
Unleashing the power of urine‑based biomarkers in diagnosis, prognosis and monitoring of bladder cancer (Review)
- Authors:
- Xuebin Wan
- Dan Wang
- Xiaoni Zhang
- Mingyan Xu
- Yuying Huang
- Wenjian Qin
- Shifu Chen
-
Affiliations: Department of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P.R. China, Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen D‑37077, Germany, Department of Research and Development, HaploX Biotechnology, Co., Ltd., Shenzhen, Guangdong 518057, P.R. China, Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China - Published online on: February 6, 2025 https://doi.org/10.3892/ijo.2025.5724
- Article Number: 18
-
Copyright: © Wan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Richters A, Aben KKH and Kiemeney LALM: The global burden of urinary bladder cancer: An update. World J Urol. 38:1895–1904. 2020. View Article : Google Scholar : | |
Tan WS, Rodney S, Lamb B, Feneley M and Kelly J: Management of non-muscle invasive bladder cancer: A comprehensive analysis of guidelines from the United States, Europe and Asia. Cancer Treat Rev. 47:22–31. 2016. View Article : Google Scholar : PubMed/NCBI | |
Teoh JY, Kamat AM, Black PC, Grivas P, Shariat SF and Babjuk M: Recurrence mechanisms of non-muscle-invasive bladder cancer-a clinical perspective. Nat Rev Urol. 19:280–294. 2022. View Article : Google Scholar : PubMed/NCBI | |
Facchini G, Cavaliere C, Romis L, Mordente S, Facchini S, Iovane G, Capasso M, D'Errico D, Liguori C, Formato R, et al: Advanced/metastatic bladder cancer: Current status and future directions. Eur Rev Med Pharmacol Sci. 24:11536–11552. 2020.PubMed/NCBI | |
Devlies W, de Jong JJ, Hofmann F, Bruins HM, Zuiverloon TCM, Smith EJ, Yuan Y, van Rhijn BWG, Mostafid H, Santesso N, et al: The diagnostic accuracy of cystoscopy for detecting bladder cancer in adults presenting with haematuria: A systematic review from the European Association of Urology Guidelines Office. Eur Urol. 10:115–122. 2024. | |
Zuiverloon TCM, de Jong FC and Theodorescu D: Clinical decision making in surveillance of non-muscle-invasive bladder cancer: The evolving roles of urinary cytology and molecular markers. Oncology (Williston Park). 31:855–862. 2017. | |
Chamie K, Litwin MS, Bassett JC, Daskivich TJ, Lai J, Hanley JM, Konety BR and Saigal CS; Urologic Diseases in America Project: Recurrence of high-risk bladder cancer: A population-based analysis. Cancer. 119:3219–3227. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rezaee ME, Lynch KE, Li Z, MacKenzie TA, Seigne JD, Robertson DJ, Sirovich B, Goodney PP and Schroeck FR: The impact of low-versus high-intensity surveillance cystoscopy on surgical care and cancer outcomes in patients with high-risk non-muscle-invasive bladder cancer (NMIBC). PLoS One. 15:e02304172020. View Article : Google Scholar | |
Burke DM, Shackley DC and O'Reilly PH: The community-based morbidity of flexible cystoscopy. BJU Int. 89:347–349. 2002. View Article : Google Scholar : PubMed/NCBI | |
Van Der Aa MN, Steyerberg EW, Sen EF, Zwarthoff EC, Kirkels WJ, van der Kwast TH and Essink-Bot ML: Patients' perceived burden of cystoscopic and urinary surveillance of bladder cancer: A randomized comparison. BJU Int. 101:1106–1110. 2008. View Article : Google Scholar | |
Matulewicz RS, DeLancey JO and Meeks JJ: Cystoscopy. JAMA. 317:11872017. View Article : Google Scholar : PubMed/NCBI | |
Talukdar S, Emdad L, Das SK, Sarkar D and Fisher PB: Noninvasive approaches for detecting and monitoring bladder cancer. Expert Rev Anticancer Ther. 15:283–294. 2015. View Article : Google Scholar | |
Yaxley JP: Urinary tract cancers: An overview for general practice. J Family Med Prim Care. 5:533–538. 2016. View Article : Google Scholar | |
Zhang X and Zhang Y: Bladder cancer and genetic mutations. Cell Biochem Biophys. 73:65–69. 2015. View Article : Google Scholar | |
Thompson D, Lawrentschuk N and Bolton D: New approaches to targeting epigenetic regulation in bladder cancer. Cancers (Basel). 15:18562023. View Article : Google Scholar : PubMed/NCBI | |
Eissa S, Swellam M, Sadek M, Mourad MS, EI Ahmady O and Khalifa A: Comparative evaluation of the nuclear matrix protein, fibronectin, urinary bladder cancer antigen and voided urine cytology in the detection of bladder tumors. J Urol. 168:465–469. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sale MS, Kulkarni VV, Kulkarni PV and Patil CA: Efficacy of modified cell block cytology compared to fine needle aspiration cytology for diagnostic oral cytopathology. Biotech Histochem. 96:197–201. 2021. View Article : Google Scholar | |
Raskin RE and Meyer D: General Categories of Cytologic Interpretation. Canine and Feline Cytology. A Color Atlas and Interpretation Guide. 2nd edition. Elsevier; Amsterdam: pp. 16–33. 2009 | |
Sullivan PS, Chan JB, Levin MR and Rao J: Urine cytology and adjunct markers for detection and surveillance of bladder cancer. Am J Transl Res. 2:412–440. 2010.PubMed/NCBI | |
Xing J and Reynolds JP: Diagnostic advances in urine cytology. Surg Pathol Clin. 11:601–610. 2018. View Article : Google Scholar : PubMed/NCBI | |
Feiertag N, Barry E, Abramson M, Park JY, Kovac E, Aboumohamed A, Watts K and Sankin A: Urine cytology rarely escalates clinical management in the surveillance of non-muscle-invasive bladder cancer. Clin Genitourin Cancer. 21:258–264. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lozano F, Raventós CX, Carrion A, Dinarés C, Hernández J, Trilla E and Morote J: Xpert bladder cancer monitor for the early detection of non-muscle invasive bladder cancer recurrences: Could cystoscopy be substituted? Cancers (Basel). 15:36832023. View Article : Google Scholar : PubMed/NCBI | |
Palou J, Rodríguez-Rubio F, Huguet J, Segarra J, Ribal MJ, Alcaraz A and Villavicencio H: Multivariate analysis of clinical parameters of synchronous primary superficial bladder cancer and upper urinary tract tumor. J Urol. 174:859–861; discussion 861. 2005. View Article : Google Scholar : PubMed/NCBI | |
Raitanen MP, Aine R, Rintala E, Kallio J, Rajala P, Juusela H and Tammela TL; FinnBladder Group: Differences between local and review urinary cytology in diagnosis of bladder cancer. An interobserver multicenter analysis. Eur Urol. 41:284–289. 2002. View Article : Google Scholar : PubMed/NCBI | |
Oliveira MC, Caires HR, Oliveira MJ, Fraga A, Vasconcelos MH and Ribeiro R: Urinary biomarkers in bladder cancer: Where do we stand and potential role of extracellular vesicles. Cancers (Basel). 12:14002020. View Article : Google Scholar : PubMed/NCBI | |
Kundal VK, Pandith AA, Hamid A, Shah A, Kundal R and Wani SM: Role of NMP22 bladder check test in early detection of bladder cancer with recurrence. Asian Pacific J Cancer Prev. 11:1279–1282. 2010. | |
Soloway MS, Briggman JV, Carpinito GA, Chodak GW, Church PA, Lamm DL, Lange P, Messing E, Pasciak RM, Reservitz GB, et al: Use of a new tumor marker, urinary NMP22, in the detection of occult or rapidly recurring transitional cell carcinoma of the urinary tract following surgical treatment. J Urol. 156:363–367. 1996. View Article : Google Scholar : PubMed/NCBI | |
Miyake M, Goodison S, Giacoia EG, Rizwani W, Ross S and Rosser CJ: Influencing factors on the NMP-22 urine assay: An experimental model. BMC Urol. 12:232012. View Article : Google Scholar : PubMed/NCBI | |
Liang Q, Zhang G, Li W, Wang J and Sheng S: Comparison of the diagnostic performance of fluorescence in situ hybridization (Fish), nuclear matrix protein 22 (nmp22), and their combination model in bladder carcinoma detection: A systematic review and meta-analysis. Onco Targets Ther. 12:349–358. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dong Y, Zhang T, Li X, Yu F, Yu H and Shao S: Urine biomarkers for the diagnosis of bladder cancer: A network meta-analysis. Urol J. 18:623–632. 2021.PubMed/NCBI | |
Gong YW, Wang YR, Fan GR, Niu Q, Zhao YL, Wang H, Svatek R, Rodriguez R and Wang ZP: Diagnostic and prognostic role of BTA, NMP22, survivin and cytology in urothelial carcinoma. Transl Cancer Res. 10:3192–3205. 2021. View Article : Google Scholar | |
Egawa S and Kuruma H: Search for biomarkers of aggressiveness in bladder cancer. Eur Urol. 50:20–22. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Cao Y, Liu J, Wang S, Yang Y and Du P: The diagnostic and prognostic value of nuclear matrix protein 22 in bladder cancer. Transl Cancer Res. 9:7174–7182. 2020. View Article : Google Scholar : PubMed/NCBI | |
Frantzi M, Makridakis M and Vlahou A: Biomarkers for bladder cancer aggressiveness. Curr Opin Urol. 22:390–396. 2012. View Article : Google Scholar : PubMed/NCBI | |
Białek Ł, Bilski K, Dobruch J, Krajewski W, Szydełko T, Kryst P and Poletajew S: Non-invasive biomarkers in the diagnosis of upper urinary tract urothelial carcinoma-A systematic review. Cancers (Basel). 14:15202022. View Article : Google Scholar | |
Ecke TH, Scislowski M, Hassan N, Saura M, Hallmann S, Koch S, Vuolle S, Malakoutikhah M, Kopra K and Härmä H: Luminophore chemistry for detection of urinary bladder cancer-comparison to cytology and urinary rapid tests (BTA stat®, NMP22® BladderChek® and UBC® Rapid Test). Anticancer Res. 42:5249–5256. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kumar A, Kumar R and Gupta NP: Comparison of NMP22 BladderChek test and urine cytology for the detection of recurrent bladder cancer. Jpn J Clin Oncol. 36:172–175. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sajid MT, Zafar MR, Ahmad H, Ullah S, Mirza ZI and Shahzad K: Diagnostic accuracy of NMP 22 and urine cytology for detection of transitional cell carcinoma urinary bladder taking cystoscopy as gold standard. Pak J Med Sci. 36:705–710. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sarosdy MF, Hudson MA, Ellis WJ, Soloway MS, deVere White R, Sheinfeld J, Jarowenko MV, Schellhammer PF, Schervish EW, Patel JV, et al: Improved detection of recurrent bladder cancer using the bard BTA stat test. Urology. 50:349–353. 1997. View Article : Google Scholar : PubMed/NCBI | |
Thomas L, Leyh H, Marberger M, Bombardieri E, Bassi P, Pagano F, Pansadoro V, Sternberg CN, Boccon-Gibod L, Ravery V, et al: Multicenter trial of the quantitative BTA TRAK assay in the detection of bladder cancer. Clin Chem. 45:472–477. 1999.PubMed/NCBI | |
Heicappell R, Wettig IC, Schostak M, Muller M, Steiner U, Sauter T and Miller K: Quantitative detection of human complement factor H-related protein in transitional cell carcinoma of the urinary bladder. Eur Urol. 35:81–87. 1999. View Article : Google Scholar : PubMed/NCBI | |
Raitanen MP, Marttila T, Kaasinen E, Rintala E, Aine R and Tammela TL: Sensitivity of human complement factor H related protein (BTA stat) test and voided urine cytology in the diagnosis of bladder cancer. J Urol. 163:1689–1692. 2000. View Article : Google Scholar : PubMed/NCBI | |
Heicappell R, Müller M, Fimmers R and Miller K: Qualitative determination of urinary human complement factor H-related protein (hcfHrp) in patients with bladder cancer, healthy controls, and patients with benign urologic disease. Urol Int. 65:181–184. 2000. View Article : Google Scholar : PubMed/NCBI | |
Raitanen MP, Marttila T, Nurmi M, Ala-Opas M, Nieminen P, Aine R and Tammela TL; Finnbladder Group: Human complement factor H related protein test for monitoring bladder cancer. J Urol. 165:374–377. 2001. View Article : Google Scholar : PubMed/NCBI | |
Miyake M, Goodison S, Rizwani W, Ross S, Bart Grossman H and Rosser CJ: Urinary BTA: Indicator of bladder cancer or of hematuria. World J Urol. 30:869–873. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ecke TH, Arndt C, Stephan C, Hallmann S, Lux O, Otto T, Ruttloff J and Gerullis H: Preliminary results of a multicentre study of the UBC rapid test for detection of urinary bladder cancer. Anticancer Res. 35:2651–2655. 2015.PubMed/NCBI | |
Reid-Nicholson MD, Ramalingam P, Adeagbo B, Cheng N, Peiper SC and Terris MK: The use of Urovysion fluorescence in situ hybridization in the diagnosis and surveillance of non-urothelial carcinoma of the bladder. Mod Pathol. 22:119–127. 2009. View Article : Google Scholar | |
Dalquen P, Kleiber B, Grilli B, Herzog M, Bubendorf L and Oberholzer M: DNA image cytometry and fluorescence in situ hybridization for noninvasive detection of urothelial tumors in voided urine. Cancer. 96:374–379. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Yan Y and Song L: The clinical application of fluorescence in situ hybridization in diagnosing urothelial carcinoma. Clin Lab. 62:2001–2009. 2016. View Article : Google Scholar | |
Ainthachot S, Sa-ngiamwibool P, Thanee M, Watcharadetwittaya S, Chamgramol Y, Pairojkul C and Deenonpoe R: Chromosomal aberrations, visualized using UroVysion® fluorescence in-situ hybridization assay, can predict poor prognosis in formalin-fixed paraffin-embedded tissues of cholangiocarcinoma patients. Hum Pathol. 126:31–44. 2022. View Article : Google Scholar : PubMed/NCBI | |
Stadler WM and Olopade OI: The 9p21 region in bladder cancer cell lines: Large homozygous deletions inactivate the CDKN2, CDKN2B and MTAP genes. Urol Res. 24:239–244. 1996. View Article : Google Scholar | |
Cairns P, Tokino K, Eby Y and Sidransky2 D: Homozygous deletions of 9p21 in primary human bladder tumors detected by comparative multiplex polymerase chain reaction. Cancer Res. 54:1422–1424. 1994.PubMed/NCBI | |
Moonen PM, Merkx GF, Peelen P, Karthaus HF, Smeets DF and Witjes JA: UroVysion compared with cytology and quantitative cytology in the surveillance of non-muscle-invasive bladder cancer. Eur Urol. 51:1275–1280. 2007. View Article : Google Scholar | |
Pycha S, Trenti E, Mian C, Schwienbacher C, Hanspeter E, Palermo M, Pycha A, Danuser H and D'Elia C: Diagnostic value of Xpert® BC detection, bladder epicheck®, Urovysion® FISH and cytology in the detection of upper urinary tract urothelial carcinoma. World J Urol. 41:1323–1328. 2023. View Article : Google Scholar : PubMed/NCBI | |
Halling KC, King W, Sokolova IA, Meyer RG, Burkhardt HM, Halling AC, Cheville JC, Sebo TJ, Ramakumar S, Stewart CS, et al: A comparison of cytology and fluorescence in situ hybridization for the detection of urothelial carcinoma. J Urol. 164:1768–1775. 2000. View Article : Google Scholar : PubMed/NCBI | |
Halling KC and Kipp BR: Bladder cancer detection using FISH (UroVysion assay). Adv Anat Pathol. 15:279–286. 2008. View Article : Google Scholar : PubMed/NCBI | |
Laudadio J, Keane TE, Reeves HM, Savage SJ, Hoda RS, Lage JM and Wolff DJ: Fluorescence in situ hybridization for detecting transitional cell carcinoma: Implications for clinical practice. BJU Int. 96:1280–1285. 2005. View Article : Google Scholar : PubMed/NCBI | |
Youssef RF, Schlomer BJ, Ho R, Sagalowsky AI, Ashfaq R and Lotan Y: Role of fluorescence in situ hybridization in bladder cancer surveillance of patients with negative cytology. Urol Oncol. 30:273–277. 2012. View Article : Google Scholar | |
Messing EM, Teot L, Korman H, Underhill E, Barker E, Stork B, Qian J and Bostwick DG: Performance of urine test in patients monitored for recurrence of bladder cancer: A multicenter study in the United States. J Urol. 174:1238–1241. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fradet Y and Lockhard C: Performance characteristics of a new monoclonal antibody test for bladder cancer: ImmunoCyt trade mark. Can J Urol. 4:400–405. 1997. | |
Yafi FA, Brimo F, Steinberg J, Aprikian AG, Tanguay S and Kassouf W: Prospective analysis of sensitivity and specificity of urinary cytology and other urinary biomarkers for bladder cancer. Urol Oncol. 33:66.e25–e31. 2015. View Article : Google Scholar | |
He H, Han C, Hao L and Zang G: ImmunoCyt test compared to cytology in the diagnosis of bladder cancer: A meta-analysis. Oncol Lett. 12:83–88. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kong T, Qu Y, Zhao T, Niu Z, Lv X, Wang Y, Ding Q, Wei P, Fu J, Wang L, et al: Identification of novel protein biomarkers from the blood and urine for the early diagnosis of bladder cancer via proximity extension analysis. J Transl Med. 22:3142024. View Article : Google Scholar : PubMed/NCBI | |
Têtu B, Tiguert R, Harel F and Fradet Y: ImmunoCyt/uCyt+TM improves the sensitivity of urine cytology in patients followed for urothelial carcinoma. Mod Pathol. 18:83–89. 2005. View Article : Google Scholar | |
Schmitz-Dräger BJ, Beiche B, Tirsar LA, Schmitz-Dräger C, Bismarck E and Ebert T: Immunocytology in the assessment of patients with asymptomatic microhaematuria. Eur Urol. 51:1582–1588. 2007. View Article : Google Scholar | |
Alberice JV, Amaral AF, Armitage EG, Lorente JA, Algaba F, Carrilho E, Márquez M, García A, Malats N and Barbas C: Searching for urine biomarkers of bladder cancer recurrence using a liquid chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry metabolomics approach. J Chromatogr A. 1318:163–170. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gómez BB, López-Cortés R, Casas-Nebra FJ, Vázquez-Estévez S, Pérez-Fentes D, Chantada-Vázquez MDP, Bravo SB and Núñez C: Detection of circulating serum protein biomarkers of non-muscle invasive bladder cancer after protein corona-silver nanoparticles analysis by SWATH-MS. Nanomaterials (Basel). 11:23842021. View Article : Google Scholar : PubMed/NCBI | |
Schwamborn K, Krieg RC, Grosse J, Reulen N, Weiskirchen R, Knuechel R, Jakse G and Henkel C: Serum proteomic profiling in patients with bladder cancer. Eur Urol. 56:989–996. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nedjadi T, Benabdelkamal H, Albarakati N, Masood A, Al-Sayyad A, Alfadda AA, Alanazi IO, Al-Ammari A and Al-Maghrabi J: Circulating proteomic signature for detection of biomarkers in bladder cancer patients. Sci Rep. 10:109992020. View Article : Google Scholar : PubMed/NCBI | |
Thomas S, Hao L, Ricke WA and Li L: Biomarker discovery in mass spectrometry-based urinary proteomics. Proteomics Clin Appl. 10:358–370. 2016. View Article : Google Scholar : | |
Ahn JH, Kang CK, Kim EM, Kim AR and Kim A: Proteomics for early detection of non-muscle-invasive bladder cancer: Clinically useful urine protein biomarkers. Life (Basel). 12:3952022.PubMed/NCBI | |
Wang YT, Shi T, Srivastava S, Kagan J, Liu T and Rodland KD: Proteomic analysis of exosomes for discovery of protein biomarkers for prostate and bladder cancer. Cancers (Basel). 12:23352020. View Article : Google Scholar : PubMed/NCBI | |
Ren R, Wang H, Xie L, Muthupandian S and Yang X: Identify potential urine biomarkers for bladder cancer prognosis using NGS data analysis and experimental validation. Appl Biochem Biotechnol. 195:2947–2964. 2023. View Article : Google Scholar | |
Jazayeri MH, Aghaie T, Nedaeinia R, Manian M and Nickho H: Rapid noninvasive detection of bladder cancer using survivin antibody-conjugated gold nanoparticles (GNPs) based on localized surface plasmon resonance (LSPR). Cancer Immunol Immunother. 69:1833–1840. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kumar B, Koul S, Petersen J, Khandrika L, Hwa JS, Meacham RB, Wilson S and Koul HK: p38 Mitogen-activated protein kinase-driven MAPKAPK2 regulates invasion of bladder cancer by modulation of MMP-2 and MMP-9 activity. Cancer Res. 70:832–841. 2010. View Article : Google Scholar : PubMed/NCBI | |
Koshkin VS, Boyiddle C, Schwartz N, Yu J, Yu KS, Kang A, Bloudek L, Fang Q, Schafer JM, Baker AF, et al: Systematic literature review and testing of HER2 status in urothelial carcinoma (UC). J Clin Oncol. 41:556. 2023. View Article : Google Scholar | |
Zhang HH, Qi F, Zu XB, Cao YH, Miao JG, Xu L and Qi L: A proteomic study of potential VEGF-C-associated proteins in bladder cancer T24 cells. Med Sci Monit. 18:BR441–BR449. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Xu H, Ji J, Shi X, Lyu J, Zhu Y, Yu H and Wang F: Heterogeneity of PTEN and PPAR-γ in cancer and their prognostic application to bladder cancer. Exp Ther Med. 18:3177–3183. 2019.PubMed/NCBI | |
Chen Z, Guo Y, Zhao D, Zou Q, Yu F, Zhang L and Xu L: Comprehensive analysis revealed that CDKN2A is a biomarker for immune infiltrates in multiple cancers. Front Cell Dev Biol. 9:8082082021. View Article : Google Scholar | |
Mi Y, Zhao Y, Shi F, Zhang M, Wang C and Liu X: Diagnostic accuracy of urine cytokeratin 20 for bladder cancer: A meta-analysis. Asia Pac J Clin Oncol. 15:e11–e19. 2019. View Article : Google Scholar | |
Chen CJ, Chou CY, Shu KH, Chen HC, Wang MC, Chang CC, Hsu BG, Wu MS, Yang YL, Liao WL, et al: Discovery of novel protein biomarkers in urine for diagnosis of urothelial cancer using iTRAQ proteomics. J Proteome Res. 20:2953–2963. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tsai CH, Chen YT, Chang YH, Hsueh C, Liu CY, Chang YS, Chen CL and Yu JS: Systematic verification of bladder cancer-associated tissue protein biomarker candidates in clinical urine specimens. Oncotarget. 9:30731–30747. 2018. View Article : Google Scholar : PubMed/NCBI | |
Allione A, Pardini B, Viberti C, Giribaldi G, Turini S, Di Gaetano C, Guarrera S, Cordero F, Oderda M, Allasia M, et al: MMP23B expression and protein levels in blood and urine are associated with bladder cancer. Carcinogenesis. 39:1254–1263. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gobin E, Bagwell K, Wagner J, Mysona D, Sandirasegarane S, Smith N, Bai S, Sharma A, Schleifer R and She JX: A pan-cancer perspective of matrix metalloproteases (MMP) gene expression profile and their diagnostic/prognostic potential. BMC Cancer. 19:5812019. View Article : Google Scholar : PubMed/NCBI | |
Lokeshwar VB, Schroeder GL, Selzer MG, Hautmann SH, Posey JT, Duncan RC, Watson R, Rose L, Markowitz S and Soloway MS: Bladder tumor markers for monitoring recurrence and screening comparison of hyaluronic acid-hyaluronidase and BTA-stat tests. Cancer. 95:61–72. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lokeshwar VB, Habuchi T, Grossman HB, Murphy WM, Hautmann SH, Hemstreet GP III, Bono AV, Getzenberg RH, Goebell P, Schmitz-Dräger BJ, et al: Bladder tumor markers beyond cytology: International consensus panel on bladder tumor markers. Urology. 66(Suppl 1): S35–S63. 2005. View Article : Google Scholar | |
Friedrich MG, Hellstern A, Toma MI, Hammerer P and Huland H: Are false-positive urine markers for the detection of bladder carcinoma really wrong or do they predict tumor recurrence? Eur Urol. 43:146–151. 2003. View Article : Google Scholar : PubMed/NCBI | |
Todenhöfer T, Hennenlotter J, Khs U, Tews V, Gakis G, Aufderklamm S, Stenzl A and Schwentner C: Influence of urinary tract instrumentation and inflammation on the performance of urine markers for the detection of bladder cancer. Urology. 79:620–624. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li A, Zhang T, Zheng M, Liu Y and Chen Z: Exosomal proteins as potential markers of tumor diagnosis. J Hematol Oncol. 10:1752017. View Article : Google Scholar : PubMed/NCBI | |
Song JB, Morrissey JJ, Mobley JM, Figenshau KG, Vetter JM, Bhayani SB, Kharasch ED and Figenshau RS: Urinary aquaporin 1 and perilipin 2: Can these novel markers accurately characterize small renal masses and help guide patient management? Int J Urol. 26:260–265. 2019. View Article : Google Scholar | |
Benderska-Söder N, Hovanec J, Pesch B, Goebell PJ, Roghmann F, Noldus J, Rabinovich J, Wichert K, Gleichenhagen J, Käfferlein HU, et al: Toward noninvasive follow-up of low-risk bladder cancer-Rationale and concept of the UroFollow trial. Urol Oncol. 38:886–895. 2020. View Article : Google Scholar | |
Aitekenov S, Gaipov A and Bukasov R: Review: Detection and quantification of proteins in human urine. Talanta. 223:1217182021. View Article : Google Scholar | |
Goecks J, Jalili V, Heiser LM and Gray JW: How machine learning will transform biomedicine. Cell. 181:92–101. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Sun L, Guo X, Mo N, Zhang J and Li C: Frontiers in bladder cancer genomic research. Front Oncol. 11:6707292021. View Article : Google Scholar : PubMed/NCBI | |
Sarhadi VK and Armengol G: Molecular biomarkers in cancer. Biomolecules. 12:10212022. View Article : Google Scholar : PubMed/NCBI | |
Shi R, Wang X, Wu Y, Xu B, Zhao T, Trapp C, Wang X, Unger K, Zhou C, Lu S, et al: APOBEC-mediated mutagenesis is a favorable predictor of prognosis and immunotherapy for bladder cancer patients: evidence from pan-cancer analysis and multiple databases. Theranostics. 12:4181–4199. 2022. View Article : Google Scholar : PubMed/NCBI | |
Le NQK, Kha QH, Nguyen VH, Chen YC, Cheng SJ and Chen CY: Machine learning-based radiomics signatures for egfr and kras mutations prediction in non-small-cell lung cancer. Int J Mol Sci. 22:92542021. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Wu H, Shi X, Huo Z, Zhang J and Liang Z: Comparison of next-generation sequencing, quantitative PCR, and sanger sequencing for mutation profiling of EGFR, KRAS, PIK3CA and BRAF in clinical lung tumors. Clin Lab. 62:689–696. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chauhan PS, Shiang A, Alahi I, Sundby RT, Feng W, Gungoren B, Nawaf C, Chen K, Babbra RK, Harris PK, et al: Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients. NPJ Precis Oncol. 7:62023. View Article : Google Scholar : PubMed/NCBI | |
Sieverink CA, Batista RPM, Prazeres HJM, Vinagre J, Sampaio C, Leão RR, Máximo V, Witjes JA and Soares P: Clinical validation of a urine test (uromonitor-V2®) for the surveillance of non-muscle-invasive bladder cancer patients. Diagnostics (Basel). 10:7452020. View Article : Google Scholar | |
Hosen MI, Sheikh M, Zvereva M, Scelo G, Forey N, Durand G, Voegele C, Poustchi H, Khoshnia M, Roshandel G, et al: Urinary TERT promoter mutations are detectable up to 10 years prior to clinical diagnosis of bladder cancer: Evidence from the golestan cohort study. EBioMedicine. 53:1026432020. View Article : Google Scholar : PubMed/NCBI | |
Soputro NA, Gracias DN, Dias BH, Nzenza T, O'Connell H and Sethi K: Utility of urinary biomarkers in primary haematuria: Systematic review and meta-analysis. BJUI Compass. 3:334–343. 2022. View Article : Google Scholar : PubMed/NCBI | |
Springer SU, Chen CH, Rodriguez Pena MDC, Li L, Douville C, Wang Y, Cohen JD, Taheri D, Silliman N, Schaefer J, et al: Non-invasive detection of urothelial cancer through the analysis of driver gene mutations and aneuploidy. Elife. 7:e321432018. View Article : Google Scholar : PubMed/NCBI | |
Baffa R, Letko J, McClung C, LeNoir J, Vecchione A and Gomella LG: Molecular genetics of bladder cancer: Targets for diagnosis and therapy. J Exp Clin Cancer Res. 25:145–160. 2006.PubMed/NCBI | |
Mertens LS, Claps F, Mayr R, Bostrom PJ, Shariat SF, Zwarthoff EC, Boormans JL, Abas C, van Leenders GJLH, Götz S, et al: Prognostic markers in invasive bladder cancer: FGFR3 mutation status versus P53 and KI-67 expression: A multi-center, multi-laboratory analysis in 1058 radical cystectomy patients. Urol Oncol. 40:110.e1–110.e9. 2022. View Article : Google Scholar | |
Kim YS, Kim K, Kwon GY, Lee SJ and Park SH: Fibroblast growth factor receptor 3 (FGFR3) aberrations in muscle-invasive urothelial carcinoma. BMC Urol. 18:682018. View Article : Google Scholar : PubMed/NCBI | |
Calderaro J, Rebouissou S, De Koning L, Masmoudi A, Hérault A, Dubois T, Maille P, Soyeux P, Sibony M, de la Taille A, et al: PI3K/AKT pathway activation in bladder carcinogenesis. Int J Cancer. 134:1776–1784. 2014. View Article : Google Scholar | |
Hao L, Fang J, Xu R, Liu S, Luo G and Wang X: Significance of the FGFR3 mutation in Chinese patients with bladder cancer. Transl Androl Urol. 12:761–769. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sakr SA, Mahran HA, Fahmy AM, El-Kholy MA and Meawad M: Expression of c-erb-B2 gene in bladder cancer of Egyptian patients and its correlation with p53 and bcl-2. Biomed Pharmacother. 76:73–81. 2015. View Article : Google Scholar : PubMed/NCBI | |
George B, Datar RH, Wu L, Cai J, Patten N, Beil SJ, Groshen S, Stein J, Skinner D, Jones PA and Cote RJ: p53 gene and protein status: The role of p53 alterations in predicting outcome in patients with bladder cancer. J Clin Oncol. 25:5352–5358. 2007. View Article : Google Scholar : PubMed/NCBI | |
Landolfi JA and Terio KA: Transitional cell carcinoma in fishing cats (Prionailurus viverrinus): Pathology and expression of cyclooxygenase-1, -2, and p53. Vet Pathol. 43:674–681. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pakmanesh H, Anvari O, Forey N, Weiderpass E, Malekpourafshar R, Iranpour M, Shahesmaeili A, Ahmadi N, Bazrafshan A, Zendehdel K, et al: TERT promoter mutations as simple and non-invasive urinary biomarkers for the detection of urothelial bladder cancer in a high-risk region. Int J Mol Sci. 23:143192022. View Article : Google Scholar : PubMed/NCBI | |
Avogbe PH, Manel A, Vian E, Durand G, Forey N, Voegele C, Zvereva M, Hosen MI, Meziani S, De Tilly B, et al: Urinary TERT promoter mutations as non-invasive biomarkers for the comprehensive detection of urothelial cancer. EBioMedicine. 44:431–438. 2019. View Article : Google Scholar : PubMed/NCBI | |
Eich ML, Rodriguez Pena MDC, Springer SU, Taheri D, Tregnago AC, Salles DC, Bezerra SM, Cunha IW, Fujita K, Ertoy D, et al: Incidence and distribution of UroSEEK gene panel in a multi-institutional cohort of bladder urothelial carcinoma. Mod Pathol. 32:1544–1550. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Shi Y, Zhang J, Shou J, Zhang M, Zou D, Liang Y, Li J, Tan Y, Zhang M, et al: UCseek: Ultrasensitive early detection and recurrence monitoring of urothelial carcinoma by shallow-depth genome-wide bisulfite sequencing of urinary sediment DNA. EBioMedicine. 89:1044372023. View Article : Google Scholar : PubMed/NCBI | |
Ramos P, Brás JP, Dias C, Bessa-Gonçalves M, Botelho F, Silva J, Silva C and Pacheco-Figueiredo L: Uromonitor: Clinical validation and performance assessment of a urinary biomarker within the surveillance of patients with non-muscle-invasive bladder cancer patients. J Urol. Nov 19–2024.Epub ahead of print. View Article : Google Scholar | |
Ou Z, Li K, Yang T, Dai Y, Chandra M, Ning J, Wang Y, Xu R, Gao T, Xie Y, et al: Detection of bladder cancer using urinary cell-free DNA and cellular DNA. Clin Transl Med. 9:42020. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Du E, Liu Y, Cheng J, Zhang Z, Xu Y, Qi S and Chen Y: Anticancer effects of zinc oxide nanoparticles through altering the methylation status of histone on bladder cancer cells. Int J Nanomedicine. 15:1457–1468. 2020. View Article : Google Scholar : PubMed/NCBI | |
Porten SP: Epigenetic alterations in bladder cancer. Curr Urol Rep. 19:1022018. View Article : Google Scholar : PubMed/NCBI | |
van Kessel KEM, Van Neste L, Lurkin I, Zwarthoff EC and Van Criekinge W: Evaluation of an epigenetic profile for the detection of bladder cancer in patients with hematuria. J Urol. 195:601–607. 2016. View Article : Google Scholar | |
Sathianathen NJ, Butaney M, Weight CJ, Kumar R and Konety BR: Urinary biomarkers in the evaluation of primary hematuria: A systematic review and meta-analysis. Bladder Cancer. 4:353–363. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tripathi K, Goel A, Singhai A and Garg M: Promoter hypomethylation as potential confounder of Ras gene overexpression and their clinical significance in subsets of urothelial carcinoma of bladder. Mol Biol Rep. 48:2183–2199. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wolff EM, Chihara Y, Pan F, Weisenberger DJ, Siegmund KD, Sugano K, Kawashima K, Laird PW, Jones PA and Liang G: Unique DNA methylation patterns distinguish noninvasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue. Cancer Res. 70:8169–8178. 2010. View Article : Google Scholar : PubMed/NCBI | |
Locke WJ, Guanzon D, Ma C, Liew YJ, Duesing KR, Fung KYC and Ross JP: DNA methylation cancer biomarkers: Translation to the clinic. Front Genet. 10:11502019. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y, Ju L, Qian K, Jin W, Wang G, Zhao Y, Jiang W, Liu N, Wu K, Peng M, et al: Non-invasive diagnosis and surveillance of bladder cancer with driver and passenger DNA methylation in a prospective cohort study. Clin Transl Med. 12:e10082022. View Article : Google Scholar : PubMed/NCBI | |
Shindo T, Shimizu T, Nojima M, Niinuma T, Maruyama R, Kitajima H, Kai M, Itoh N, Suzuki H and Masumori N: Evaluation of urinary DNA methylation as a marker for recurrent bladder cancer: A 2-center prospective study. Urology. 113:71–78. 2018. View Article : Google Scholar | |
Ko K, Kananazawa Y, Yamada T, Kakinuma D, Matsuno K, Ando F, Kuriyama S, Matsuda A and Yoshida H: Methylation status and long-fragment cell-free DNA are prognostic biomarkers for gastric cancer. Cancer Med. 10:2003–2012. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lutfi A, Afghan MK, Swed B and Kasi PM: False-positive liquid biopsy assays secondary to overlapping aberrant methylation from non-cancer disease states. Case Rep Oncol. 16:1536–1541. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shields MD, Chen K, Dutcher G, Patel I and Pellini B: Making the rounds: Exploring the role of circulating tumor DNA (ctDNA) in non-small cell lung cancer. Int J Mol Sci. 23:90062022. View Article : Google Scholar : PubMed/NCBI | |
D'Andrea D, Soria F, Zehetmayer S, Gust KM, Korn S, Witjes JA and Shariat SF: Diagnostic accuracy, clinical utility and influence on decision-making of a methylation urine biomarker test in the surveillance of non-muscle-invasive bladder cancer. BJU Int. 123:959–967. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tan WS, Feber A, Sarpong R, Khetrapal P, Rodney S, Jalil R, Mostafid H, Cresswell J, Hicks J, Rane A, et al: Who should be investigated for haematuria? Results of a contemporary prospective observational study of 3556 patients. Eur Urol. 74:10–14. 2018. View Article : Google Scholar : PubMed/NCBI | |
Davalos V and Esteller M: Cancer epigenetics in clinical practice. CA Cancer J Clin. 73:376–424. 2023. View Article : Google Scholar | |
Wu J, Lin Y, Yang K, Liu X, Wang H, Yu T, Tao R, Guo J, Chen L, Cheng H, et al: Clinical effectiveness of a multitarget urine DNA test for urothelial carcinoma detection: A double-blinded, multicenter, prospective trial. Mol Cancer. 23:572024. View Article : Google Scholar : PubMed/NCBI | |
Maas M, Todenhöfer T and Black PC: Urine biomarkers in bladder cancer-current status and future perspectives. Nat Rev Urol. 20:597–614. 2023. View Article : Google Scholar : PubMed/NCBI | |
Iisager L, Ahrenfeldt J, Keller AK, Nielsen TK, Fristrup N and Lyskjær I: KIDNEY-PAGER: Analysis of circulating tumor DNA as a biomarker in renal cancer-an observational trial. Study protocol. Acta Oncol. 63:51–55. 2024. View Article : Google Scholar : PubMed/NCBI | |
Schardt J, Roth B and Seiler R: Forty years of cisplatin-based chemotherapy in muscle-invasive bladder cancer: Are we understanding how, who and when? World J Urol. 37:1759–1765. 2019. View Article : Google Scholar | |
Soave A, Kluwe L, Yu H, Rink M, Gild P, Vetterlein MW, Marks P, Sauter G, Fisch M, Meyer CP, et al: Copy number variations in primary tumor, serum and lymph node metastasis of bladder cancer patients treated with radical cystectomy. Sci Rep. 10:215622020. View Article : Google Scholar : PubMed/NCBI | |
Soave A, Chun FK, Hillebrand T, Rink M, Weisbach L, Steinbach B, Fisch M, Pantel K and Schwarzenbach H: Copy number variations of circulating, cell-free DNA in urothelial carcinoma of the bladder patients treated with radical cystectomy: A prospective study. Oncotarget. 8:56398–56407. 2017. View Article : Google Scholar : PubMed/NCBI | |
Keck B, Ellmann C, Stoehr R, Weigelt K, Goebell PJ, Kunath F, Taubert H, Hartmann A, Wullich B and Wach S: Comparative genomic hybridization shows complex genomic changes of plasmacytoid urothelial carcinoma. Urol Oncol. 32:1234–1239. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network: Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 507:315–322. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li R, Du Y, Chen Z, Xu D, Lin T, Jin S, Wang G, Liu Z, Lu M, Chen X, et al: Macroscopic somatic clonal expansion in morphologically normal human urothelium. Science. 370:82–89. 2020. View Article : Google Scholar : PubMed/NCBI | |
Luo T, Yi X and Si W: Identification of miRNA and genes involving in osteosarcoma by comprehensive analysis of microRNA and copy number variation data. Oncol Lett. 14:5427–5433. 2017.PubMed/NCBI | |
Wu S, Ou T, Xing N, Lu J, Wan S, Wang C, Zhang X, Yang F, Huang Y and Cai Z: Whole-genome sequencing identifies ADGRG6 enhancer mutations and FRS2 duplications as angiogenesis-related drivers in bladder cancer. Nat Commun. 10:7202019. View Article : Google Scholar : PubMed/NCBI | |
Zeng S, Ying Y, Xing N, Wang B, Qian Z, Zhou Z, Zhang Z, Xu W, Wang H, Dai L, et al: Noninvasive detection of urothelial carcinoma by cost-effective low-coverage whole-genome sequencing from urine-exfoliated cell DNA. Clin Cancer Res. 26:5646–5654. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ge G, Peng D, Guan B, Zhou Y, Gong Y, Shi Y, Hao X, Xu Z, Qi J, Lu H, et al: Urothelial carcinoma detection based on copy number profiles of urinary cell-free DNA by shallow whole-genome sequencing. Clin Chem. 66:188–198. 2020. View Article : Google Scholar | |
Ellegren H: Microsatellites: Simple sequences with complex evolution. Nat Rev Genet. 5:435–445. 2004. View Article : Google Scholar : PubMed/NCBI | |
Moon C, Gordon M, Moon D and Reynolds T: Microsatellite instability analysis (MSA) for bladder cancer: Past history and future directions. Int J Mol Sci. 22:128642021. View Article : Google Scholar : PubMed/NCBI | |
Zheng K, Wan H, Zhang J, Shan G, Chai N, Li D, Fang N, Liu L, Zhang J, Du R, et al: A novel NGS-based microsatellite instability (MSI) status classifier with 9 loci for colorectal cancer patients. J Transl Med. 18:2152020. View Article : Google Scholar : PubMed/NCBI | |
Zheng J, Miao F, Wang Z, Ma Y, Lin Z, Chen Y, Kong X, Wang Y, Zhuang A, Wu T and Li W: Identification of MDM2 as a prognostic and immunotherapeutic biomarker in a comprehensive pan-cancer analysis: A promising target for breast cancer, bladder cancer and ovarian cancer immunotherapy. Life Sci. 327:1218322023. View Article : Google Scholar : PubMed/NCBI | |
Malapelle U, Parente P, Pepe F, De Luca C, Pisapia P, Sgariglia R, Nacchio M, Gragnano G, Russo G, Conticelli F, et al: Evaluation of micro satellite instability and mismatch repair status in different solid tumors: A multicenter analysis in a real world setting. Cells. 10:18782021. View Article : Google Scholar : PubMed/NCBI | |
Kasi PM, Bucheit LA, Liao J, Starr J, Barata P, Klempner SJ, Gandara D, Shergill A, Madeira da Silva L, Weipert C, et al: Pan-cancer prevalence of microsatellite instability-high (MSI-H) identified by circulating tumor DNA and associated real-world clinical outcomes. JCO Precis Oncol. 7:e23001182023. View Article : Google Scholar : PubMed/NCBI | |
Ma YT, Hua F, Zhong XM, Xue YJ, Li J, Nie YC, Zhang XD, Ma JW, Lin CH, Zhang HZ, et al: Clinicopathological characteristics, molecular landscape, and biomarker landscape for predicting the efficacy of PD-1/PD-L1 inhibitors in Chinese population with mismatch repair deficient urothelial carcinoma: A real-world study. Front Immunol. 14:12690972023. View Article : Google Scholar : PubMed/NCBI | |
Chang L, Chang M, Chang HM and Chang F: Microsatellite instability: A predictive biomarker for cancer immunotherapy. Appl Immunohistochem Mol Morphol. 26:e15–e21. 2018. View Article : Google Scholar | |
Hirotsu Y, Nagakubo Y, Amemiya K, Oyama T, Mochizuki H and Omata M: Microsatellite instability status is determined by targeted sequencing with MSIcall in 25 cancer types. Clin Chim Acta. 502:207–213. 2020. View Article : Google Scholar | |
Zekri AR, Khaled HM, Mohammed MB, Diab FM, Abdellateif MS, El Deeb S, Badr AM, Mohanad M, Abdallah SO and Bahnassy AA: Microsatellite instability profiling in Egyptian bladder cancer patients: A pilot study. Curr Probl Cancer. 43:1004722019. View Article : Google Scholar : PubMed/NCBI | |
Awadalla A, Harraz AM, Abol-Enein H, Laymon M, Ahmed AE, Abdel-Rahim M, Zekri AN and Shokeir AA: Prognostic influence of microsatellite alterations of muscle-invasive bladder cancer treated with radical cystectomy. Urol Oncol. 40:64.e9–64.e15. 2022. View Article : Google Scholar | |
Steiner G, Schoenberg MP, Linn JF, Mao L and Sidransky D: Detection of bladder cancer recurrence by microsatellite analysis of urine. Nat Med. 3:621–624. 1997. View Article : Google Scholar : PubMed/NCBI | |
Wild PJ, Fuchs T, Stoehr R, Zimmermann D, Frigerio S, Padberg B, Steiner I, Zwarthoff EC, Burger M, Denzinger S, et al: Detection of urothelial bladder cancer cells in voided urine can be improved by a combination of cytology and standardized microsatellite analysis. Cancer Epidemiol Biomarkers Prev. 18:1798–1806. 2009. View Article : Google Scholar | |
Carpagnano GE, Costantino E, Palladino GP, Lacedonia D, Martinelli D, Orlando S and Foschino-Barbaro MP: Microsatellite alterations and cell-free dna analysis: Could they increase the cytology sensitivity in the diagnosis of malignant pleural effusion? Rejuvenation Res. 15:265–273. 2012. View Article : Google Scholar | |
Wagner SJ, Reisenbüchler D, West NP, Niehues JM, Zhu J, Foersch S, Veldhuizen GP, Quirke P, Grabsch HI, van den Brandt PA, et al: Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study. Cancer Cell. 41:1650–1661. 2023. View Article : Google Scholar : PubMed/NCBI | |
Van Rhijn BW, Van Der Poel HG and Van Der Kwast TH: Urine markers for bladder cancer surveillance: A systematic review. Eur Urol. 47:736–748. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bartoletti R, Dal Canto M, Cai T, Piazzini M, Travaglini F, Gavazzi A and Rizzo M: Early diagnosis and monitoring of superficial transitional cell carcinoma by microsatellite analysis on urine sediment. Oncol Rep. 13:531–537. 2005.PubMed/NCBI | |
Frigerio S, Padberg BC, Strebel RT, Lenggenhager DM, Messthaler A, Abdou MT, Moch H and Zimmermann DR: Improved detection of bladder carcinoma cells in voided urine by standardized microsatellite analysis. Int J Cancer. 121:329–338. 2007. View Article : Google Scholar : PubMed/NCBI | |
Brisuda A, Pazourkova E, Soukup V, Horinek A, Hrbáček J, Capoun O, Svobodova I, Pospisilova S, Korabecna M, Mares J, et al: Urinary cell-free DNA quantification as non-invasive biomarker in patients with bladder cancer. Urol Int. 96:25–31. 2016. View Article : Google Scholar | |
Bryzgunova OE, Konoshenko MY and Laktionov PP: Concentration of cell-free DNA in different tumor types. Expert Rev Mol Diagn. 21:63–75. 2021. View Article : Google Scholar | |
Green EA, Li R, Albiges L, Choueiri TK, Freedman M, Pal S, Dyrskjøt L and Kamat AM: Clinical utility of cell-free and circulating tumor DNA in kidney and bladder cancer: A critical review of current literature. Eur Urol Oncol. 4:893–903. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ralla B, Stephan C, Meller S, Dietrich D, Kristiansen G and Jung K: Nucleic acid-based biomarkers in body fluids of patients with urologic malignancies. Crit Rev Clin Lab Sci. 51:200–231. 2014. View Article : Google Scholar | |
Li P, Ning J, Luo X, Du H, Zhang Q, Zhou G, Du Q, Ou Z, Wang L and Wang Y: New method to preserve the original proportion and integrity of urinary cell-free DNA. J Clin Lab Anal. 33:e226682019. View Article : Google Scholar | |
Tse RT, Zhao H, Wong CY, Cheng CK, Kong AW, Peng Q, Chiu PK, Ng CF and Teoh JY: Urinary cell-free DNA in bladder cancer detection. Diagnostics (Basel). 11:3062021. View Article : Google Scholar : | |
Augustus E, van Casteren K, Sorber L, van Dam P, Roeyen G, Peeters M, Vorsters A, Wouters A, Raskin J, Rolfo C, et al: The art of obtaining a high yield of cell-free DNA from urine. PLoS One. 15:e02310582020. View Article : Google Scholar : PubMed/NCBI | |
Piao XM, Jeong P, Kim YH, Byun YJ, Xu Y, Kang HW, Ha YS, Kim WT, Lee JY, Woo SH, et al: Urinary cell-free microRNA biomarker could discriminate bladder cancer from benign hematuria. Int J Cancer. 144:380–388. 2019. View Article : Google Scholar | |
Zancan M, Galdi F, Di Tonno F, Mazzariol C, Orlando C, Malentacchi F, Agostini M, Maran M, Del Bianco P, Fabricio AS, et al: Evaluation of cell-free DNA in urine as a marker for bladder cancer diagnosis. Int J Biol Markers. 24:147–155. 2009. View Article : Google Scholar : PubMed/NCBI | |
do Nascimento Alves SIPM, Lavalhegas Hallack M, Moreira Perez M, da Costa Aguiar Alves B, da Silva LH and Afonso Fonseca FL: Application of the Z-scan technique for the detection of CFCDNA (cell-free circulating DNA) and urine DNA (uDNA) in patients with bladder cancer. Photodiagnosis Photodyn Ther. 26:131–133. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nel I, Münch C, Shamkeeva S, Heinemann ML, Isermann B and Aktas B: The challenge to stabilize, extract and analyze urinary cell-free DNA (ucfDNA) during clinical routine. Diagnostics (Basel). 13:36702023. View Article : Google Scholar : PubMed/NCBI | |
Markus H, Zhao J, Contente-Cuomo T, Stephens MD, Raupach E, Odenheimer-Bergman A, Connor S, McDonald BR, Moore B, Hutchins E, et al: Analysis of recurrently protected genomic regions in cell-free DNA found in urine. Sci Transl Med. 13:aaz30882021. View Article : Google Scholar | |
Casadio V, Calistri D, Salvi S, Gunelli R, Carretta E, Amadori D, Silvestrini R and Zoli W: Urine cell-free DNA integrity as a marker for early prostate cancer diagnosis: A pilot study. Biomed Res Int. 2013:2704572013. View Article : Google Scholar | |
Casadio V, Calistri D, Tebaldi M, Bravaccini S, Gunelli R, Martorana G, Bertaccini A, Serra L, Scarpi E, Amadori D, et al: Urine Cell-Free DNA integrity as a marker for early bladder cancer diagnosis: Preliminary data. Urol Oncol. 31:1744–1750. 2013. View Article : Google Scholar | |
Nuzzo PV, Berchuck JE, Korthauer K, Spisak S, Nassar AH, Abou Alaiwi S, Chakravarthy A, Shen SY, Bakouny Z, Boccardo F, et al: Detection of renal cell carcinoma using plasma and urine cell-free DNA methylomes. Nat Med. 26:1041–1043. 2020. View Article : Google Scholar | |
Zhou Q, Liu F, Guo L, Chen R, Yuan X, Li C, Shu L, Liu H, Zhou Y, Wu Y, et al: A novel urine cell-free DNA preservation solution and its application in kidney transplantation. Nephrology (Carlton). 26:684–691. 2021. View Article : Google Scholar | |
Mouliere F, Smith CG, Heider K, Su J, van der Pol Y, Thompson M, Morris J, Wan JCM, Chandrananda D, Hadfield J, et al: Fragmentation patterns and personalized sequencing of cell-free DNA in urine and plasma of glioma patients. EMBO Mol Med. 13:e128812021. View Article : Google Scholar : PubMed/NCBI | |
Chang A, Mzava O, Lenz JS, Cheng AP, Burnham P, Motley ST, Bennett C, Connelly JT, Dadhania DM, Suthanthiran M, et al: Measurement biases distort cell-free DNA fragmentation profiles and define the sensitivity of metagenomic cell-free DNA sequencing assays. Clin Chem. 68:163–171. 2022. View Article : Google Scholar : | |
Yasuda T, Nadano D, Awazu S and Kishi K: Human urine deoxyribonuclease II (DNase II) isoenzymes: A novel immunoaffinity purification, biochemical multiplicity, genetic heterogeneity and broad distribution among tissues and body fluids. Biochim Biophys Acta. 1119:185–193. 1992. View Article : Google Scholar : PubMed/NCBI | |
Nardelli C, Aveta A, Pandolfo SD, Tripodi L, Russo F, Imbimbo C, Castaldo G and Pastore L: Microbiome profiling in bladder cancer patients using the first-morning urine sample. Eur Urol Open Sci. 59:18–26. 2023. View Article : Google Scholar | |
Zhang B, Pan X, Cobb GP and Anderson TA: microRNAs as oncogenes and tumor suppressors. Dev Biol. 302:1–12. 2007. View Article : Google Scholar | |
Elballal MS, Sallam AM, Elesawy AE, Shahin RK, Midan HM, Elrebehy MA, Elazazy O, El-Boghdady RM, Blasy SH, Amer NM, et al: miRNAs as potential game-changers in renal cell carcinoma: Future clinical and medicinal uses. Pathol Res Pract. 245:1544392023. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Ma X, Chen L, Li H, Gu L, Gao Y, Zhang Y, Li X, Fan Y, Chen J and Zhang X: MicroRNAs with prognostic significance in bladder cancer: A systematic review and meta-analysis. Sci Rep. 7:56192017. View Article : Google Scholar | |
Pan D, Du Y, Li R, Shen A, Liu X, Li C and Hu B: miR-29b-3p increases radiosensitivity in stemness cancer cells via modulating oncogenes axis. Front Cell Dev Biol. 9:7410742021. View Article : Google Scholar : | |
Eissa S, Matboli M, Hegazy MG, Kotb YM and Essawy NO: Evaluation of urinary microRNA panel in bladder cancer diagnosis: Relation to bilharziasis. Transl Res. 165:731–739. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nekoohesh L, Modarressi MH, Mowla SJ, Sadroddiny E, Etemadian M, Afsharpad M, Zolfaghari F, Barzegari M, Saffari M, Oskooei VK, et al: Expression profile of miRNAs in urine samples of bladder cancer patients. Biomark Med. 12:1311–1321. 2018. View Article : Google Scholar : PubMed/NCBI | |
Suarez-Cabrera C, Estudillo L, Ramón-GilE, Martínez-Fernández M, Peral J, Rubio C, Lodewijk I, Martínde Bernardo Á, García-Escudero R, Villacampa F, et al: BlaDimiR: A urine-based miRNA score for accurate bladder cancer diagnosis and follow-up. Eur Urol. 82:663–667. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li HJ, Gong X, Li ZK, Qin W, He CX, Xing L, Zhou X, Zhao D and Cao HL: Role of long non-coding RNAs on bladder cancer. Front Cell Dev Biol. 9:6726792021. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Song D, Zhu B, Jin Y, Cai C and Wang Z: Urinary exosomal mRNA as a biomarker for the diagnosis of bladder cancer. Anticancer Drugs. 35:362–370. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang ZH, Wang Y, Zhang Y, Zheng SF, Feng T, Tian X, Abudurexiti M, Wang ZD, Zhu WK, Su JQ, et al: The function and mechanisms of action of circular RNAs in urologic cancer. Mol Cancer. 22:612023. View Article : Google Scholar | |
Fan Y, Shen B, Tan M, Mu X, Qin Y, Zhang F and Liu Y: Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling. FEBS J. 281:1750–1758. 2014. View Article : Google Scholar | |
Zhao H, Wu W, Li X and Chen W: Long noncoding RNA UCA1 promotes glutamine-driven anaplerosis of bladder cancer by interacting with hnRNP I/L to upregulate GPT2 expression. Transl Oncol. 17:1013402022. View Article : Google Scholar | |
Wang Z, Wang X, Zhang D, Yu Y, Cai L and Zhang C: Long non-coding RNA urothelial carcinoma-associated 1 as a tumor biomarker for the diagnosis of urinary bladder cancer. Tumor Biol. 39:10104283177099902017. View Article : Google Scholar | |
Kong JH, Ha D, Lee J, Kim I, Park M, Im SH, Shin K and Kim S: Network-based machine learning approach to predict immunotherapy response in cancer patients. Nat Commun. 13:37032022. View Article : Google Scholar : PubMed/NCBI | |
Abbastabar M, Sarfi M, Golestani A, Karimi A, Pourmand G and Khalili E: Tumor-derived urinary exosomal long non-coding RNAs as diagnostic biomarkers for bladder cancer. EXCLI J. 19:301–310. 2020.PubMed/NCBI | |
Bao Z, Zhang W and Dong D: A potential prognostic lncRNA signature for predicting survival in patients with bladder urothelial carcinoma. Oncotarget. 8:10485–10497. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Li J, Xue Z and Wang J: Exosomal noncoding RNAs as noninvasive biomarkers in bladder cancer: A diagnostic meta-analysis. Clin Transl Oncol. 26:1497–1507. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bian B, Li L, Ke X, Chen H, Liu Y, Zheng N, Zheng Y, Ma Y, Zhou Y, Yang J, et al: Urinary exosomal long non-coding RNAs as noninvasive biomarkers for diagnosis of bladder cancer by RNA sequencing. Front Oncol. 12:9763292022. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Zhang W, Li A, Chen Y, Ou Q, He Z, Zhang Y, Liu R, Yao H and Song E: Association of long noncoding RNA biomarkers with clinical immune subtype and prediction of immunotherapy response in patients with cancer. JAMA Netw Open. 3:e2021492020. View Article : Google Scholar : PubMed/NCBI | |
Lin YH: The effects of intracellular and exosomal ncRNAs on cancer progression. Cancer Gene Ther. 30:1587–1597. 2023. View Article : Google Scholar | |
Chen C, Luo Y, He W, Zhao Y, Kong Y, Liu H, Zhong G, Li Y, Li J, Huang J, et al: Exosomal long noncoding RNA LNMAT2 promotes lymphatic metastasis in bladder cancer. J Clin Invest. 130:404–421. 2020. View Article : Google Scholar | |
He W, Zhong G, Jiang N, Wang B, Fan X, Chen C, Chen X, Huang J and Lin T: Long noncoding RNA BLACAT2 promotes bladder cancer-associated lymphangiogenesis and lymphatic metastasis. J Clin Invest. 128:861–875. 2018. View Article : Google Scholar | |
Huang H, Du J, Jin B, Pang L, Duan N, Huang C, Hou J, Yu W, Hao H and Li H: Combination of urine exosomal mRNAs and lncRNAs as novel diagnostic biomarkers for bladder cancer. Front Oncol. 11:6672122021. View Article : Google Scholar : | |
Laukhtina E, Shim SR, Mori K, D'Andrea D, Soria F, Rajwa P, Mostafaei H, Compérat E, Cimadamore A, Moschini M, et al: Diagnostic accuracy of novel urinary biomarker tests in non-muscle-invasive bladder cancer: A systematic review and network meta-analysis. Eur Urol Oncol. 4:927–942. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li KD, Chu CE, Patel M, Meng MV, Morgan TM and Porten SP: Cxbladder monitor testing to reduce cystoscopy frequency in patients with bladder cancer. Urol Oncol. 41:326.e1–326.e8. 2023. View Article : Google Scholar : PubMed/NCBI | |
Fasulo V, Paciotti M, Lazzeri M, Contieri R, Casale P, Saita A, Lughezzani G, Diana P, Frego N, Avolio PP, et al: Xpert bladder cancer monitor may avoid cystoscopies in patients under 'active surveillance' for recurrent bladder cancer (BIAS Project): Longitudinal cohort study. Front Oncol. 12:8328352022. View Article : Google Scholar | |
Tortora F, La Civita E, Trivedi P, Febbraio F, Terracciano D and Cimmino A: Emerging RNA-based therapeutic and diagnostic options: Recent advances and future challenges in genitourinary cancers. Int J Mol Sci. 24:46012023. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Zou X, Zou J and Zhang G: Functions of circular RNAs in bladder, prostate and renal cell cancer (Review). Mol Med Rep. 23:3072021. View Article : Google Scholar | |
Jiang YK, Shuai YJ, Ding HM, Zhang H, Huang C, Wang L, Sun JY, Wei WJ, Xiao XY and Jiang GS: Erratum to: ARID1A inactivation increases expression of circ0008399 and promotes cisplatin resistance in bladder cancer. Curr Med Sci. 43:12602023. View Article : Google Scholar | |
Dong W, Bi J, Liu H, Yan D, He Q, Zhou Q, Wang Q, Xie R, Su Y, Yang M, et al: Circular RNA ACVR2A suppresses bladder cancer cells proliferation and metastasis through miR-626/EYA4 axis. Mol Cancer. 18:952019. View Article : Google Scholar | |
Yang C, Yuan W, Yang X, Li P, Wang J, Han J, Tao J, Li P, Yang H, Lv Q and Zhang W: Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol Cancer. 17:192018. View Article : Google Scholar | |
Ma X, Ying Y, Sun J, Xie H, Li J, He L, Wang W, Chen S, Shen H, Yi J, et al: circKDM4C enhances bladder cancer invasion and metastasis through miR-200bc-3p/ZEB1 axis. Cell Death Discov. 7:3652021. View Article : Google Scholar | |
Liang Z, Guo W, Fang S, Zhang Y, Lu L, Xu W and Qian H: CircRNAs: Emerging bladder cancer biomarkers and targets. Front Oncol. 10:6064852021. View Article : Google Scholar : | |
Chu G, Ji X, Wang Y and Niu H: Integrated multiomics analysis and machine learning refine molecular subtypes and prognosis for muscle-invasive urothelial cancer. Mol Ther Nucleic Acids. 33:110–126. 2023. View Article : Google Scholar : PubMed/NCBI | |
Harsanyi S, Novakova ZV, Bevizova K, Danisovic L and Ziaran S: Biomarkers of bladder cancer: Cell-free DNA, epigenetic modifications and non-coding RNAs. Int J Mol Sci. 23:132062022. View Article : Google Scholar : | |
Martin-Way D, Puche-Sanz I, Cozar JM, Zafra-Gomez A, Gomez-Regalado MDC, Morales-Alvarez CM, Hernandez AF, Martinez-Gonzalez LJ and Alvarez-Cubero MJ: Genetic variants of antioxidant enzymes and environmental exposures as molecular biomarkers associated with the risk and aggressiveness of bladder cancer. Sci Total Environ. 843:1569652022. View Article : Google Scholar : PubMed/NCBI | |
Babjuk M, Burger M, Capoun O, Cohen D, Compérat EM, Dominguez Escrig JL, Gontero P, Liedberg F, Masson-Lecomte A, Mostafid AH, et al: European association of urology guidelines on non-muscle-invasive bladder cancer (Ta, T1, and carcinoma in situ). Eur Urol. 81:75–94. 2022. View Article : Google Scholar | |
Chen AA and Grasso M: Is there a role for FISH in the management and surveillance of patients with upper tract transitional-cell carcinoma? J Endourol. 22:1371–1374. 2008. View Article : Google Scholar : PubMed/NCBI | |
Koide K, Sekizawa A, Iwasaki M, Matsuoka R, Honma S, Farina A, Saito H and Okai T: Fragmentation of cell-free fetal DNA in plasma and urine of pregnant women. Prenat Diagn. 25:604–607. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wong FC and Lo YM: Prenatal diagnosis innovation: Genome sequencing of maternal plasma. Annu Rev Med. 32:419–432. 2016. View Article : Google Scholar | |
Tivey A, Church M, Rothwell D, Dive C and Cook N: Circulating tumour DNA-looking beyond the blood. Nat Rev Clin Oncol. 19:600–612. 2022. View Article : Google Scholar | |
Wu Z, Yang Z, Li CS, Zhao W, Liang ZX, Dai Y, Zhu Q, Miao KL, Cui DH and Chen LA: Differences in the genomic profiles of cell-free DNA between plasma, sputum, urine, and tumor tissue in advanced NSCLC. Cancer Med. 8:910–919. 2019. View Article : Google Scholar | |
Lo YM, Chan KC, Sun H, Chen EZ, Jiang P, Lun FM, Zheng YW, Leung TY, Lau TK, Cantor CR and Chiu RW: Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med. 2:61ra912010. View Article : Google Scholar | |
Chen G, Jia G, Chao F, Xie F, Zhang Y, Hou C, Huang Y, Tang H, Yu J, Zhang J, et al: Urine- and blood-based molecular profiling of human prostate cancer. Front Oncol. 12:7597912022. View Article : Google Scholar : PubMed/NCBI | |
Saha MK, Massicotte-Azarniouch D, Reynolds ML, Mottl AK, Falk RJ, Jennette JC and Derebail VK: Glomerular hematuria and the utility of urine microscopy: A review. Am J Kidney Dis. 80:383–392. 2022. View Article : Google Scholar : PubMed/NCBI | |
He Y, Pan C, Zhang Y, Lv M and Yang B: Nomogram for customized recurrence prediction in primary non-muscle-invasive bladder cancer based on routine blood and urine parameters. BMC Urol. 24:672024. View Article : Google Scholar : PubMed/NCBI | |
Teixeira-Marques A, Lourenço C, Oliveira MC, Henrique R and Jerónimo C: Extracellular vesicles as potential bladder cancer biomarkers: Take it or leave it? Int J Mol Sci. 24:67572023. View Article : Google Scholar : PubMed/NCBI | |
Latosinska A, Frantzi M, Vlahou A and Mischak H: Clinical applications of capillary electrophoresis coupled to mass spectrometry in biomarker discovery: Focus on bladder cancer. Proteomics Clin Appl. 7:779–793. 2013. View Article : Google Scholar : PubMed/NCBI | |
Claps F, Rossin G, van Rhijn BWG, Mir MC, Mertens LS, Ongaro L, Traunero F, Iachimovsky AI, Piasentin A, Vedovo F, et al: The utility of inflammatory serum markers in the assessment of perioperative morbidity after radical cystectomy for bladder cancer. Medicina (Kaunas). 59:9262023. View Article : Google Scholar : PubMed/NCBI | |
López-Cortés R, Gómez BB, Vázquez-Estévez S, Pérez-Fentes D and Núñez C: Blood-based protein biomarkers in bladder urothelial tumors. J Proteomics. 247:1043292021. View Article : Google Scholar : PubMed/NCBI | |
Lee DH, Yoon H, Park S, Kim JS, Ahn YH, Kwon K, Lee D and Kim KH: Urinary exosomal and cell-free DNA detects somatic mutation and copy number alteration in urothelial carcinoma of bladder. Sci Rep. 8:147072018. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi M, Abe H, Arai K, Murakami S and Kamai T: Circulating tumor cells and cell-free tumor DNA analyses in urothelial cancer using the LiquidBiopsy platform. Curr Urol. 16:99–106. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hirotsu Y, Yokoyama H, Amemiya K, Hagimoto T, Daimon H, Hosaka K, Oyama T, Mochizuki H and Omata M: Genomic profile of urine has high diagnostic sensitivity compared to cytology in non-invasive urothelial bladder cancer. Cancer Sci. 110:3235–3243. 2019. View Article : Google Scholar | |
Zhang R, Zang J, Xie F, Zhang Y, Wang Y, Jing Y, Zhang Y, Chen Z, Shahatiaili A, Cai MC, et al: Urinary molecular pathology for patients with newly diagnosed urothelial bladder cancer. J Urol. 206:873–884. 2021. View Article : Google Scholar | |
Payne SR, Serth J, Schostak M, Kamradt J, Strauss A, Thelen P, Model F, Day JK, Liebenberg V, Morotti A, et al: DNA methylation biomarkers of prostate cancer: Confirmation of candidates and evidence urine is the most sensitive body fluid for non-invasive detection. Prostate. 69:1257–1269. 2009. View Article : Google Scholar | |
Jerónimo C, Usadel H, Henrique R, Silva C, Oliveira J, Lopes C and Sidransky D: Quantitative GSTP1 hypermethylation in bodily fluids of patients with prostate cancer. Urology. 60:1131–1135. 2002. View Article : Google Scholar : PubMed/NCBI | |
Goessl C, Müller M, Heicappell R, Krause H and Miller K: DNA-based detection of prostate cancer in blood, urine, and ejaculates. Ann N Y Acad Sci. 945:51–58. 2001. View Article : Google Scholar : PubMed/NCBI | |
Smith CG, Moser T, Mouliere F, Field-Rayner J, Eldridge M, Riediger AL, Chandrananda D, Heider K, Wan JCM, Warren AY, et al: Comprehensive characterization of cell-free tumor DNA in plasma and urine of patients with renal tumors. Genome Med. 12:232020. View Article : Google Scholar : PubMed/NCBI | |
Christensen E, Nordentoft I, Birkenkamp-Demtröder K, Elbæk SK, Lindskrog SV, Taber A, Andreasen TG, Strandgaard T, Knudsen M, Lamy P, et al: Cell-free urine and plasma DNA mutational analysis predicts neoadjuvant chemotherapy response and outcome in patients with muscle-invasive bladder cancer. Clin Cancer Res. 29:1582–1591. 2023. View Article : Google Scholar : PubMed/NCBI | |
Crozier J, Papa N, Perera M, Ngo B, Bolton D, Sengupta S and Lawrentschuk N: Comparative sensitivity and specificity of imaging modalities in staging bladder cancer prior to radical cystectomy: A systematic review and meta-analysis. World J Urol. 37:667–690. 2019. View Article : Google Scholar | |
Bandyk MG, Gopireddy DR, Lall C, Balaji KC and Dolz J: MRI and CT bladder segmentation from classical to deep learning based approaches: Current limitations and lessons. Comput Biol Med. 134:1044722021. View Article : Google Scholar : PubMed/NCBI | |
Humayun-Zakaria N, Ward DG, Arnold R and Bryan RT: Trends in urine biomarker discovery for urothelial bladder cancer: DNA, RNA, or protein? Transl Androl Urol. 10:2787–2808. 2021. View Article : Google Scholar | |
Sun T, Hutchinson L, Tomaszewicz K, Caporelli ML, Meng X, McCauley K, Fischer AH, Cosar EF and Cornejo KM: Diagnostic value of a comprehensive, urothelial carcinoma-specific next-generation sequencing panel in urine cytology and bladder tumor specimens. Cancer Cytopathol. 129:537–547. 2021. View Article : Google Scholar | |
Claps F, Pavan N, Ongaro L, Tierno D, Grassi G, Trombetta C, Tulone G, Simonato A, Bartoletti R, Mertens LS, et al: BCG-unresponsive non-muscle-invasive bladder cancer: Current treatment landscape and novel emerging molecular targets. Int J Mol Sci. 24:125962023. View Article : Google Scholar : PubMed/NCBI | |
Frantzi M, Latosinska A, Flühe L, Hupe MC, Critselis E, Kramer MW, Merseburger AS, Mischak H and Vlahou A: Developing proteomic biomarkers for bladder cancer: Towards clinical application. Nat Rev Urol. 12:317–330. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Huang F, Cao M, Chen X, Wang H, Jiang H, Yu Y, Shen M, Yang Y, Wang B, et al: Cross-platform comparison of next-generation sequencing and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for detecting KRAS/NRAS/BRAF/PIK3CA mutations in cfDNA from metastatic colorectal cancer patients. J Clin Lab Anal. 35:e238182021. View Article : Google Scholar : PubMed/NCBI | |
Raina R, Nada A, Shah R, Aly H, Kadatane S, Abitbol C, Aggarwal M, Koyner J, Neyra J and Sethi SK: Artificial intelligence in early detection and prediction of pediatric/neonatal acute kidney injury: Current status and future directions. Pediatr Nephrol. 39:2309–2324. 2024. View Article : Google Scholar | |
Lima T, Henrique R, Vitorino R and Fardilha M: Bioinformatic analysis of dysregulated proteins in prostate cancer patients reveals putative urinary biomarkers and key biological pathways. Med Oncol. 38:92021. View Article : Google Scholar : PubMed/NCBI | |
Cheng P, Wang R, He S, Yan P, Huang H, Chen J, Shen J and Pu K: Artificial Urinary biomarkers for early diagnosis of acute renal allograft rejection. Angew Chem Int Ed Engl. 62:e2023065392023. View Article : Google Scholar | |
Xu C, Xu M, Hu Y, Liu J, Cheng P, Zeng Z and Pu K: Ingestible artificial urinary biomarker probes for urine test of gastrointestinal cancer. Adv Mater. 36:e23140842024. View Article : Google Scholar | |
Yang Y, Wang J, Huang W, Wan G, Xia M, Chen D, Zhang Y, Wang Y, Guo F, Tan J, et al: Integrated urinalysis devices based on interface-engineered field-effect transistor biosensors incorporated with electronic circuits. Adv Mater. 34:e22032242022. View Article : Google Scholar | |
Hao L, Zhao RT, Welch NL, Tan EKW, Zhong Q, Harzallah NS, Ngambenjawong C, Ko H, Fleming HE, Sabeti PC and Bhatia SN: CRISPR-Cas-amplified urinary biomarkers for multiplexed and portable cancer diagnostics. Nat Nanotechnol. 18:798–807. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shi H, Li X, Zhang Q, Yang H and Zhang X: Discovery of urine biomarkers for bladder cancer via global metabolomics. Biomarkers. 21:578–588. 2016. View Article : Google Scholar : PubMed/NCBI |