
Emerging role of bile acids in colorectal liver metastasis: From molecular mechanism to clinical significance (Review)
- Authors:
- Zhaoyu Li
- Lingjun Deng
- Mengting Cheng
- Xiandong Ye
- Nanyan Yang
- Zaiwen Fan
- Li Sun
-
Affiliations: Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, P.R. China, Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China, P.R. China, Department of Oncology, Air Force Medical Center of People's Liberation Army, Air Force Medical University, Beijing 100010, P.R. China - Published online on: February 17, 2025 https://doi.org/10.3892/ijo.2025.5730
- Article Number: 24
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
Biller LH and Schrag D: Diagnosis and treatment of metastatic colorectal cancer: A review. JAMA. 325:669–685. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Green MD, Li S, Sun Y, Journey SN, Choi JE, Rizvi SM, Qin A, Waninger JJ, Lang X, et al: Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat Med. 27:152–164. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lee JC, Mehdizadeh S, Smith J, Young A, Mufazalov IA, Mowery CT, Daud A and Bluestone JA: Regulatory T cell control of systemic immunity and immunotherapy response in liver metastasis. Sci Immunol. 5:eaba07592020. View Article : Google Scholar : PubMed/NCBI | |
Jones BV, Begley M, Hill C, Gahan CG and Marchesi JR: Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci USA. 105:13580–13585. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ridlon JM and Gaskins HR: Another renaissance for bile acid gastrointestinal microbiology. Nat Rev Gastroenterol Hepatol. 21:348–364. 2024. View Article : Google Scholar : PubMed/NCBI | |
Russell DW: The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 72:137–174. 2003. View Article : Google Scholar : PubMed/NCBI | |
Thibaut MM and Bindels LB: Crosstalk between bile acid-activated receptors and microbiome in entero-hepatic inflammation. Trends Mol Med. 28:223–236. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wahlstrom A, Sayin SI, Marschall HU and Backhed F: Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24:41–50. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hao Z, Liu X, He H, Wei Z, Shu X, Wang J, Sun B, Zhou H, Wang J, Niu Y, et al: CYP2E1 deficit mediates cholic acid-induced malignant growth in hepatocellular carcinoma cells. Mol Med. 30:792024. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Ding M, Ji L, Yao J, Guo Y, Yan W, Yu S, Shen Q, Huang M, Zheng Y, et al: Bile acids promote the development of HCC by activating inflammasome. Hepatol Commun. 7:e02172023. View Article : Google Scholar : PubMed/NCBI | |
Yao Y, Li X, Xu B, Luo L, Guo Q, Wang X, Sun L, Zhang Z and Li P: Cholecystectomy promotes colon carcinogenesis by activating the Wnt signaling pathway by increasing the deoxycholic acid level. Cell Commun Signal. 20:712022. View Article : Google Scholar : PubMed/NCBI | |
Sánchez B: Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis: A role for bifidobacteria and lactobacilli? Nat Rev Gastroenterol Hepatol. 15:2052018. View Article : Google Scholar : PubMed/NCBI | |
Režen T, Rozman D, Kovács T, Kovács P, Sipos A, Bai P and Mikó E: The role of bile acids in carcinogenesis. Cell Mol Life Sci. 79:2432022. View Article : Google Scholar | |
Liu Y, Zhang S, Zhou W, Hu D, Xu H and Ji G: secondary bile acids and tumorigenesis in colorectal cancer. Front Oncol. 12:8137452022. View Article : Google Scholar : PubMed/NCBI | |
Caliceti C, Punzo A, Silla A, Simoni P, Roda G and Hrelia S: New insights into bile acids related signaling pathways in the onset of colorectal cancer. Nutrients. 14:29642022. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Sun L and Gonzalez FJ: Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe. 30:289–300. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sipe LM, Chaib M, Pingili AK, Pierre JF and Makowski L: Microbiome, bile acids, and obesity: How microbially modified metabolites shape anti-tumor immunity. Immunol Rev. 295:220–239. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhu N, Su X and Yang R: Gut microbiota: A double-edged sword in immune checkpoint blockade immunotherapy against tumors. Cancer Lett. 582:2165822024. View Article : Google Scholar | |
Imray CH, Radley S, Davis A, Barker G, Hendrickse CW, Donovan IA, Lawson AM, Baker PR and Neoptolemos JP: Faecal unconjugated bile acids in patients with colorectal cancer or polyps. Gut. 33:1239–1245. 1992. View Article : Google Scholar : PubMed/NCBI | |
Bayerdörffer E, Mannes GA, Ochsenkühn T, Dirschedl P, Wiebecke B and Paumgartner G: Unconjugated secondary bile acids in the serum of patients with colorectal adenomas. Gut. 36:268–273. 1995. View Article : Google Scholar : PubMed/NCBI | |
Dermadi D, Valo S, Ollila S, Soliymani R, Sipari N, Pussila M, Sarantaus L, Linden J, Baumann M and Nyström M: Western diet deregulates bile acid homeostasis, cell proliferation, and tumorigenesis in colon. Cancer Res. 77:3352–3363. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ocvirk S and O'Keefe SJD: Dietary fat, bile acid metabolism and colorectal cancer. Semin Cancer Biol. 73:347–355. 2021. View Article : Google Scholar | |
O'Keefe SJ, Li JV, Lahti L, Ou J, Carbonero F, Mohammed K, Posma JM, Kinross J, Wahl E, Ruder E, et al: Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun. 6:63422015. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Zhang Y, Qu R, Zhou X, Sun L, Wang K, Jiang C, Zhang Z and Fu W: Promotion of deoxycholic acid effect on colonic cancer cell lines in vitro by altering the mucosal microbiota. Microorganisms. 10:24862022. View Article : Google Scholar : PubMed/NCBI | |
Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, Milanese A, Fleck JS, Voigt AY, Palleja A, Ponnudurai R, et al: Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med. 25:679–689. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ridlon JM, Harris SC, Bhowmik S, Kang DJ and Hylemon PB: Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes. 7:22–39. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xie YH, Gao QY, Cai GX, Sun XM, Sun XM, Zou TH, Chen HM, Yu SY, Qiu YW, Gu WQ, et al: Fecal clostridium symbiosum for noninvasive detection of early and advanced colorectal cancer: Test and validation studies. EBioMedicine. 25:32–40. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Zhang Y, Cai J, Rimal B, Rocha ER, Coleman JP, Zhang C, Nichols RG, Luo Y, Kim B, et al: Bile salt hydrolase in non-enterotoxigenic Bacteroides potentiates colorectal cancer. Nat Commun. 14:7552023. View Article : Google Scholar : PubMed/NCBI | |
Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwi n B, Richardson JA, et al: Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2:217–225. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kim I, Ahn SH, Inagaki T, Choi M, Ito S, Guo GL, Kliewer SA and Gonzalez FJ: Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res. 48:2664–2672. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lax S, Schauer G, Prein K, Kapitan M, Silbert D, Berghold A, Berger A and Trauner M: Expression of the nuclear bile acid receptor/farnesoid X receptor is reduced in human colon carcinoma compared to nonneoplastic mucosa independent from site and may be associated with adverse prognosis. Int J Cancer. 130:2232–2239. 2012. View Article : Google Scholar | |
Fu T, Coulter S, Yoshihara E, Oh TG, Fang S, Cayabyab F, Zhu Q, Zhang T, Leblanc M, Liu S, et al: FXR regulates intestinal cancer stem cell proliferation. Cell. 176:1098–1112 e18. 2019. View Article : Google Scholar : PubMed/NCBI | |
Selmin OI, Fang C, Lyon AM, Doetschman TC, Thompson PA, Martinez JD, Smith JW, Lance PM and Romagnolo DF: Inactivation of adenomatous polyposis coli reduces bile acid/farnesoid X receptor expression through Fxr gene CpG methylation in mouse colon tumors and human colon cancer cells. J Nutr. 146:236–242. 2016. View Article : Google Scholar | |
Kim DH and Lee JW: Tumor suppressor p53 regulates bile acid homeostasis via small heterodimer partner. Proc Natl Acad Sci USA. 108:12266–12270. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kühn T, Stepien M, López-Nogueroles M, Damms-Machado A, Sookthai D, Johnson T, Roca M, Hüsing A, Maldonado SG, Cross AJ, et al: Prediagnostic plasma bile acid levels and colon cancer risk: A prospective study. J Natl Cancer Inst. 112:516–524. 2020. View Article : Google Scholar : | |
Ajouz H, Mukherji D and Shamseddine A: Secondary bile acids: An underrecognized cause of colon cancer. World J Surg Oncol. 12:1642014. View Article : Google Scholar : PubMed/NCBI | |
Zeng H, Claycombe KJ and Reindl KM: Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation. J Nutr Biochem. 26:1022–1028. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Yang M, Dong W, Liu T, Song X, Gu Y, Wang S, Liu Y, Abla Z, Qiao X, et al: Gut dysbiosis and abnormal bile acid metabolism in colitis-associated cancer. Gastroenterol Res Pract. 2021:66459702021. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Deng S, Yan L, Gu J, Yang J, Yang M, Liu L and Cai K: A nomogram based on pretreatment levels of serum bilirubin and total bile acid levels predicts survival in colorectal cancer patients. BMC Cancer. 21:852021. View Article : Google Scholar : PubMed/NCBI | |
Tang S, Chen Y, Tian S and Wang Y: Predictive nomogram for the prediction of early recurrence of colorectal cancer. Int J Gen Med. 14:4857–4866. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cai Y, Shen X, Lu L, Yan H, Huang H, Gaule P, Muca E, Theriot CM, Rattray Z, Rattray NJW, et al: Bile acid distributions, sex-specificity, and prognosis in colorectal cancer. Biol Sex Differ. 13:612022. View Article : Google Scholar : PubMed/NCBI | |
Jia W, Xie G and Jia W: Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 15:111–128. 2018. View Article : Google Scholar | |
Morris MT, Jain A, Sun B, Kurbatov V, Muca E, Zeng Z, Jin Y, Roper J, Lu J, Paty PB, et al: Multi-omic analysis reveals metabolic pathways that characterize right-sided colon cancer liver metastasis. Cancer Lett. 574:2163842023. View Article : Google Scholar : PubMed/NCBI | |
Engstrand J, Nilsson H, Strömberg C, Jonas E and Freedman J: Colorectal cancer liver metastases-a population-based study on incidence, management and survival. BMC Cancer. 18:782018. View Article : Google Scholar | |
Liu W, Wang HW, Wang K and Xing BC: The primary tumor location impacts survival outcome of colorectal liver metastases after hepatic resection: A systematic review and meta-analysis. Eur J Surg Oncol. 45:1349–1356. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lee CK, Jeong SH, Jang C, Bae H, Kim YH, Park I, Kim SK and Koh GY: Tumor metastasis to lymph nodes requires YAP-dependent metabolic adaptation. Science. 363:644–649. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kawarabayashi N, Seki S, Hatsuse K, Kinoshita M, Takigawa T, Tsujimoto H, Kawabata T, Nakashima H, Shono S and Mochizuki H: Immunosuppression in the livers of mice with obstructive jaundice participates in their susceptibility to bacterial infection and tumor metastasis. Shock. 33:500–506. 2010. View Article : Google Scholar | |
Zheng Z, Wei J, Hou X, Jia F, Zhang Z, Guo H, Yuan F, He F, Ke Z, Wang Y and Zhao L: A high hepatic uptake of conjugated bile acids promotes colorectal cancer-associated liver metastasis. Cells. 11:38102022. View Article : Google Scholar : PubMed/NCBI | |
Lambert AW, Pattabiraman DR and Weinberg RA: Emerging biological principles of metastasis. Cell. 168:670–691. 2017. View Article : Google Scholar : PubMed/NCBI | |
Debruyne PR, Bruyneel EA, Karaguni IM, Li X, Flatau G, Müller O, Zimber A, Gespach C and Mareel MM: Bile acids stimulate invasion and haptotaxis in human colorectal cancer cells through activation of multiple oncogenic signaling pathways. Oncogene. 21:6740–6750. 2002. View Article : Google Scholar : PubMed/NCBI | |
Dongre A and Weinberg RA: New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 20:69–84. 2019. View Article : Google Scholar | |
Song X, An Y, Chen D, Zhang W, Wu X, Li C, Wang S, Dong W, Wang B, Liu T, et al: Microbial metabolite deoxycholic acid promotes vasculogenic mimicry formation in intestinal carcinogenesis. Cancer Sci. 113:459–477. 2022. View Article : Google Scholar : | |
Stefani C, Miricescu D, Stanescu-Spinu II, Nica RI, Greabu M, Totan AR and Jinga M: Growth factors, PI3K/AKT/mTOR and MAPK signaling pathways in colorectal cancer pathogenesis: Where are we now? Int J Mol Sci. 22:102602021. View Article : Google Scholar : PubMed/NCBI | |
Centuori SM, Gomes CJ, Trujillo J, Borg J, Brownlee J, Putnam CW and Martinez JD: Deoxycholic acid mediates non-canonical EGFR-MAPK activation through the induction of calcium signaling in colon cancer cells. Biochim Biophys Acta. 1861:663–670. 2016. View Article : Google Scholar : PubMed/NCBI | |
Centuori SM and Martinez JD: Differential regulation of EGFR-MAPK signaling by deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA) in colon cancer. Dig Dis Sci. 59:2367–2380. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee J, Hong EM, Kim JH, Kim JH, Jung JH, Park SW and Koh DH: Ursodeoxycholic acid inhibits epithelial-mesenchymal transition, suppressing invasiveness of bile duct cancer cells: An in vitro study. Oncol Lett. 24:4482022. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Li S, Guo J, Xu Z, Zheng J and Sun X: Farnesoid X receptor antagonizes Wnt/β-catenin signaling in colorectal tumorigenesis. Cell Death Dis. 11:6402020. View Article : Google Scholar | |
Zhang D, Weng S, Cui C, Dong L and Shen X: Decreased expression of farnesoid X receptor may indicate poor prognosis in patients with colorectal cancer. Transl Cancer Res. 9:4290–4296. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li S, Xu Z, Guo J, Zheng J, Sun X and Yu J: Farnesoid X receptor activation induces antitumour activity in colorectal cancer by suppressing JAK2/STAT3 signalling via transactivation of SOCS3 gene. J Cell Mol Med. 24:14549–14560. 2020. View Article : Google Scholar : PubMed/NCBI | |
Farhana L, Nangia-Makker P, Arbit E, Shango K, Sarkar S, Mahmud H, Hadden T, Yu Y and Majumdar AP: Bile acid: A potential inducer of colon cancer stem cells. Stem Cell Res Ther. 7:1812016. View Article : Google Scholar : PubMed/NCBI | |
Pezeshkian Z, Nobili S, Peyravian N, Shojaee B, Nazari H, Soleimani H, Asadzadeh-Aghdaei H, Ashrafian Bonab M, Nazemalhosseini-Mojarad E and Mini E: Insights into the role of matrix metalloproteinases in precancerous conditions and in colorectal cancer. Cancers (Basel). 13:62262021. View Article : Google Scholar : PubMed/NCBI | |
Li S, Ung TT, Nguyen TT, Sah DK, Park SY and Jung YD: Cholic acid stimulates MMP-9 in human colon cancer cells via activation of MAPK, AP-1, and NF-κB activity. Int J Mol Sci. 21:34202020. View Article : Google Scholar | |
Peng Z, Chen J, Drachenberg CB, Raufman JP and Xie G: Farnesoid X receptor represses matrix metalloproteinase 7 expression, revealing this regulatory axis as a promising therapeutic target in colon cancer. J Biol Chem. 294:8529–8542. 2019. View Article : Google Scholar : PubMed/NCBI | |
Halvorsen B, Staff AC, Ligaarden S, Prydz K and Kolset SO: Lithocholic acid and sulphated lithocholic acid differ in the ability to promote matrix metalloproteinase secretion in the human colon cancer cell line CaCo-2. Biochem J. 349(Pt 1): 189–193. 2000. View Article : Google Scholar : PubMed/NCBI | |
Dass K, Ahmad A, Azmi AS, Sarkar SH and Sarkar FH: Evolving role of uPA/uPAR system in human cancers. Cancer Treat Rev. 34:122–136. 2008. View Article : Google Scholar | |
Pai R, Tarnawski AS and Tran T: Deoxycholic acid activates beta-catenin signaling pathway and increases colon cell cancer growth and invasiveness. Mol Biol Cell. 15:2156–2163. 2004. View Article : Google Scholar : PubMed/NCBI | |
Baek MK, Park JS, Park JH, Kim MH, Kim HD, Bae WK, Chung IJ, Shin BA and Jung YD: Lithocholic acid upregulates uPAR and cell invasiveness via MAPK and AP-1 signaling in colon cancer cells. Cancer Lett. 290:123–128. 2010. View Article : Google Scholar | |
Takeda A, Stoeltzing O, Ahmad SA, Reinmuth N, Liu W, Parikh A, Fan F, Akagi M and Ellis LM: Role of angiogenesis in the development and growth of liver metastasis. Ann Surg Oncol. 9:610–616. 2002. View Article : Google Scholar : PubMed/NCBI | |
Li S, Nguyen TT, Ung TT, Sah DK, Park SY, Lakshmanan VK and Jung YD: Piperine attenuates lithocholic acid-stimulated interleukin-8 by suppressing Src/EGFR and reactive oxygen species in human colorectal cancer cells. Antioxidants (Basel). 11:5302022. View Article : Google Scholar : PubMed/NCBI | |
Nguyen TT, Lian S, Ung TT, Xia Y, Han JY and Jung YD: Lithocholic acid stimulates IL-8 expression in human colorectal cancer cells via activation of Erk1/2 MAPK and suppression of STAT3 activity. J Cell Biochem. 118:2958–2967. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Mustafi R, Cerda S, Chumsangsri A, Xia YR, Li YC and Bissonnette M: Lithocholic acid down-regulation of NF-kappaB activity through vitamin D receptor in colonic cancer cells. J Steroid Biochem Mol Biol. 111:37–40. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cianchi F, Cortesini C, Bechi P, Fantappiè O, Messerini L, Vannacci A, Sardi I, Baroni G, Boddi V, Mazzanti R and Masini E: Up-regulation of cyclooxygenase 2 gene expression correlates with tumor angiogenesis in human colorectal cancer. Gastroenterology. 121:1339–1347. 2001. View Article : Google Scholar : PubMed/NCBI | |
Oshio H, Abe T, Onogawa T, Ohtsuka H, Sato T, Ii T, Fukase K, Muto M, Katayose Y, Oikawa M, et al: Peroxisome proliferator-activated receptor alpha activates cyclooxygenase-2 gene transcription through bile acid transport in human colorectal cancer cell lines. J Gastroenterol. 43:538–549. 2008. View Article : Google Scholar : PubMed/NCBI | |
Khare S, Mustafi R, Cerda S, Yuan W, Jagadeeswaran S, Dougherty U, Tretiakova M, Samarel A, Cohen G, Wang J, et al: Ursodeoxycholic acid suppresses Cox-2 expression in colon cancer: Roles of Ras, p38, and CCAAT/enhancer-binding protein. Nutr Cancer. 60:389–400. 2008. View Article : Google Scholar : PubMed/NCBI | |
Buchheit CL, Weigel KJ and Schafer ZT: Cancer cell survival during detachment from the ECM: Multiple barriers to tumour progression. Nat Rev Cancer. 14:632–641. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hawk MA and Schafer ZT: Mechanisms of redox metabolism and cancer cell survival during extracellular matrix detachment. J Biol Chem. 293:7531–7537. 2018. View Article : Google Scholar : PubMed/NCBI | |
Elia I, Doglioni G and Fendt SM: Metabolic hallmarks of metastasis formation. Trends Cell Biol. 28:673–684. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang YN, Zeng ZL, Lu J, Wang Y, Liu ZX, He MM, Zhao Q, Wang ZX, Li T, Lu YX, et al: CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene. 37:6025–6040. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhong X, He X, Wang Y, Hu Z, Huang H, Zhao S, Wei P and Li D: Warburg effect in colorectal cancer: The emerging roles in tumor microenvironment and therapeutic implications. J Hematol Oncol. 15:1602022. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Pang J, Wang L, Dong Q and Jin D: CEBPB regulates the bile acid receptor FXR to accelerate colon cancer progression by modulating aerobic glycolysis. J Clin Lab Anal. 36:e247032022. View Article : Google Scholar : PubMed/NCBI | |
Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z, Irie HY, Gao S, Puigserver P and Brugge JS: Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature. 461:109–113. 2009. View Article : Google Scholar : PubMed/NCBI | |
Carino A, Marchianò S, Biagioli M, Scarpelli P, Bordoni M, Di Giorgio C, Roselli R, Fiorucci C, Monti MC, Distrutti E, et al: The bile acid activated receptors GPBAR1 and FXR exert antagonistic effects on autophagy. FASEB J. 35:e212712021. View Article : Google Scholar | |
Seok S, Fu T, Choi SE, Li Y, Zhu R, Kumar S, Sun X, Yoon G, Kang Y, Zhong W, et al: Transcriptional regulation of autophagy by an FXR-CREB axis. Nature. 516:108–111. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shasha T, Gruijs M and van Egmond M: Mechanisms of colorectal liver metastasis development. Cell Mol Life Sci. 79:6072022. View Article : Google Scholar : PubMed/NCBI | |
Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, Agdashian D, Terabe M, Berzofsky JA, Fako V, et al: Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 360:eaan59312018. View Article : Google Scholar : PubMed/NCBI | |
Shen Y, Lu C, Song Z, Qiao C, Wang J, Chen J, Zhang C, Zeng X, Ma Z, Chen T, et al: Ursodeoxycholic acid reduces antitumor immunosuppression by inducing CHIP-mediated TGF-β degradation. Nat Commun. 13:34192022. View Article : Google Scholar | |
Cong J, Liu P, Han Z, Ying W, Li C, Yang Y, Wang S, Yang J, Cao F, Shen J, et al: Bile acids modified by the intestinal microbiota promote colorectal cancer growth by suppressing CD8(+) T cell effector functions. Immunity. 57:876–889.e811. 2024. View Article : Google Scholar | |
Sun L, Yang N, Liu Z, Ye X, Cheng M, Deng L, Zhang J, Wu J, Shi M and Liao W: Cholestasis-induced phenotypic transformation of neutrophils contributes to immune escape of colorectal cancer liver metastasis. J Biomed Sci. 31:662024. View Article : Google Scholar : PubMed/NCBI | |
Liu QL, Zhou H, Zhou ZG and Chen HN: Colorectal cancer liver metastasis: genomic evolution and crosstalk with the liver microenvironment. Cancer Metastasis Rev. 42:575–587. 2023. View Article : Google Scholar : PubMed/NCBI | |
Plundrich D, Chikhladze S, Fichtner-Feigl S, Feuerstein R and Briquez PS: Molecular mechanisms of tumor immunomodulation in the microenvironment of colorectal cancer. Int J Mol Sci. 23:27822022. View Article : Google Scholar : PubMed/NCBI | |
Pan Y, Yu Y, Wang X and Zhang T: Tumor-associated macrophages in tumor immunity. Front Immunol. 11:5830842020. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Mi Y, Guan B, Zheng B, Wei P, Gu Y, Zhang Z, Cai S, Xu Y, Li X, et al: Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J Hematol Oncol. 13:1562020. View Article : Google Scholar : PubMed/NCBI | |
Sun R, Zhang Z, Bao R, Guo X, Gu Y, Yang W, Wei J, Chen X, Tong L, Meng J, et al: Loss of SIRT5 promotes bile acid-induced immunosuppressive microenvironment and hepatocarcinogenesis. J Hepatol. 77:453–466. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, Fukusumi S, Habata Y, Itoh T, Shintani Y, et al: A G protein-coupled receptor responsive to bile acids. J Biol Chem. 278:9435–9440. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Zhang H, Liu X, Xue S, Chen D, Zou J and Jiang H: TGR5 deficiency activates antitumor immunity in non-small cell lung cancer via restraining M2 macrophage polarization. Acta Pharm Sin B. 12:787–800. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rao J, Yang C, Yang S, Lu H, Hu Y, Lu L and Cheng Fand Wang X: Deficiency of TGR5 exacerbates immune-mediated cholestatic hepatic injury by stabilizing the beta-catenin destruction complex. Int Immunol. 32:321–334. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shao J, Ge T, Tang C, Wang G, Pang L and Chen Z: Synergistic anti-inflammatory effect of gut microbiota and lithocholic acid on liver fibrosis. Inflamm Res. 71:1389–1401. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cao H, Xu M, Dong W, Deng B, Wang S, Zhang Y, Wang S, Luo S, Wang W, Qi Y, et al: Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis. Int J Cancer. 140:2545–2556. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hedrick CC and Malanchi I: Neutrophils in cancer: Heterogeneous and multifaceted. Nat Rev Immunol. 22:173–187. 2022. View Article : Google Scholar | |
Zheng W, Wu J, Peng Y, Sun J, Cheng P and Huang Q: Tumor-associated neutrophils in colorectal cancer development, progression and immunotherapy. Cancers (Basel). 14:47552022. View Article : Google Scholar : PubMed/NCBI | |
Lin N, Li J, Yao X, Zhang X, Liu G, Zhang Z and Weng S: Prognostic value of neutrophil-to-lymphocyte ratio in colorectal cancer liver metastasis: A meta-analysis of results from multivariate analysis. Int J Surg. 107:1069592022. View Article : Google Scholar : PubMed/NCBI | |
O'Brien KM, Allen KM, Rockwell CE, Towery K, Luyendyk JP and Copple BL: IL-17A synergistically enhances bile acid-induced inflammation during obstructive cholestasis. Am J Pathol. 183:1498–1507. 2013. View Article : Google Scholar : PubMed/NCBI | |
Labiano I, Agirre-Lizaso A, Olaizola P, Echebarria A, Huici-Izagirre M, Olaizola I, Esparza-Baquer A, Sharif O, Hijona E, Milkiewicz P, et al: TREM-2 plays a protective role in cholestasis by acting as a negative regulator of inflammation. J Hepatol. 77:991–1004. 2022. View Article : Google Scholar : PubMed/NCBI | |
Thibaut MM, Sboarina M, Roumain M, Pötgens SA, Neyrinck AM, Destrée F, Gillard J, Leclercq IA, Dachy G, Demoulin JB, et al: Inflammation-induced cholestasis in cancer cachexia. J Cachexia Sarcopenia Muscle. 12:70–90. 2021. View Article : Google Scholar | |
Cui C, Lan P and Fu L: The role of myeloid-derived suppressor cells in gastrointestinal cancer. Cancer Commun (Lond). 41:442–471. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zeng X, Zhou J, Xiong Z, Sun H, Yang W, Mok MTS, Wang J, Li J, Liu M, Tang W, et al: Cell cycle-related kinase reprograms the liver immune microenvironment to promote cancer metastasis. Cell Mol Immunol. 18:1005–1015. 2021. View Article : Google Scholar : | |
Zhang H, Liu Y, Bian Z, Huang S, Han X, You Z, Wang Q, Qiu D, Miao Q, Peng Y, et al: The critical role of myeloid-derived suppressor cells and FXR activation in immune-mediated liver injury. J Autoimmun. 53:55–66. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chang S, Kim YH, Kim YJ, Kim YW, Moon S, Lee YY, Jung JS, Kim Y, Jung HE, Kim TJ, et al: Taurodeoxycholate increases the number of myeloid-derived suppressor cells that ameliorate sepsis in mice. Front Immunol. 9:19842018. View Article : Google Scholar : PubMed/NCBI | |
Alfaro C, Teijeira A, Onate C, Pérez G, Sanmamed MF, Andueza MP, Alignani D, Labiano S, Azpilikueta A, Rodriguez-Paulete A, et al: Tumor-Produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs). Clin Cancer Res. 22:3924–3936. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schalper KA, Carleton M, Zhou M, Chen T, Feng Y, Huang SP, Walsh AM, Baxi V, Pandya D, Baradet T, et al: Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nat Med. 26:688–692. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gardner A and Ruffell B: Dendritic cells and cancer immunity. Trends Immunol. 37:855–865. 2016. View Article : Google Scholar : PubMed/NCBI | |
Campbell C, McKenney PT, Konstantinovsky D, Isaeva OI, Schizas M, Verter J, Mai C, Jin WB, Guo CJ, Violante S, et al: Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature. 581:475–479. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Wang C, Huang X, Yi S, Pan S, Zhang Y, Yuan G, Cao Q, Ye X and Li H: Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling. Cell Rep. 36:1097262021. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Zhang Y, Yi S, Wang C, Huang X, Pan S, Yang J, Yuan G, Tan S and Li H: Lithocholic acid inhibits dendritic cell activation by reducing intracellular glutathione via TGR5 signaling. Int J Biol Sci. 18:4545–4559. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tugues S, Burkhard SH, Ohs I, Vrohlings M, Nussbaum K, Vom Berg J, Kulig P and Becher B: New insights into IL-12-mediated tumor suppression. Cell Death Differ. 22:237–246. 2015. View Article : Google Scholar : | |
Ichikawa R, Takayama T, Yoneno K, Kamada N, Kitazume MT, Higuchi H, Matsuoka K, Watanabe M, Itoh H, Kanai T, et al: Bile acids induce monocyte differentiation toward interleukin-12 hypo-producing dendritic cells via a TGR5-dependent pathway. Immunology. 136:153–162. 2012. View Article : Google Scholar : PubMed/NCBI | |
Willart MA, van Nimwegen M, Grefhorst A, Hammad H, Moons L, Hoogsteden HC, Lambrecht BN and Kleinjan A: Ursodeoxycholic acid suppresses eosinophilic airway inflammation by inhibiting the function of dendritic cells through the nuclear farnesoid X receptor. Allergy. 67:1501–1510. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kennedy R and Celis E: Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev. 222:129–144. 2008. View Article : Google Scholar : PubMed/NCBI | |
Laheurte C, Dosset M, Vernerey D, Boullerot L, Gaugler B, Gravelin E, Kaulek V, Jacquin M, Cuche L, Eberst G, et al: Distinct prognostic value of circulating anti-telomerase CD4(+) Th1 immunity and exhausted PD-1(+)/TIM-3(+) T cells in lung cancer. Br J Cancer. 121:405–416. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ho TTB, Nasti A, Seki A, Komura T, Inui H, Kozaka T, Kitamura Y, Shiba K, Yamashita T, Yamashita T, et al: Combination of gemcitabine and anti-PD-1 antibody enhances the anticancer effect of M1 macrophages and the Th1 response in a murine model of pancreatic cancer liver metastasis. J Immunother Cancer. 8:e0013672020. View Article : Google Scholar : PubMed/NCBI | |
De M, Ghosh S, Asad M, Banerjee I and Ali N: Combining doxorubicin with stearylamine-bearing liposomes elicits Th1 cytokine responses and cures metastasis in a mouse model. Cancer Immunol Immunother. 69:1725–1735. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pols TWH, Puchner T, Korkmaz HI, Vos M, Soeters MR and de Vries CJM: Lithocholic acid controls adaptive immune responses by inhibition of Th1 activation through the vitamin D receptor. PLoS One. 12:e01767152017. View Article : Google Scholar : PubMed/NCBI | |
Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pagès F and Galon J: Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 71:1263–1271. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Wang X, Yang Q, Luo L, Liu Z, Ren X, Lei K, Li S, Xie Z, Zheng G, et al: Th17 cells secrete TWEAK to trigger epithelial-mesenchymal transition and promote colorectal cancer liver metastasis. Cancer Res. 84:1352–1371. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, Ha S, Nelson BN, Kelly SP, Wu L, et al: Bile acid metabolites control T(H)17 and T(reg) cell differentiation. Nature. 576:143–148. 2019. View Article : Google Scholar : PubMed/NCBI | |
Paik D, Yao L, Zhang Y, Bae S, D'Agostino GD, Zhang M, Kim E, Franzosa EA, Avila-Pacheco J, Bisanz JE, et al: Human gut bacteria produce Τ(Η)17-modulating bile acid metabolites. Nature. 603:907–912. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xiao R, Lei K, Kuok H, Deng W, Zhuang Y, Tang Y, Guo Z, Qin H, Bai LP and Li T: Synthesis and identification of lithocholic acid 3-sulfate as RORγt ligand to inhibit Th17 cell differentiation. J Leukoc Biol. 112:835–843. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chung AS, Wu X, Zhuang G, Ngu H, Kasman I, Zhang J, Vernes JM, Jiang Z, Meng YG, Peale FV, et al: An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med. 19:1114–1123. 2013. View Article : Google Scholar : PubMed/NCBI | |
Downs-Canner S, Berkey S, Delgoffe GM, Edwards RP, Curiel T, Odunsi K, Bartlett DL and Obermajer N: Suppressive IL-17A(+)Foxp3(+) and ex-Th17 IL-17A(neg)Foxp3(+) T(reg) cells are a source of tumour-associated T(reg) cells. Nat Commun. 8:146492017. View Article : Google Scholar : PubMed/NCBI | |
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al: Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 359:97–103. 2018. View Article : Google Scholar | |
Hurtado CG, Wan F, Housseau F and Sears CL: Roles for interleukin 17 and adaptive immunity in pathogenesis of colorectal cancer. Gastroenterology. 155:1706–1715. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shiri AM, Zhang T, Bedke T, Zazara DE, Zhao L, Lücke J, Sabihi M, Fazio A, Zhang S, Tauriello DVF, et al: IL-10 dampens antitumor immunity and promotes liver metastasis via PD-L1 induction. J Hepatol. 80:634–644. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ward-Hartstonge KA, McCall JL, McCulloch TR, Kamps AK, Girardin A, Cretney E, Munro FM and Kemp RA: Inclusion of BLIMP-1(+) effector regulatory T cells improves the Immunoscore in a cohort of New Zealand colorectal cancer patients: A pilot study. Cancer Immunol Immunother. 66:515–522. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ladoire S, Martin F and Ghiringhelli F: Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer Immunol Immunother. 60:909–918. 2011. View Article : Google Scholar : PubMed/NCBI | |
Song X, Sun X, Oh SF, Wu M, Zhang Y, Zheng W, Geva-Zatorsky N, Jupp R, Mathis D, Benoist C and Kasper DL: Microbial bile acid metabolites modulate gut RORγ(+) regulatory T cell homeostasis. Nature. 577:410–415. 2020. View Article : Google Scholar | |
Pagès F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, Kirilovsky A, Nilsson M, Damotte D, et al: Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med. 353:2654–2666. 2005. View Article : Google Scholar : PubMed/NCBI | |
Licata LA, Nguyen CT, Burga RA, Falanga V, Espat NJ, Ayala A, Thorn M, Junghans RP and Katz SC: Biliary obstruction results in PD-1-dependent liver T cell dysfunction and acute inflammation mediated by Th17 cells and neutrophils. J Leukoc Biol. 94:813–823. 2013. View Article : Google Scholar : PubMed/NCBI | |
Burks J, Olkhanud PB and Berzofsky JA: The role of NKT cells in gastrointestinal cancers. Oncoimmunology. 11:20096662021. View Article : Google Scholar | |
Ji G, Ma L, Yao H, Ma S, Si X, Wang Y, Bao X, Ma L, Chen F, Ma C, et al: Precise delivery of obeticholic acid via nanoapproach for triggering natural killer T cell-mediated liver cancer immunotherapy. Acta Pharm Sin B. 10:2171–2182. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cheng P, Wu J, Zong G, Wang F, Deng R, Tao R, Qian C, Shan Y, Wang A, Zhao Y, et al: Capsaicin shapes gut microbiota and pre-metastatic niche to facilitate cancer metastasis to liver. Pharmacol Res. 188:1066432023. View Article : Google Scholar : PubMed/NCBI | |
Huang WH, Zhou MW, Zhu YF, Xiang JB, Li ZY, Wang ZH, Zhou YM, Yang Y, Chen ZY and Gu XD: The role of hepatic stellate cells in promoting liver metastasis of colorectal carcinoma. Onco Targets Ther. 12:7573–7580. 2019. View Article : Google Scholar : PubMed/NCBI | |
Eveno C, Hainaud P, Rampanou A, Bonnin P, Bakhouche S, Dupuy E, Contreres JO and Pocard M: Proof of prometastatic niche induction by hepatic stellate cells. J Surg Res. 194:496–504. 2015. View Article : Google Scholar | |
Liu B, Wu T, Lin B, Liu X, Liu Y, Song G, Fan C and Ouyang G: Periostin-TGF-β feedforward loop contributes to tumour-stroma crosstalk in liver metastatic outgrowth of colorectal cancer. Br J Cancer. 130:358–368. 2024. View Article : Google Scholar | |
Qi M, Fan S, Huang M, Pan J, Li Y, Miao Q, Lyu W, Li X, Deng L, Qiu S, et al: Targeting FAPalpha-expressing hepatic stellate cells overcomes resistance to antiangiogenics in colorectal cancer liver metastasis models. J Clin Invest. 132:e1573992022. View Article : Google Scholar | |
Meadows V, Kennedy L, Ekser B, Kyritsi K, Kundu D, Zhou T, Chen L, Pham L, Wu N, Demieville J, et al: Mast cells regulate ductular reaction and intestinal inflammation in cholestasis through farnesoid X receptor signaling. Hepatology. 74:2684–2698. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Tang X, Liang Z, Chen M and Sun L: Taurocholic acid promotes hepatic stellate cell activation via S1PR2/p38 MAPK/YAP signaling under cholestatic conditions. Clin Mol Hepatol. 29:465–481. 2023. View Article : Google Scholar : PubMed/NCBI | |
Saga K, Iwashita Y, Hidano S, Aso Y, Isaka K, Kido Y, Tada K, Takayama H, Masuda T, Hirashita T, et al: Secondary unconjugated bile acids induce hepatic stellate cell activation. Int J Mol Sci. 19:30432018. View Article : Google Scholar : PubMed/NCBI | |
Nguyen PT, Kanno K, Pham QT, Kikuchi Y, Kakimoto M, Kobayashi T, Otani Y, Kishikawa N, Miyauchi M, Arihiro K, et al: Senescent hepatic stellate cells caused by deoxycholic acid modulates malignant behavior of hepatocellular carcinoma. J Cancer Res Clin Oncol. 146:3255–3268. 2020. View Article : Google Scholar : PubMed/NCBI | |
Theivanthiran B, Yarla N, Haykal T, Nguyen YV, Cao L, Ferreira M, Holtzhausen A, Al-Rohil R, Salama AKS, Beasley GM, et al: Tumor-intrinsic NLRP3-HSP70-TLR4 axis drives premetastatic niche development and hyperprogression during anti-PD-1 immunotherapy. Sci Transl Med. 14:eabq70192022. View Article : Google Scholar : PubMed/NCBI | |
Gong Z, Zhou J, Zhao S, Tian C, Wang P, Xu C, Chen Y, Cai W and Wu J: Chenodeoxycholic acid activates NLRP3 inflammasome and contributes to cholestatic liver fibrosis. Oncotarget. 7:83951–83963. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hao H, Cao L, Jiang C, Che Y, Zhang S, Takahashi S, Wang G and Gonzalez FJ: Farnesoid X receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated sepsis. Cell Metab. 25:856–867.e5. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Gong Z, Zhou J, Tian C, Gao Y, Xu C, Chen Y, Cai W and Wu J: Deoxycholic acid triggers NLRP3 inflammasome activation and aggravates DSS-Induced colitis in mice. Front Immunol. 7:5362016. View Article : Google Scholar : PubMed/NCBI | |
Holtmann TM, Inzaugarat ME, Knorr J, Geisler L, Schulz M, Bieghs V, Frissen M, Feldstein AE, Tacke F, Trautwein C and Wree A: Bile acids activate NLRP3 inflammasome, promoting murine liver inflammation or fibrosis in a cell type-specific manner. Cells. 10:26182021. View Article : Google Scholar : PubMed/NCBI | |
Guo C, Xie S, Chi Z, Zhang J, Liu Y, Zhang L, Zheng M, Zhang X, Xia D, Ke Y, et al: Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity. 45:9442016. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Cai J and Gonzalez FJ: The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat Rev Gastroenterol Hepatol. 18:335–347. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chapman RW and Lynch KD: Obeticholic acid-a new therapy in PBC and NASH. Br Med Bull. 133:95–104. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Jackson JP, StClaire RL III, Freeman K, Brouwer KR and Edwards JE: Obeticholic acid, a selective farnesoid X receptor agonist, regulates bile acid homeostasis in sandwich-cultured human hepatocytes. Pharmacol Res Perspect. 5:e003292017. View Article : Google Scholar : PubMed/NCBI | |
Lu L, Jiang YX, Liu XX, Jin JM, Gu WJ, Luan X, Guan YY and Zhang LJ: FXR agonist GW4064 enhances anti-PD-L1 immunotherapy in colorectal cancer. Oncoimmunology. 12:22170242023. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Feng S, Li J, Wu Z, Deng Q, Yang W, Li J and Pan G: Farnesoid X receptor (FXR) agonists induce hepatocellular apoptosis and impair hepatic functions via FXR/SHP pathway. Arch Toxicol. 96:1829–1843. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yin Y, Wang M, Gu W and Chen L: Intestine-specific FXR agonists as potential therapeutic agents for colorectal cancer. Biochem Pharmacol. 186:1144302021. View Article : Google Scholar : PubMed/NCBI | |
Ji G, Si X, Dong S, Xu Y, Li M, Yang B, Tang Z, Fang X, Huang L, Song W and Chen X: Manipulating liver bile acid signaling by nanodelivery of bile acid receptor modulators for liver cancer immunotherapy. Nano Lett. 21:6781–6791. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Jiang R, Zheng X, Lei S, Huang F, Xie G, Kwee S, Yu H, Farrar C, Sun B, et al: Ursodeoxycholic acid accelerates bile acid enterohepatic circulation. Br J Pharmacol. 176:2848–2863. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pearson T, Caporaso JG, Yellowhair M, Bokulich NA, Padi M, Roe DJ, Wertheim BC, Linhart M, Martinez JA, Bilagody C, et al: Effects of ursodeoxycholic acid on the gut microbiome and colorectal adenoma development. Cancer Med. 8:617–628. 2019. View Article : Google Scholar : PubMed/NCBI | |
He Q, Wu J, Ke J, Zhang Q, Zeng W, Luo Z, Gong J, Chen Y, He Z and Lan P: Therapeutic role of ursodeoxycholic acid in colitis-associated cancer via gut microbiota modulation. Mol Ther. 31:585–598. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Xu H, Zhang C, Tang Q and Bi F: Ursodeoxycholic acid suppresses the malignant progression of colorectal cancer through TGR5-YAP axis. Cell Death Discov. 7:2072021. View Article : Google Scholar : PubMed/NCBI | |
Shah SA, Volkov Y, Arfin Q, Abdel-Latif MM and Kelleher D: Ursodeoxycholic acid inhibits interleukin 1 beta [corrected] and deoxycholic acid-induced activation of NF-kappaB and AP-1 in human colon cancer cells. Int J Cancer. 118:532–539. 2006. View Article : Google Scholar | |
Zheng Z, Hou X, Bian Z, Jia W and Zhao L: Gut microbiota and colorectal cancer metastasis. Cancer Lett. 555:2160392023. View Article : Google Scholar | |
Wang X, Zhu B, Hua Y, Sun R, Tan X, Chang X, Tang D and Gu J: Astragalus mongholicus Bunge and Curcuma aromatica Salisb. modulate gut microbiome and bile acid metabolism to inhibit colon cancer progression. Front Microbiol. 15:13956342024. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Song X, Khan S, Li Y, Guo Z, Li C, Wang S, Dong W, Liu W, Wang B and Cao H: The gut microbiota at the intersection of bile acids and intestinal carcinogenesis: An old story, yet mesmerizing. Int J Cancer. 146:1780–1790. 2020. View Article : Google Scholar | |
Deng J, Yuan W, Tan Q, Wei X and Ma J: Non-absorbable antibiotic treatment inhibits colorectal cancer liver metastasis by modulating deoxycholic acid metabolism by intestinal microbes. J Cancer. 13:764–774. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fidelle M, Rauber C, Alves Costa Silva C, Tian AL, Lahmar I, de La Varende AM, Zhao L, Thelemaque C, Lebhar I, Messaoudene M, et al: A microbiota-modulated checkpoint directs immunosuppressive intestinal T cells into cancers. Science. 380:eabo22962023. View Article : Google Scholar : PubMed/NCBI | |
Kaźmierczak-Siedlecka K, Daca A, Fic M, van de Wetering T, Folwarski M and Makarewicz W: Therapeutic methods of gut microbiota modification in colorectal cancer management-fecal microbiota transplantation, prebiotics, probiotics, and synbiotics. Gut Microbes. 11:1518–1530. 2020. View Article : Google Scholar | |
Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al: Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 359:91–97. 2018. View Article : Google Scholar | |
Lan X, Ma J, Huang Z, Xu Y and Hu Y: Akkermansia muciniphila might improve anti-PD-1 therapy against HCC by changing host bile acid metabolism. J Gene Med. 26:e36392024. View Article : Google Scholar | |
Chen D, Wu J, Jin D, Wang B and Cao H: Fecal microbiota transplantation in cancer management: Current status and perspectives. Int J Cancer. 145:2021–2031. 2019. View Article : Google Scholar : | |
Fuchs CD and Trauner M: Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol. 19:432–450. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kastelijn JB, van der Loos MA, Welsing PM, Dhondt E, Koopman M, Moons LM and Vleggaar FP: Clinical outcomes of biliary drainage of malignant biliary obstruction due to colorectal cancer metastases: A systematic review. Eur J Intern Med. 88:81–88. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sinha SR, Haileselassie Y, Nguyen LP, Tropini C, Wang M, Becker LS, Sim D, Jarr K, Spear ET, Singh G, et al: Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe. 27:659–670 e5. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gadaleta RM, Garcia-Irigoyen O and Moschetta A: Bile acids and colon cancer: Is FXR the solution of the conundrum? Mol Aspects Med. 56:66–74. 2017. View Article : Google Scholar : PubMed/NCBI |