and colorectal cancer (Review)
- Authors:
- Guojun Tong
- Yan Shen
- Hui Li
- Hai Qian
- Zhenhua Tan
-
Affiliations: Department of Colorectal Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China, Department of General Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China - Published online on: September 4, 2024 https://doi.org/10.3892/ijo.2024.5687
- Article Number: 99
-
Copyright: © Tong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Poyet JL, Srinivasula SM, Tnani M, Razmara M, Fernandes-Alnemri T and Alnemri ES: Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J Biol Chem. 276:28309–28313. 2001. View Article : Google Scholar : PubMed/NCBI | |
Duncan JA and Canna SW: The NLRC4 inflammasome. Immunol Rev. 281:115–123. 2018. View Article : Google Scholar : | |
Gutierrez O, Pipaon C and Fernandez-Luna JL: Ipaf is upregulated by tumor necrosis factor-alpha in human leukemia cells. FEBS Lett. 568:79–82. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sadasivam S, Gupta S, Radha V, Batta K, Kundu TK and Swarup G: Caspase-1 activator Ipaf is a p53-inducible gene involved in apoptosis. Oncogene. 24:627–636. 2005. View Article : Google Scholar | |
Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose-Girma M, Erickson S and Dixit VM: Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature. 430:213–218. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hu Z, Yan C, Liu P, Huang Z, Ma R, Zhang C, Wang R, Zhang Y, Martinon F, Miao D, et al: Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science. 341:172–175. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Shaw DK, Hammond HL, Sutterwala FS, Rayamajhi M, Shirey KA, Perkins DJ, Bonventre JV, Velayutham TS, Evans SM, et al: The prostaglandin E2-EP3 receptor axis regulates anaplasma phagocytophilum-mediated NLRC4 inflammasome activation. PLoS Pathog. 12:e10058032016. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Chen S, Ruan J, Wu J, Tong AB, Yin Q, Li Y, David L, Lu A, Wang WL, et al: Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science. 350:404–409. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sellin ME, Müller AA, Felmy B, Dolowschiak T, Diard M, Tardivel A, Maslowski KM and Hardt WD: Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host Microbe. 16:237–248. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rauch I, Deets KA, Ji DX, von Moltke J, Tenthorey JL, Lee AY, Philip NH, Ayres JS, Brodsky IE, Gronert K and Vance RE: NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of caspase-1 and -8. Immunity. 46:649–659. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nordlander S, Pott J and Maloy KJ: NLRC4 expression in intestinal epithelial cells mediates protection against an enteric pathogen. Mucosal Immunol. 7:775–785. 2014. View Article : Google Scholar : | |
Janowski AM, Kolb R, Zhang W and Sutterwala FS: Beneficial and detrimental roles of NLRs in carcinogenesis. Front Immunol. 4:3702013. View Article : Google Scholar : PubMed/NCBI | |
Dupaul-Chicoine J, Yeretssian G, Doiron K, Bergstrom KSB, McIntire CR, LeBlanc PM, Meunier C, Turbide C, Gros P, Beauchemin N, et al: Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity. 32:367–378. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhiyu W, Wang N, Wang Q, Peng C, Zhang J, Liu P, Ou A, Zhong S, Cordero MD and Lin Y: The inflammasome: An emerging therapeutic oncotarget for cancer prevention. Oncotarget. 7:50766–50780. 2016. View Article : Google Scholar : PubMed/NCBI | |
Steiner A, Reygaerts T, Pontillo A, Ceccherini I, Moecking J, Moghaddas F, Davidson S, Caroli F, Grossi A, Castro FFM, et al: Recessive NLRC4-autoinflammatory disease reveals an ulcerative colitis locus. J Clin Immunol. 42:325–335. 2022. View Article : Google Scholar : | |
Wang J, Ye Q, Zheng W, Yu X, Luo F, Fang R, Shangguan Y, Du Z, Lee PY, Jin T and Zhou Q: Low-ratio somatic NLRC4 mutation causes late-onset autoinflammatory disease. Ann Rheum Dis. 81:1173–1178. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Zhao J, Wang X, Wang Y, Zhang W and Zhu G: A novel pyroptosis related genes signature for predicting prognosis and estimating tumor immune microenvironment in lung adenocarcinoma. Transl Cancer Res. 11:2647–2659. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sundaram B and Kanneganti TD: Advances in understanding activation and function of the NLRC4 inflammasome. Int J Mol Sci. 22:10482021. View Article : Google Scholar : PubMed/NCBI | |
Jin H and Kim HJ: NLRC4, ASC and caspase-1 are inflammasome components that are mediated by P2Y2R activation in breast cancer cells. Int J Mol Sci. 21:33372020. View Article : Google Scholar | |
Lim J, Kim MJ, Park Y, Ahn JW, Hwang SJ, Moon JS, Cho KG and Kwack K: Upregulation of the NLRC4 inflammasome contributes to poor prognosis in glioma patients. Sci Rep. 9:78952019. View Article : Google Scholar : PubMed/NCBI | |
Sonohara F, Inokawa Y, Kanda M, Nishikawa Y, Yamada S, Fujii T, Sugimoto H, Kodera Y and Nomoto S: Association of inflammasome components in background liver with poor prognosis after curatively-resected hepatocellular carcinoma. Anticancer Res. 37:293–300. 2017. View Article : Google Scholar | |
Janowski AM, Colegio OR, Hornick EE, McNiff JM, Martin MD, Badovinac VP, Norian LA, Zhang W, Cassel SL and Sutterwala FS: NLRC4 suppresses melanoma tumor progression independently of inflammasome activation. J Clin Invest. 126:3917–3928. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hu B, Elinav E, Huber S, Booth CJ, Strowig T, Jin C, Eisenbarth SC and Flavell RA: Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci USA. 107:21635–21640. 2010. View Article : Google Scholar : PubMed/NCBI | |
Peng L, Zhu N, Wang D, Zhou Y and Liu Y: Comprehensive analysis of prognostic value and immune infiltration of NLRC4 and CASP1 in colorectal cancer. Int J Gen Med. 15:5425–5440. 2022. View Article : Google Scholar : PubMed/NCBI | |
Abdelaziz DH, Amr K and Amer AO: Nlrc4/Ipaf/CLAN/CARD12: More than a flagellin sensor. Int J Biochem Cell Biol. 42:789–791. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sun Q and Scott MJ: Caspase-1 as a multifunctional inflammatory mediator: Noncytokine maturation roles. J Leukoc Biol. 100:961–967. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lamkanfi M, Kanneganti TD, Franchi L and Núñez G: Caspase-1 inflammasomes in infection and inflammation. J Leukoc Biol. 82:220–225. 2007. View Article : Google Scholar : PubMed/NCBI | |
Naseer N, Zhang J, Bauer R, Constant DA, Nice TJ, Brodsky IE, Rauch I and Shin S: Salmonella enterica Serovar typhimurium induces NAIP/NLRC4- and NLRP3/ASC-independent, caspase-4-dependent inflammasome activation in human intestinal epithelial cells. Infect Immun. 90:e00663212022. View Article : Google Scholar : PubMed/NCBI | |
Naseer N, Egan MS, Reyes Ruiz VM, Scott WP, Hunter EN, Demissie T, Rauch I, Brodsky IE and Shin S: Human NAIP/NLRC4 and NLRP3 inflammasomes detect Salmonella type III secretion system activities to restrict intracellular bacterial replication. PLoS Pathog. 18:e10097182022. View Article : Google Scholar : PubMed/NCBI | |
Gram AM, Wright JA, Pickering RJ, Lam NL, Booty LM, Webster SJ and Bryant CE: Salmonella flagellin activates NAIP/NLRC4 and canonical NLRP3 inflammasomes in human macrophages. J Immunol. 206:631–640. 2021. View Article : Google Scholar : PubMed/NCBI | |
Schell U, Simon S and Hilbi H: Inflammasome recognition and regulation of the Legionella flagellum. Curr Top Microbiol Immunol. 397:161–181. 2016.PubMed/NCBI | |
Cerqueira DM, Pereira MS, Silva AL, Cunha LD and Zamboni DS: Caspase-1 but not caspase-11 is required for NLRC4-mediated pyroptosis and restriction of infection by flagellated Legionella species in mouse macrophages and in vivo. J Immunol. 195:2303–2311. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L and Shao F: The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 477:596–600. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pereira MSF, Morgantetti GF, Massis LM, Horta CV, Hori JI and Zamboni DS: Activation of NLRC4 by flagellated bacteria triggers caspase-1-dependent and -independent responses to restrict Legionella pneumophila replication in macrophages and in vivo. J Immunol. 187:6447–6455. 2011. View Article : Google Scholar : PubMed/NCBI | |
Luchetti G, Roncaioli JL, Chavez RA, Schubert AF, Kofoed EM, Reja R, Cheung TK, Liang Y, Webster JD, Lehoux I, et al: Shigella ubiquitin ligase IpaH7.8 targets gasdermin D for degradation to prevent pyroptosis and enable infection. Cell Host Microbe. 29:1521–1530.e10. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mitchell PS, Roncaioli JL, Turcotte EA, Goers L, Chavez RA, Lee AY, Lesser CF, Rauch I and Vance RE: NAIP-NLRC4-deficient mice are susceptible to shigellosis. Elife. 9:e590222020. View Article : Google Scholar : PubMed/NCBI | |
Hermansson AK, Paciello I and Bernardini ML: The orchestra and its maestro: Shigella's fine-tuning of the inflammasome platforms. Curr Top Microbiol Immunol. 397:91–115. 2016.PubMed/NCBI | |
Suzuki S, Mimuro H, Kim M, Ogawa M, Ashida H, Toyotome T, Franchi L, Suzuki M, Sanada T, Suzuki T, et al: Shigella IpaH7.8 E3 ubiquitin ligase targets glomulin and activates inflammasomes to demolish macrophages. Proc Natl Acad Sci USA. 111:E4254–E4263. 2014. View Article : Google Scholar : PubMed/NCBI | |
Santoni K, Pericat D, Gorse L, Buyck J, Pinilla M, Prouvensier L, Bagayoko S, Hessel A, Leon-Icaza SA, Bellard E, et al: Caspase-1-driven neutrophil pyroptosis and its role in host susceptibility to Pseudomonas aeruginosa. PLoS Pathog. 18:e10103052022. View Article : Google Scholar : PubMed/NCBI | |
Mohamed MF, Gupta K, Goldufsky JW, Roy R, Callaghan LT, Wetzel DM, Kuzel TM, Reiser J and Shafikhani SH: CrkII/Abl phosphorylation cascade is critical for NLRC4 inflammasome activity and is blocked by Pseudomonas aeruginosa ExoT. Nat Commun. 13:12952022. View Article : Google Scholar : PubMed/NCBI | |
Graustein AD, Berrington WR, Buckingham KJ, Nguyen FK, Joudeh LL, Rosenfeld M, Bamshad MJ, Gibson RL, Hawn TR and Emond MJ: Inflammasome genetic variants, macrophage function, and clinical outcomes in cystic fibrosis. Am J Respir Cell Mol Biol. 65:157–166. 2021. View Article : Google Scholar : PubMed/NCBI | |
Karki R, Lee E, Place D, Samir P, Mavuluri J, Sharma BR, Balakrishnan A, Malireddi RKS, Geiger R, Zhu Q, et al: IRF8 regulates transcription of Naips for NLRC4 inflammasome activation. Cell. 173:920–933.e13. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mascarenhas DPA, Cerqueira DM, Pereira MSF, Castanheira FVS, Fernandes TD, Manin GZ, Cunha LD and Zamboni DS: Inhibition of caspase-1 or gasdermin-D enable caspase-8 activation in the Naip5/NLRC4/ASC inflammasome. PLoS Pathog. 13:e10065022017. View Article : Google Scholar : PubMed/NCBI | |
Furuoka M, Ozaki K, Sadatomi D, Mamiya S, Yonezawa T, Tanimura S and Takeda K: TNF-α induces caspase-1 activation independently of simultaneously induced NLRP3 in 3T3-L1 cells. J Cell Physiol. 231:2761–2767. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hua L, Liang S, Zhou Y, Wu X, Cai H, Liu Z, Ou Y, Chen Y, Chen X, Yan Y, et al: Artemisinin-derived artemisitene blocks ROS-mediated NLRP3 inflammasome and alleviates ulcerative colitis. Int Immunopharmacol. 113:1094312022. View Article : Google Scholar : PubMed/NCBI | |
Taman H, Fenton CG, Anderssen E, Florholmen J and Paulssen RH: DNA hypo-methylation facilitates anti-inflammatory responses in severe ulcerative colitis. PLoS One. 16:e02489052021. View Article : Google Scholar : PubMed/NCBI | |
Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE, Leaf IA and Aderem A: Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci USA. 107:3076–3080. 2010. View Article : Google Scholar : PubMed/NCBI | |
Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI and Aderem A: Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol. 7:569–575. 2006. View Article : Google Scholar : PubMed/NCBI | |
Endrizzi MG, Hadinoto V, Growney JD, Miller W and Dietrich WF: Genomic sequence analysis of the mouse Naip gene array. Genome Res. 10:1095–1102. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kofoed EM and Vance RE: Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature. 477:592–595. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rayamajhi M, Zak DE, Chavarria-Smith J, Vance RE and Miao EA: Cutting edge: Mouse NAIP1 detects the type III secretion system needle protein. J Immunol. 191:3986–3989. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Zhao Y, Shi J and Shao F: Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad Sci USA. 110:14408–14413. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kortmann J, Brubaker SW and Monack DM: Cutting edge: Inflammasome activation in primary human macrophages is dependent on flagellin. J Immunol. 195:815–819. 2015. View Article : Google Scholar : PubMed/NCBI | |
Broz P, Newton K, Lamkanfi M, Mariathasan S, Dixit VM and Monack DM: Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J Exp Med. 207:1745–1755. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Zaki MH, Vogel P, Gurung P, Finlay BB, Deng W, Lamkanfi M and Kanneganti TD: Role of inflammasomes in host defense against Citrobacter rodentium infection. J Biol Chem. 287:16955–16964. 2012. View Article : Google Scholar : PubMed/NCBI | |
Man SM, Karki R, Briard B, Burton A, Gingras S, Pelletier S and Kanneganti TD: Differential roles of caspase-1 and caspase-11 in infection and inflammation. Sci Rep. 7:451262017. View Article : Google Scholar : PubMed/NCBI | |
Gonçalves AV, Margolis SR, Quirino GFS, Mascarenhas DPA, Rauch I, Nichols RD, Ansaldo E, Fontana MF, Vance RE and Zamboni DS: Gasdermin-D and caspase-7 are the key caspase-1/8 substrates downstream of the NAIP5/NLRC4 inflammasome required for restriction of Legionella pneumophila. PLoS Pathog. 15:e10078862019. View Article : Google Scholar : PubMed/NCBI | |
Canna SW, de Jesus AA, Gouni S, Brooks SR, Marrero B, Liu Y, DiMattia MA, Zaal KJ, Sanchez GA, Kim H, et al: An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 46:1140–1146. 2014. View Article : Google Scholar : PubMed/NCBI | |
Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, Loring E, Choi M, Overton J, Meffre E, Khokha MK, Huttner AJ, et al: Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet. 46:1135–1139. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kitamura A, Sasaki Y, Abe T, Kano H and Yasutomo K: An inherited mutation in NLRC4 causes autoinflammation in human and mice. J Exp Med. 211:2385–2396. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chear CT, Nallusamy R, Canna SW, Chan KC, Baharin MF, Hishamshah M, Ghani H, Ripen AM and Mohamad SB: A novel de novo NLRC4 mutation reinforces the likely pathogenicity of specific LRR domain mutation. Clin Immunol. 211:1083282020. View Article : Google Scholar | |
Barsalou J, Blincoe A, Fernandez I, Dal-Soglio D, Marchitto L, Selleri S, Haddad E, Benyoucef A and Touzot F: Rapamycin as an adjunctive therapy for NLRC4 associated macrophage activation syndrome. Front Immunol. 9:21622018. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K and Shao F: Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 547:99–103. 2017. View Article : Google Scholar : PubMed/NCBI | |
Christgen S, Zheng M, Kesavardhana S, Karki R, Malireddi RKS, Banoth B, Place DE, Briard B, Sharma BR, Tuladhar S, et al: Identification of the PANoptosome: A molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol. 10:2372020. View Article : Google Scholar : PubMed/NCBI | |
Pandian N and Kanneganti TD: PANoptosis: A unique innate immune inflammatory cell death modality. J Immunol. 209:1625–1633. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pan H, Pan J, Li P and Gao J: Characterization of PANoptosis patterns predicts survival and immunotherapy response in gastric cancer. Clin Immunol. 238:1090192022. View Article : Google Scholar : PubMed/NCBI | |
Lin JF, Hu PS, Wang YY, Tan YT, Yu K, Liao K, Wu QN, Li T, Meng Q, Lin JZ, et al: Phosphorylated NFS1 weakens oxaliplatin-based chemosensitivity of colorectal cancer by preventing PANoptosis. Signal Transduct Target Ther. 7:542022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y and Kanneganti TD: From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Comput Struct Biotechnol J. 19:4641–4657. 2021. View Article : Google Scholar : PubMed/NCBI | |
Place DE, Lee S and Kanneganti TD: PANoptosis in microbial infection. Curr Opin Microbiol. 59:42–49. 2021. View Article : Google Scholar | |
Lee S, Karki R, Wang Y, Nguyen LN, Kalathur RC and Kanneganti TD: AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature. 597:415–419. 2021. View Article : Google Scholar : PubMed/NCBI | |
Karki R, Sundaram B, Sharma BR, Lee S, Malireddi RKS, Nguyen LN, Christgen S, Zheng M, Wang Y, Samir P, et al: ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep. 37:1098582021. View Article : Google Scholar : PubMed/NCBI | |
Jiang W, Deng Z, Dai X and Zhao W: PANoptosis: A new insight into oral infectious diseases. Front Immunol. 12:7896102021. View Article : Google Scholar : | |
Zheng M and Kanneganti TD: The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunol Rev. 297:26–38. 2020. View Article : Google Scholar : PubMed/NCBI | |
Samir P, Malireddi RKS and Kanneganti TD: The PANoptosome: A deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol. 10:2382020. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Deng Y, Gan X, Li Y, Huang W, Lu L, Wei L, Su L, Luo J, Zou B, et al: NLRP12 collaborates with NLRP3 and NLRC4 to promote pyroptosis inducing ganglion cell death of acute glaucoma. Mol Neurodegener. 15:262020. View Article : Google Scholar : PubMed/NCBI | |
Pistritto G, Trisciuoglio D, Ceci C, Garufi A and D'Orazi G: Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY). 8:603–619. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yan J, Wan P, Choksi S and Liu ZG: Necroptosis and tumor progression. Trends Cancer. 8:21–27. 2022. View Article : Google Scholar | |
Karki R and Kanneganti TD: Diverging inflammasome signals in tumorigenesis and potential targeting. Nat Rev Cancer. 19:197–214. 2019. View Article : Google Scholar : PubMed/NCBI | |
Allen IC, TeKippe EM, Woodford RM, Uronis JM, Holl EK, Rogers AB, Herfarth HH, Jobin C and Ting JP: The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med. 207:1045–1056. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zaki MH, Boyd KL, Vogel P, Kastan MB, Lamkanfi M and Kanneganti TD: The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity. 32:379–391. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zaki MH, Vogel P, Body-Malapel M, Lamkanfi M and Kanneganti TD: IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J Immunol. 185:4912–4920. 2010. View Article : Google Scholar : PubMed/NCBI | |
Carvalho FA, Nalbantoglu I, Aitken JD, Uchiyama R, Su Y, Doho GH, Vijay-Kumar M and Gewirtz AT: Cytosolic flagellin receptor NLRC4 protects mice against mucosal and systemic challenges. Mucosal Immunol. 5:288–298. 2012. View Article : Google Scholar : PubMed/NCBI | |
Karki R, Man SM and Kanneganti TD: Inflammasomes and cancer. Cancer Immunol Res. 5:94–99. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tenthorey JL, Chavez RA, Thompson TW, Deets KA, Vance RE and Rauch I: NLRC4 inflammasome activation is NLRP3- and phosphorylation-independent during infection and does not protect from melanoma. J Exp Med. 217:e201917362020. View Article : Google Scholar : PubMed/NCBI | |
Ohashi K, Wang Z, Yang YM, Billet S, Tu W, Pimienta M, Cassel SL, Pandol SJ, Lu SC, Sutterwala FS, et al: NOD-like receptor C4 inflammasome regulates the growth of colon cancer liver metastasis in NAFLD. Hepatology. 70:1582–1599. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen GY and Núñez G: Inflammasomes in intestinal inflammation and cancer. Gastroenterology. 141:1986–1999. 2011. View Article : Google Scholar : PubMed/NCBI | |
Peng L, Youwei R and Yanghong Z: Research progress of NLRC4 and colorectal cancer. J Hubei Univ Sci Technol (Med Sci). 36:176–179. 2022. View Article : Google Scholar | |
Bast A, Krause K, Schmidt IHE, Pudla M, Brakopp S, Hopf V, Breitbach K and Steinmetz I: Caspase-1-dependent and -independent cell death pathways in Burkholderia pseudomallei infection of macrophages. PLoS Pathog. 10:e10039862014. View Article : Google Scholar : PubMed/NCBI | |
Freeman L, Guo H, David CN, Brickey WJ, Jha S and Ting JPY: NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J Exp Med. 214:1351–1370. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guo Q, Wu Y, Hou Y, Liu Y, Liu T, Zhang H, Fan C, Guan H, Li Y, Shan Z and Teng W: Cytokine secretion and pyroptosis of thyroid follicular cells mediated by enhanced NLRP3, NLRP1, NLRC4, and AIM2 inflammasomes are associated with autoimmune thyroiditis. Front Immunol. 9:11972018. View Article : Google Scholar : PubMed/NCBI | |
Chiarini A, Armato U, Gui L and Dal Prà I: 'Other than NLRP3' inflammasomes: Multiple roles in brain disease. Neuroscientist. 30:23–48. 2024. View Article : Google Scholar | |
Salcedo R, Worschech A, Cardone M, Jones Y, Gyulai Z, Dai RM, Wang E, Ma W, Haines D, O'HUigin C, et al: MyD88-mediated signaling prevents development of adenocarcinomas of the colon: Role of interleukin 18. J Exp Med. 207:1625–1636. 2010. View Article : Google Scholar : PubMed/NCBI | |
Takagi H, Kanai T, Okazawa A, Kishi Y, Sato T, Takaishi H, Inoue N, Ogata H, Iwao Y, Hoshino K, et al: Contrasting action of IL-12 and IL-18 in the development of dextran sodium sulphate colitis in mice. Scand J Gastroenterol. 38:837–844. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chen GY, Liu M, Wang F, Bertin J and Núñez G: A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol. 186:7187–7194. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wilson JE, Petrucelli AS, Chen L, Koblansky AA, Truax AD, Oyama Y, Rogers AB, Brickey WJ, Wang Y, Schneider M, et al: Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt. Nat Med. 21:906–913. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bakhshi S and Shamsi S: MCC950 in the treatment of NLRP3-mediated inflammatory diseases: Latest evidence and therapeutic outcomes. Int Immunopharmacol. 106:1085952022. View Article : Google Scholar : PubMed/NCBI | |
Cai Y, Chen J, Liu J, Zhu K, Xu Z, Shen J, Wang D and Chu L: Identification of six hub genes and two key pathways in two rat renal fibrosis models based on bioinformatics and RNA-seq transcriptome analyses. Front Mol Biosci. 9:10357722022. View Article : Google Scholar : PubMed/NCBI | |
Di Q, Zhao X, Tang H, Li X, Xiao Y, Wu H, Wu Z, Quan J and Chen W: USP22 suppresses the NLRP3 inflammasome by degrading NLRP3 via ATG5-dependent autophagy. Autophagy. 19:873–885. 2023. View Article : Google Scholar : | |
Kolb R, Phan L, Borcherding N, Liu Y, Yuan F, Janowski AM, Xie Q, Markan KR, Li W, Potthoff MJ, et al: Obesity-associated NLRC4 inflammasome activation drives breast cancer progression. Nat Commun. 7:130072016. View Article : Google Scholar : PubMed/NCBI | |
Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, Vermaelen K, Panaretakis T, Mignot G, Ullrich E, et al: Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med. 15:1170–1178. 2009. View Article : Google Scholar : PubMed/NCBI | |
Allam R, Maillard MH, Tardivel A, Chennupati V, Bega H, Yu CW, Velin D, Schneider P and Maslowski KM: Epithelial NAIPs protect against colonic tumorigenesis. J Exp Med. 212:369–383. 2015. View Article : Google Scholar : PubMed/NCBI | |
Güllülü Ö, Hehlgans S, Rödel C, Fokas E and Rödel F: Tumor suppressor protein p53 and inhibitor of apoptosis proteins in colorectal cancer-A promising signaling network for therapeutic interventions. Cancers (Basel). 13:6242021. View Article : Google Scholar : PubMed/NCBI | |
Lee C, Do HTT, Her J, Kim Y, Seo D and Rhee I: Inflammasome as a promising therapeutic target for cancer. Life Sci. 231:1165932019. View Article : Google Scholar : PubMed/NCBI | |
Naqishbandi AM: Cytotoxic and apoptotic potential of gemini-chrysophanol nanoparticles against human colorectal cancer HCT-116 cell lines. BMC Pharmacol Toxicol. 23:562022. View Article : Google Scholar : PubMed/NCBI | |
Moazzendizaji S, Sevbitov A, Ezzatifar F, Jalili HR, Aalii M, Hemmatzadeh M, Aslani S, Gholizadeh Navashenaq J, Safari R, Hosseinzadeh R, et al: microRNAs: Small molecules with a large impact on colorectal cancer. Biotechnol Appl Biochem. 69:1893–1908. 2022. View Article : Google Scholar | |
Elrebehy MA, Al-Saeed S, Gamal S, El-Sayed A, Ahmed AA, Waheed O, Ismail A, El-Mahdy HAM, Sallam AM and Doghish AS: miRNAs as cornerstones in colorectal cancer pathogenesis and resistance to therapy: A spotlight on signaling pathways interplay-a review. Int J Biol Macromol. 214:583–600. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dai F, Guo M, Shao Y and Li C: Vibrio splendidus flagellin C binds tropomodulin to induce p38 MAPK-mediated p53-dependent coelomocyte apoptosis in Echinodermata. J Biol Chem. 298:1020912022. View Article : Google Scholar : PubMed/NCBI | |
Mello SS and Attardi LD: Deciphering p53 signaling in tumor suppression. Curr Opin Cell Biol. 51:65–72. 2018. View Article : Google Scholar : | |
Raghu D and Karunagaran D: Plumbagin downregulates Wnt signaling independent of p53 in human colorectal cancer cells. J Nat Prod. 77:1130–1134. 2014. View Article : Google Scholar : PubMed/NCBI | |
Golubovskaya VM and Cance WG: Targeting the p53 pathway. Surg Oncol Clin N Am. 22:747–764. 2013. View Article : Google Scholar : PubMed/NCBI | |
Stegh AH: Targeting the p53 signaling pathway in cancer therapy-the promises, challenges and perils. Expert Opin Ther Targets. 16:67–83. 2012. View Article : Google Scholar : PubMed/NCBI | |
Morandell S and Yaffe MB: Exploiting synthetic lethal interactions between DNA damage signaling, checkpoint control, and p53 for targeted cancer therapy. Prog Mol Biol Transl Sci. 110:289–314. 2012. View Article : Google Scholar : PubMed/NCBI | |
Golubovskaya VM and Cance WG: Focal adhesion kinase and p53 signaling in cancer cells. Int Rev Cytol. 263:103–153. 2007. View Article : Google Scholar : PubMed/NCBI | |
El-Deiry WS: Insights into cancer therapeutic design based on p53 and TRAIL receptor signaling. Cell Death Differ. 8:1066–1075. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bates S and Vousden KH: p53 in signaling checkpoint arrest or apoptosis. Curr Opin Genet Dev. 6:12–18. 1996. View Article : Google Scholar : PubMed/NCBI | |
Khan M, Ai M, Du K, Song J, Wang B, Lin J, Ren A, Chen C, Huang Z, Qiu W, et al: Pyroptosis relates to tumor microenvironment remodeling and prognosis: A pan-cancer perspective. Front Immunol. 13:10622252022. View Article : Google Scholar | |
Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang DC and Shao F: Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 535:111–116. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H and Lieberman J: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 535:153–158. 2016. View Article : Google Scholar : PubMed/NCBI | |
Broz P and Dixit VM: Inflammasomes: Mechanism of assembly, regulation and signalling. Nat Rev Immunol. 16:407–420. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kay C, Wang R, Kirkby M and Man SM: Molecular mechanisms activating the NAIP-NLRC4 inflammasome: Implications in infectious disease, autoinflammation, and cancer. Immunol Rev. 297:67–82. 2020. View Article : Google Scholar : PubMed/NCBI | |
Man SM: Inflammasomes in the gastrointestinal tract: Infection, cancer and gut microbiota homeostasis. Nat Rev Gastroenterol Hepatol. 15:721–737. 2018. View Article : Google Scholar : PubMed/NCBI | |
Irak K, Bayram M, Cifci S and Sener G: Serum levels of NLRC4 and MCP-2/CCL8 in patients with active Crohn's disease. PLoS One. 16:e02600342021. View Article : Google Scholar : PubMed/NCBI | |
Fattinger SA, Geiser P, Samperio Ventayol P, Di Martino ML, Furter M, Felmy B, Bakkeren E, Hausmann A, Barthel-Scherrer M, Gül E, et al: Epithelium-autonomous NAIP/NLRC4 prevents TNF-driven inflammatory destruction of the gut epithelial barrier in Salmonella-infected mice. Mucosal Immunol. 14:615–629. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mizoguchi A: Animal models of inflammatory bowel disease. Prog Mol Biol Transl Sci. 105:263–320. 2012. View Article : Google Scholar | |
Saleh M and Trinchieri G: Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol. 11:9–20. 2011. View Article : Google Scholar | |
Kiesler P, Fuss IJ and Strober W: Experimental models of inflammatory bowel diseases. Cell Mol Gastroenterol Hepatol. 1:154–170. 2015. View Article : Google Scholar : PubMed/NCBI | |
Henderson LA and Cron RQ: Macrophage activation syndrome and secondary hemophagocytic lymphohistiocytosis in childhood inflammatory disorders: Diagnosis and management. Paediatric drugs. 22:29–44. 2020. View Article : Google Scholar : | |
Bardet J, Laverdure N, Fusaro M, Picard C, Garnier L, Viel S, Collardeau-Frachon S, De Guillebon JM, Durieu I, Casari-Thery C, et al: NLRC4 GOF mutations, a challenging diagnosis from neonatal age to adulthood. J Clin Med. 10:43692021. View Article : Google Scholar : PubMed/NCBI | |
Volker-Touw CM, de Koning HD, Giltay JC, de Kovel CGF, van Kempen TS, Oberndorff KMEJ, Boes ML, van Steensel MAM, van Well GTJ, Blokx WAM, et al: Erythematous nodes, urticarial rash and arthralgias in a large pedigree with NLRC4-related autoinflammatory disease, expansion of the phenotype. Br J Dermatol. 176:244–248. 2017. View Article : Google Scholar | |
Moghaddas F, Zeng P, Zhang Y, Schützle H, Brenner S, Hofmann SR, Berner R, Zhao Y, Lu B, Chen X, et al: Autoinflammatory mutation in NLRC4 reveals a leucine-rich repeat (LRR)-LRR oligomerization interface. J Allergy Clin Immunol. 142:1956–1967.e6. 2018. View Article : Google Scholar : PubMed/NCBI | |
Trifiletti R, Lachman HM, Manusama O, Zheng D, Spalice A, Chiurazzi P, Schornagel A, Serban AM, van Wijck R, Cunningham JL, et al: Identification of ultra-rare genetic variants in pediatric acute onset neuropsychiatric syndrome (PANS) by exome and whole genome sequencing. Sci Rep. 12:111062022. View Article : Google Scholar : PubMed/NCBI | |
Eeckhout E, Asaoka T, Van Gorp H, Demon D, Girard-Guyonvarc'h C, Andries V, Vereecke L, Gabay C, Lamkanfi M, van Loo G and Wullaert A: The autoinflammation-associated NLRC4V341A mutation increases microbiota-independent IL-18 production but does not recapitulate human autoinflammatory symptoms in mice. Front Immunol. 14:12726392023. View Article : Google Scholar |