
Tumor‑associated neutrophils: Critical regulators in cancer progression and therapeutic resistance (Review)
- Authors:
- Rui Hou
- Xi Wu
- Cenzhu Wang
- Hanfang Fan
- Yuhan Zhang
- Hanchi Wu
- Huiyu Wang
- Junli Ding
- Huning Jiang
- Junying Xu
-
Affiliations: Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China - Published online on: February 25, 2025 https://doi.org/10.3892/ijo.2025.5734
- Article Number: 28
-
Copyright: © Hou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
Jassim A, Rahrmann EP, Simons BD and Gilbertson RJ: Cancers make their own luck: Theories of cancer origins. Nat Rev Cancer. 23:710–724. 2023. View Article : Google Scholar : PubMed/NCBI | |
Mattiuzzi C and Lippi G: Cancer statistics: A comparison between World Health Organization (WHO) and Global Burden of Disease (GBD). Eur J Public Health. 30:1026–1027. 2020. View Article : Google Scholar | |
Wang J, Yang J, Narang A, He J, Wolfgang C, Li K and Zheng L: Consensus, debate, and prospective on pancreatic cancer treatments. J Hematol Oncol. 17:922024. View Article : Google Scholar : PubMed/NCBI | |
Long GV, Swetter SM, Menzies AM, Gershenwald JE and Scolyer RA: Cutaneous melanoma. Lancet. 402:485–502. 2023. View Article : Google Scholar : PubMed/NCBI | |
Joshi SS and Badgwell BD: Current treatment and recent progress in gastric cancer. CA Cancer J Clin. 71:264–279. 2021. View Article : Google Scholar : PubMed/NCBI | |
de Visser KE and Joyce JA: The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 41:374–403. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gonçalves AC, Richiardone E, Jorge J, Polónia B, Xavier CPR, Salaroglio IC, Riganti C, Vasconcelos MH, Corbet C and Sarmento-Ribeiro AB: Impact of cancer metabolism on therapy resistance-clinical implications. Drug Resist Updat. 59:1007972021. View Article : Google Scholar | |
Kalli M, Poskus MD, Stylianopoulos T and Zervantonakis IK: Beyond matrix stiffness: Targeting force-induced cancer drug resistance. Trends Cancer. 9:937–954. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Gu X, Nurzat Y, Xu L, Li X, Wu L, Jiao H, Gao P, Zhu X, Yan D, et al: Writers, readers, and erasers RNA modifications and drug resistance in cancer. Mol Cancer. 23:1782024. View Article : Google Scholar : PubMed/NCBI | |
He J, Qiu Z, Fan J, Xie X, Sheng Q and Sui X: Drug tolerant persister cell plasticity in cancer: A revolutionary strategy for more effective anticancer therapies. Signal Transduct Target Ther. 9:2092024. View Article : Google Scholar : PubMed/NCBI | |
Nussinov R, Tsai C-J and Jang H: Anticancer drug resistance: An update and perspective. Drug Resist Updat. 59:1007962021. View Article : Google Scholar : PubMed/NCBI | |
Polak R, Zhang ET and Kuo CJ: Cancer organoids 2.0: Modelling the complexity of the tumour immune microenvironment. Nat Rev Cancer. 24:523–539. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V and Neesse A: Microenvironmental determinants of pancreatic cancer. Physiol Rev. 100:1707–1751. 2020. View Article : Google Scholar : PubMed/NCBI | |
Koenderman L and Vrisekoop N: Neutrophils in cancer: From biology to therapy. Cell Mol Immunol. 22:4–23. 2025. View Article : Google Scholar : | |
Liu S, Wu W, Du Y, Yin H, Chen Q, Yu W, Wang W, Yu J, Liu L, Lou W and Pu N: The evolution and heterogeneity of neutrophils in cancers: Origins, subsets, functions, orchestrations and clinical applications. Mol Cancer. 22:1482023. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Gu J, Wang X, Ji C, Yu D, Wang M, Pan J, Santos HA, Zhang H and Zhang X: Engineering and targeting neutrophils for cancer therapy. Adv Mater. 36:e23103182024. View Article : Google Scholar : PubMed/NCBI | |
van Vlerken-Ysla L, Tyurina YY, Kagan VE and Gabrilovich DI: Functional states of myeloid cells in cancer. Cancer Cell. 41:490–504. 2023. View Article : Google Scholar : PubMed/NCBI | |
Que H, Fu Q, Lan T, Tian X and Wei X: Tumor-associated neutrophils and neutrophil-targeted cancer therapies. Biochim Biophys Acta Rev Cancer. 1877:1887622022. View Article : Google Scholar : PubMed/NCBI | |
Xue R, Zhang Q, Cao Q, Kong R, Xiang X, Liu H, Feng M, Wang F, Cheng J, Li Z, et al: Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature. 612:141–147. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jaillon S, Ponzetta A, Di Mitri D, Santoni A, Bonecchi R and Mantovani A: Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer. 20:485–503. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A, Cassatella MA, Costantini C and Jaillon S: Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 11:519–531. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS and Albelda SM: Polarization of tumor-associated neutrophil phenotype by TGF-beta: 'N1' versus 'N2' TAN. Cancer Cell. 16:183–194. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shaul ME and Fridlender ZG: Tumour-associated neutrophils in patients with cancer. Nat Rev Clin Oncol. 16:601–620. 2019. View Article : Google Scholar : PubMed/NCBI | |
Salcher S, Sturm G, Horvath L, Untergasser G, Kuempers C, Fotakis G, Panizzolo E, Martowicz A, Trebo M, Pall G, et al: High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer. Cancer Cell. 40:1503–1520.e8. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ng MSF, Kwok I, Tan L, Shi C, Cerezo-Wallis D, Tan Y, Leong K, Calvo GF, Yang K, Zhang Y, et al: Deterministic reprogramming of neutrophils within tumors. Science. 383:eadf64932024. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Ma J, Yang X, Nan F, Zhang T, Ji S, Rao D, Feng H, Gao K, Gu X, et al: Neutrophil profiling illuminates anti-tumor antigen-presenting potency. Cell. 187:1422–1439.e24. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Liu Y, Dai Y, Tang X, Yin T, Wang C, Wang T, Dong L, Shi M, Qin J, et al: Single-cell RNA-seq analysis reveals BHLHE40-driven pro-tumour neutrophils with hyperactivated glycolysis in pancreatic tumour microenvironment. Gut. 72:958–971. 2023. View Article : Google Scholar | |
Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, Yi P, Tang L, Pan Q, Rao S, et al: The cancer metabolic reprogramming and immune response. Mol Cancer. 20:282021. View Article : Google Scholar : PubMed/NCBI | |
Tian S, Chu Y, Hu J, Ding X, Liu Z, Fu D, Yuan Y, Deng Y, Wang G, Wang L and Wang Z: Tumour-associated neutrophils secrete AGR2 to promote colorectal cancer metastasis via its receptor CD98hc-xCT. Gut. 71:2489–2501. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tie Y, Tang F, Wei YQ and Wei XW: Immunosuppressive cells in cancer: Mechanisms and potential therapeutic targets. J Hematol Oncol. 15:612022. View Article : Google Scholar : PubMed/NCBI | |
Lianyuan T, Gang L, Ming T, Dianrong X, Chunhui Y, Zhaolai M and Bin J: Tumor associated neutrophils promote the metastasis of pancreatic ductal adenocarcinoma. Cancer Biol Ther. 21:937–945. 2020. View Article : Google Scholar : PubMed/NCBI | |
Amorim C, Docasar CL, Guimarães-Bastos D, Frony AC, Barja-Fidalgo C, Renovato-Martins M and Moraes JA: Extracellular vesicles derived from MDA-MB-231 cells trigger neutrophils to a pro-tumor profile. Cells. 11:18752022. View Article : Google Scholar : PubMed/NCBI | |
Qin F, Liu X, Chen J, Huang S, Wei W, Zou Y, Liu X, Deng K, Mo S, Chen J, et al: Anti-TGF-β attenuates tumor growth via polarization of tumor associated neutrophils towards an anti-tumor phenotype in colorectal cancer. J Cancer. 11:2580–2592. 2020. View Article : Google Scholar : | |
Peng H, Shen J, Long X, Zhou X, Zhang J, Xu X, Huang T, Xu H, Sun S, Li C, et al: Local release of TGF-β inhibitor modulates tumor-associated neutrophils and enhances pancreatic cancer response to combined irreversible electroporation and immunotherapy. Adv Sci (Weinh). 9:e21052402022. View Article : Google Scholar | |
Tan Q, Ma X, Yang B, Liu Y, Xie Y, Wang X, Yuan W and Ma J: Periodontitis pathogen Porphyromonas gingivalis promotes pancreatic tumorigenesis via neutrophil elastase from tumor-associated neutrophils. Gut Microbes. 14:20737852022. View Article : Google Scholar : PubMed/NCBI | |
Li S, Cong X, Gao H, Lan X, Li Z, Wang W, Song S, Wang Y, Li C, Zhang H, et al: Tumor-associated neutrophils induce EMT by IL-17a to promote migration and invasion in gastric cancer cells. J Exp Clin Cancer Res. 38:62019. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Yu D, Ji C, Wang M, Fu M, Qian Y and Zhang X, Ji R, Li C, Gu J and Zhang X: Exosomal miR-4745-5p/3911 from N2-polarized tumor-associated neutrophils promotes gastric cancer metastasis by regulating SLIT2. Mol Cancer. 23:1982024. View Article : Google Scholar : PubMed/NCBI | |
Bodac A, Mayet A, Rana S, Pascual J, Bowler AD, Roh V, Fournier N, Craciun L, Demetter P, Radtke F and Meylan E: Bcl-xL targeting eliminates ageing tumor-promoting neutrophils and inhibits lung tumor growth. EMBO Mol Med. 16:158–184. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Sun L, Zuo J and Feng D: Tumor associated neutrophils governs tumor progression through an IL-10/STAT3/PD-L1 feedback signaling loop in lung cancer. Transl Oncol. 40:1018662024. View Article : Google Scholar | |
Huang X, Nepovimova E, Adam V, Sivak L, Heger Z, Valko M, Wu Q and Kuca K: Neutrophils in cancer immunotherapy: Friends or foes? Mol Cancer. 23:1072024. View Article : Google Scholar : PubMed/NCBI | |
Bird L: Neutrophils become pro-angiogenic in tumours. Nat Rev Immunol. 24:1572024. View Article : Google Scholar : PubMed/NCBI | |
Maas RR, Soukup K, Fournier N, Massara M, Galland S, Kornete M, Wischnewski V, Lourenco J, Croci D, Álvarez-Prado ÁF, et al: The local microenvironment drives activation of neutrophils in human brain tumors. Cell. 186:4546–4566.e27. 2023. View Article : Google Scholar : PubMed/NCBI | |
Qu X, Zhuang G, Yu L, Meng G and Ferrara N: Induction of Bv8 expression by granulocyte colony-stimulating factor in CD11b+Gr1+ cells: Key role of Stat3 signaling. J Biol Chem. 287:19574–19584. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fetz AE, Radic MZ and Bowlin GL: Neutrophils in biomaterial-guided tissue regeneration: Matrix reprogramming for angiogenesis. Tissue Eng Part B Rev. 27:95–106. 2021. View Article : Google Scholar | |
Vannitamby A, Seow HJ, Anderson G, Vlahos R, Thompson M, Steinfort D, Irving LB and Bozinovski S: Tumour-associated neutrophils and loss of epithelial PTEN can promote corticosteroid-insensitive MMP-9 expression in the chronically inflamed lung microenvironment. Thorax. 72:1140–1143. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mizuno R, Kawada K, Itatani Y, Ogawa R, Kiyasu Y and Sakai Y: The role of tumor-associated neutrophils in colorectal cancer. Int J Mol Sci. 20:5292019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liu F, Chen L, Fang C, Li S, Yuan S, Qian X, Yin Y, Yu B, Fu B, et al: Neutrophil extracellular traps (NETs) promote non-small cell lung cancer metastasis by suppressing lncRNA MIR503HG to activate the NF-κB/NLRP3 inflammasome pathway. Front Immunol. 13:8675162022. View Article : Google Scholar | |
Adrover JM, McDowell SAC, He XY, Quail DF and Egeblad M: NETworking with cancer: The bidirectional interplay between cancer and neutrophil extracellular traps. Cancer Cell. 41:505–526. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chu C, Wang X, Yang C, Chen F, Shi L, Xu W, Wang K, Liu B, Wang C, Sun D and Ding W: Neutrophil extracellular traps drive intestinal microvascular endothelial ferroptosis by impairing Fundc1-dependent mitophagy. Redox Biol. 67:1029062023. View Article : Google Scholar : PubMed/NCBI | |
Zheng F, Ma L, Li X, Wang Z, Gao R, Peng C, Kang B, Wang Y, Luo T, Wu J, et al: Neutrophil extracellular traps induce glomerular endothelial cell dysfunction and pyroptosis in diabetic kidney disease. Diabetes. 71:2739–2750. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ngo AT, Skidmore A, Oberg J, Yarovoi I, Sarkar A, Levine N, Bochenek V, Zhao G, Rauova L, Kowalska MA, et al: Platelet factor 4 limits neutrophil extracellular trap- and cell-free DNA-induced thrombogenicity and endothelial injury. JCI Insight. 8:e1710542023. View Article : Google Scholar : PubMed/NCBI | |
Teijeira Á, Garasa S, Gato M, Alfaro C, Migueliz I, Cirella A, de Andrea C, Ochoa MC, Otano I, Etxeberria I, et al: CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity. 52:856–871.e8. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cristinziano L, Modestino L, Antonelli A, Marone G, Simon HU, Varricchi G and Galdiero MR: Neutrophil extracellular traps in cancer. Semin Cancer Biol. 79:91–104. 2022. View Article : Google Scholar | |
Pan JJ, Xie SZ, Zheng X, Xu JF, Xu H, Yin RQ, Luo YL, Shen L, Chen ZR, Chen YR, et al: Acetyl-CoA metabolic accumulation promotes hepatocellular carcinoma metastasis via enhancing CXCL1-dependent infiltration of tumor-associated neutrophils. Cancer Lett. 592:2169032024. View Article : Google Scholar : PubMed/NCBI | |
Sun B, Qin W, Song M, Liu L, Yu Y, Qi X and Sun H: neutrophil suppresses tumor cell proliferation via fas/fas ligand pathway mediated cell cycle arrested. Int J Biol Sci. 14:2103–2113. 2018. View Article : Google Scholar : | |
Blaisdell A, Crequer A, Columbus D, Daikoku T, Mittal K, Dey SK and Erlebacher A: Neutrophils oppose uterine epithelial carcinogenesis via debridement of hypoxic tumor cells. Cancer Cell. 28:785–799. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gershkovitz M, Caspi Y, Fainsod-Levi T, Katz B, Michaeli J, Khawaled S, Lev S, Polyansky L, Shaul ME, Sionov RV, et al: TRPM2 mediates neutrophil killing of disseminated tumor cells. Cancer Res. 78:2680–2690. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wu S, Zhao Y, Dinh T, Jiang D, Selfridge JE, Myers G, Wang Y, Zhao X, Tomchuck S, et al: Neutrophil extracellular traps induced by chemotherapy inhibit tumor growth in murine models of colorectal cancer. J Clin Invest. 134:e1750312024. View Article : Google Scholar : PubMed/NCBI | |
Antuamwine BB, Bosnjakovic R, Hofmann-Vega F, Wang X, Theodosiou T, Iliopoulos I and Brandau S: N1 versus N2 and PMN-MDSC: A critical appraisal of current concepts on tumor-associated neutrophils and new directions for human oncology. Immunol Rev. 314:250–279. 2023. View Article : Google Scholar | |
Koga Y, Matsuzaki A, Suminoe A, Hattori H and Hara T: Neutrophil-derived TNF-related apoptosis-inducing ligand (TRAIL): A novel mechanism of antitumor effect by neutrophils. Cancer Res. 64:1037–1043. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cui C, Chakraborty K, Tang XA, Zhou G, Schoenfelt KQ, Becker KM, Hoffman A, Chang YF, Blank A, Reardon CA, et al: Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis. Cell. 184:3163–3177.e21. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hirschhorn D, Budhu S, Kraehenbuehl L, Gigoux M, Schröder D, Chow A, Ricca JM, Gasmi B, De Henau O, Mangarin LMB, et al: T cell immunotherapies engage neutrophils to eliminate tumor antigen escape variants. Cell. 186:1432–1447.e17. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Wang P, Sun R, Li J, Hu Z, Xin H, Luo C, Zhou J, Fan J and Zhou S: Tumor-associated neutrophils and macrophages interaction contributes to intrahepatic cholangiocarcinoma progression by activating STAT3. J Immunother Cancer. 9:e0019462021. View Article : Google Scholar : PubMed/NCBI | |
Singhal S, Rao AS, Stadanlick J, Bruns K, Sullivan NT, Bermudez A, Honig-Frand A, Krouse R, Arambepola S, Guo E, et al: Human tumor-associated macrophages and neutrophils regulate antitumor antibody efficacy through lethal and sublethal trogocytosis. Cancer Res. 84:1029–1047. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wu L and Zhang XH: Tumor-associated neutrophils and macrophages-heterogenous but not chaotic. Front Immunol. 11:5539672020. View Article : Google Scholar : PubMed/NCBI | |
Haider P, Kral-Pointner JB, Mayer J, Richter M, Kaun C, Brostjan C, Eilenberg W, Fischer MB, Speidl WS, Hengstenberg C, et al: Neutrophil extracellular trap degradation by differently polarized macrophage subsets. Arterioscler Thromb Vasc Biol. 40:2265–2278. 2020. View Article : Google Scholar : PubMed/NCBI | |
Prame Kumar K, Nicholls AJ and Wong CHY: Partners in crime: Neutrophils and monocytes/macrophages in inflammation and disease. Cell Tissue Res. 371:551–565. 2018. View Article : Google Scholar : PubMed/NCBI | |
Borella R, De Biasi S, Paolini A, Boraldi F, Lo Tartaro D, Mattioli M, Fidanza L, Neroni A, Caro-Maldonado A, Meschiari M, et al: Metabolic reprograming shapes neutrophil functions in severe COVID-19. Eur J Immunol. 52:484–502. 2022. View Article : Google Scholar | |
Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH and Rüttinger D: Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 5:532017. View Article : Google Scholar : PubMed/NCBI | |
Cho H, Seo Y, Loke KM, Kim SW, Oh SM, Kim JH, Soh J, Kim HS, Lee H, Kim J, et al: Cancer-stimulated CAFs enhance monocyte differentiation and protumoral TAM Activation via IL6 and GM-CSF Secretion. Clin Cancer Res. 24:5407–5421. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schmidt E, Distel L, Erber R, Büttner-Herold M, Rosahl MC, Ott OJ, Strnad V, Hack CC, Hartmann A, Hecht M, et al: Tumor-associated neutrophils are a negative prognostic factor in early luminal breast cancers lacking immunosuppressive macrophage recruitment. Cancers (Basel). 16:31602024. View Article : Google Scholar : PubMed/NCBI | |
Puerta-Arias JD, Mejía SP and González Á: The role of the interleukin-17 axis and neutrophils in the pathogenesis of endemic and systemic mycoses. Front Cell Infect Microbiol. 10:5953012020. View Article : Google Scholar | |
Murata K, Murao A, Aziz M and Wang P: Extracellular CIRP induces novel Nectin-2+ (CD112+) neutrophils to promote Th1 differentiation in sepsis. J Immunol. 210:310–321. 2023. View Article : Google Scholar | |
Parackova Z, Bloomfield M, Klocperk A and Sediva A: Neutrophils mediate Th17 promotion in COVID-19 patients. J Leukoc Biol. 109:73–76. 2021. View Article : Google Scholar | |
Mishalian I, Bayuh R, Eruslanov E, Michaeli J, Levy L, Zolotarov L, Singhal S, Albelda SM, Granot Z and Fridlender ZG: Neutrophils recruit regulatory T-cells into tumors via secretion of CCL17-a new mechanism of impaired antitumor immunity. Int J Cancer. 135:1178–1186. 2014. View Article : Google Scholar : PubMed/NCBI | |
Luo H, Ikenaga N, Nakata K, Higashijima N, Zhong P, Kubo A, Wu C, Tsutsumi C, Shimada Y, Hayashi M, et al: Tumor-associated neutrophils upregulate Nectin2 expression, creating the immunosuppressive microenvironment in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res. 43:2582024. View Article : Google Scholar : PubMed/NCBI | |
Sun R, Xiong Y, Liu H, Gao C, Su L, Weng J, Yuan X, Zhang D and Feng J: Tumor-associated neutrophils suppress antitumor immunity of NK cells through the PD-L1/PD-1 axis. Transl Oncol. 13:1008252020. View Article : Google Scholar : PubMed/NCBI | |
Tumino N, Besi F, Di Pace AL, Mariotti FR, Merli P, Li Pira G, Galaverna F, Pitisci A, Ingegnere T, Pelosi A, et al: PMN-MDSC are a new target to rescue graft-versus-leukemia activity of NK cells in haplo-HSC transplantation. Leukemia. 34:932–937. 2020. View Article : Google Scholar : | |
Pelosi A, Besi F, Tumino N, Merli P, Quatrini L, Li Pira G, Algeri M, Moretta L and Vacca P: NK Cells and PMN-MDSCs in the graft from G-CSF mobilized haploidentical donors display distinct gene expression profiles from those of the non-mobilized counterpart. Front Immunol. 12:6573292021. View Article : Google Scholar : PubMed/NCBI | |
Mouchemore KA and Anderson RL: Immunomodulatory effects of G-CSF in cancer: Therapeutic implications. Semin Immunol. 54:1015122021. View Article : Google Scholar : PubMed/NCBI | |
Ogura K, Sato-Matsushita M, Yamamoto S, Hori T, Sasahara M, Iwakura Y, Saiki I, Tahara H and Hayakawa Y: NK cells control tumor-promoting function of neutrophils in mice. Cancer Immunol Res. 6:348–357. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li X, Xie G, Chen J, Wang Y, Zhai J and Shen L: Tumour cell-derived serglycin promotes IL-8 secretion of CAFs in gastric cancer. Br J Cancer. 131:271–282. 2024. View Article : Google Scholar : PubMed/NCBI | |
Song M, He J, Pan QZ, Yang J, Zhao J, Zhang YJ, Huang Y, Tang Y, Wang Q, He J, et al: Cancer-associated fibroblast-mediated cellular crosstalk supports hepatocellular carcinoma progression. Hepatology. 73:1717–1735. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li C, Chen T, Liu J, Wang Y, Zhang C, Guo L, Shi D, Zhang T, Wang X and Li J: FGF19-Induced inflammatory CAF promoted neutrophil extracellular trap formation in the liver metastasis of colorectal cancer. Adv Sci (Weinh). 10:e23026132023. View Article : Google Scholar : PubMed/NCBI | |
Dudeck J, Kotrba J, Immler R, Hoffmann A, Voss M, Alexaki VI, Morton L, Jahn SR, Katsoulis-Dimitriou K, Winzer S, et al: Directional mast cell degranulation of tumor necrosis factor into blood vessels primes neutrophil extravasation. Immunity. 54:468–483.e5. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li JY, Chen YP, Li YQ, Liu N and Ma J: Chemotherapeutic and targeted agents can modulate the tumor microenvironment and increase the efficacy of immune checkpoint blockades. Mol Cancer. 20:272021. View Article : Google Scholar : PubMed/NCBI | |
Oliveira G and Wu CJ: Dynamics and specificities of T cells in cancer immunotherapy. Nat Rev Cancer. 23:295–316. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yi M, Zheng X, Niu M, Zhu S, Ge H and Wu K: Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions. Mol Cancer. 21:282022. View Article : Google Scholar : PubMed/NCBI | |
Chu X, Tian W, Wang Z, Zhang J and Zhou R: Co-inhibition of TIGIT and PD-1/PD-L1 in cancer immunotherapy: Mechanisms and clinical trials. Mol Cancer. 22:932023. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Huang Q, Xie Y, Wu X, Ma H, Zhang Y and Xia Y: Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol. 15:242022. View Article : Google Scholar : PubMed/NCBI | |
Gjuka D, Adib E, Garrison K, Chen J, Zhang Y, Li W, Boutz D, Lamb C, Tanno Y, Nassar A, et al: Enzyme-mediated depletion of methylthioadenosine restores T cell function in MTAP-deficient tumors and reverses immunotherapy resistance. Cancer Cell. 41:1774–1787.e9. 2023. View Article : Google Scholar | |
Niederlova V, Tsyklauri O, Kovar M and Stepanek O: IL-2-driven CD8+ T cell phenotypes: Implications for immunotherapy. Trends Immunol. 44:890–901. 2023. View Article : Google Scholar : PubMed/NCBI | |
Si J, Shi X, Sun S, Zou B, Li Y, An D, Lin X, Gao Y, Long F, Pang B, et al: Hematopoietic progenitor kinase1 (HPK1) mediates T cell dysfunction and is a druggable target for T cell-based immunotherapies. Cancer Cell. 38:551–566.e11. 2020. View Article : Google Scholar : PubMed/NCBI | |
Miao S, Rodriguez BL and Gibbons DL: The multifaceted role of neutrophils in NSCLC in the era of immune checkpoint inhibitors. Cancers (Basel). 16:25072024. View Article : Google Scholar : PubMed/NCBI | |
Xu P, Zhang X, Chen K, Zhu M, Jia R, Zhou Q, Yang J, Dai J, Jin Y and Shi K: Tumor cell-derived microparticles induced by methotrexate augment T-cell antitumor responses by downregulating expression of PD-1 in neutrophils. Cancer Immunol Res. 11:501–514. 2023. View Article : Google Scholar : PubMed/NCBI | |
Meng Y, Ye F, Nie P, Zhao Q, An L, Wang W, Qu S, Shen Z, Cao Z, Zhang X, et al: Immunosuppressive CD10+ALPL+ neutrophils promote resistance to anti-PD-1 therapy in HCC by mediating irreversible exhaustion of T cells. J Hepatol. 79:1435–1449. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xie P, Yu M, Zhang B, Yu Q, Zhao Y, Wu M, Jin L, Yan J, Zhou B, Liu S, et al: CRKL dictates anti-PD-1 resistance by mediating tumor-associated neutrophil infiltration in hepatocellular carcinoma. J Hepatol. 81:93–107. 2024. View Article : Google Scholar : PubMed/NCBI | |
Michaeli J, Shaul ME, Mishalian I, Hovav AH, Levy L, Zolotriov L, Granot Z and Fridlender ZG: Tumor-associated neutrophils induce apoptosis of non-activated CD8 T-cells in a TNFα and NO-dependent mechanism, promoting a tumor-supportive environment. Oncoimmunology. 6:e13569652017. View Article : Google Scholar | |
Wang TT, Zhao YL, Peng LS, Chen N, Chen W, Lv YP, Mao FY, Zhang JY, Cheng P, Teng YS, et al: Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway. Gut. 66:1900–1911. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kaltenmeier C, Yazdani HO, Morder K, Geller DA, Simmons RL and Tohme S: Neutrophil extracellular traps promote T cell exhaustion in the tumor microenvironment. Front Immunol. 12:7852222021. View Article : Google Scholar : PubMed/NCBI | |
Xia Y, He J, Zhang H, Wang H, Tetz G, Maguire CA, Wang Y, Onuma A, Genkin D, Tetz V, et al: AAV-mediated gene transfer of DNase I in the liver of mice with colorectal cancer reduces liver metastasis and restores local innate and adaptive immune response. Mol Oncol. 14:2920–2935. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Wang Y, Onuma A, He J, Wang H, Xia Y, Lal R, Cheng X, Kasumova G, Hu Z, et al: Neutrophils extracellular traps inhibition improves PD-1 blockade immunotherapy in colorectal cancer. Cancers (Basel). 13:53332021. View Article : Google Scholar : PubMed/NCBI | |
Peng JJ, Wang L, Li Z, Ku CL and Ho PC: Metabolic challenges and interventions in CAR T cell therapy. Sci Immunol. 8:eabq30162023. View Article : Google Scholar : PubMed/NCBI | |
Albelda SM: CAR T cell therapy for patients with solid tumours: Key lessons to learn and unlearn. Nat Rev Clin Oncol. 21:47–66. 2024. View Article : Google Scholar | |
Bulliard Y, Andersson BS, Baysal MA, Damiano J and Tsimberidou AM: Reprogramming T cell differentiation and exhaustion in CAR-T cell therapy. J Hematol Oncol. 16:1082023. View Article : Google Scholar : PubMed/NCBI | |
Pan K, Farrukh H, Chittepu VCSR, Xu H, Pan CX and Zhu Z: CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. J Exp Clin Cancer Res. 41:1192022. View Article : Google Scholar : PubMed/NCBI | |
Hong M, Clubb JD and Chen YY: Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell. 38:473–488. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Yu P, Tomar VS, Chen X, Atherton MJ, Lu Z, Zhang HG, Li S, Ortiz A, Gui J, et al: Targeting PARP11 to avert immunosuppression and improve CAR T therapy in solid tumors. Nat Cancer. 3:808–820. 2022. View Article : Google Scholar : PubMed/NCBI | |
The Lancet Oncology: CAR T-cell therapy for solid tumours. Lancet Oncol. 22:8932021. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhu T, Wang R, Chen J, Tang L, Huo W, Huang X and Cao Q: Genetically programmable vesicles for enhancing CAR-T therapy against solid tumors. Adv Mater. 35:e22111382023. View Article : Google Scholar : PubMed/NCBI | |
Krishnan SR and Bebawy M: Circulating biosignatures in multiple myeloma and their role in multidrug resistance. Mol Cancer. 22:792023. View Article : Google Scholar : PubMed/NCBI | |
Wen X, Huang Z, Yang X, He X, Li L, Chen H, Wang K, Guo Q and Liu J: Development of an aptamer capable of multidrug resistance reversal for tumor combination chemotherapy. Proc Natl Acad Sci USA. 121:e23211161212024. View Article : Google Scholar : PubMed/NCBI | |
Mousset A, Lecorgne E, Bourget I, Lopez P, Jenovai K, Cherfils-Vicini J, Dominici C, Rios G, Girard-Riboulleau C, Liu B, et al: Neutrophil extracellular traps formed during chemotherapy confer treatment resistance via TGF-β activation. Cancer Cell. 41:757–775.e10. 2023. View Article : Google Scholar | |
Saw PE, Chen J and Song E: ChemoNETosis: A road to tumor therapeutic resistance. Cancer Cell. 41:655–657. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Yu S, Lv C and Tian Y: NETosis in tumour microenvironment of liver: From primary to metastatic hepatic carcinoma. Ageing Res Rev. 97:1022972024. View Article : Google Scholar : PubMed/NCBI | |
Kong X, Zhang Y, Xiang L, You Y, Duan Y, Zhao Y, Li S, Wu R, Zhang J, Zhou L and Duan L: Fusobacterium nucleatum-triggered neutrophil extracellular traps facilitate colorectal carcinoma progression. J Exp Clin Cancer Res. 42:2362023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Yang Y, Hu X, Wang Z, Li L and Chen P: PADs in cancer: Current and future. Biochim Biophys Acta Rev Cancer. 1875:1884922021. View Article : Google Scholar | |
Zhan X, Wu R, Kong XH, You Y, He K, Sun XY, Huang Y, Chen WX and Duan L: Elevated neutrophil extracellular traps by HBV-mediated S100A9-TLR4/RAGE-ROS cascade facilitate the growth and metastasis of hepatocellular carcinoma. Cancer Commun (Lond). 43:225–245. 2023. View Article : Google Scholar | |
Mousset A, Bellone L, Gaggioli C and Albrengues J: NETscape or NEThance: Tailoring anti-cancer therapy. Trends Cancer. 10:655–667. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ramachandran IR, Condamine T, Lin C, Herlihy SE, Garfall A, Vogl DT, Gabrilovich DI and Nefedova Y: Bone marrow PMN-MDSCs and neutrophils are functionally similar in protection of multiple myeloma from chemotherapy. Cancer Lett. 371:117–124. 2016. View Article : Google Scholar : | |
Tamura K, Miyato H, Kanamaru R, Sadatomo A, Takahashi K, Ohzawa H, Koyanagi T, Saga Y, Takei Y, Fujiwara H, et al: Neutrophil extracellular traps (NETs) reduce the diffusion of doxorubicin which may attenuate its ability to induce apoptosis of ovarian cancer cells. Heliyon. 8:e097302022. View Article : Google Scholar : PubMed/NCBI | |
Goenka A, Khan F, Verma B, Sinha P, Dmello CC, Jogalekar MP, Gangadaran P and Ahn BC: Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Commun (Lond). 43:525–561. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Dong M, Tu J, Li F, Deng Q, Xu J, He X, Ding J, Xia J, Sheng D, et al: PMN-MDSCs modulated by CCL20 from cancer cells promoted breast cancer cell stemness through CXCL2-CXCR2 pathway. Signal Transduct Target Ther. 8:972023. View Article : Google Scholar : PubMed/NCBI | |
Kang J, La Manna F, Bonollo F, Sampson N, Alberts IL, Mingels C, Afshar-Oromieh A, Thalmann GN and Karkampouna S: Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer. Cancer Lett. 530:156–169. 2022. View Article : Google Scholar : PubMed/NCBI | |
Capucetti A, Albano F and Bonecchi R: Multiple roles for chemokines in neutrophil biology. Front Immunol. 11:12592020. View Article : Google Scholar : PubMed/NCBI | |
Rajarathnam K, Schnoor M, Richardson RM and Rajagopal S: How do chemokines navigate neutrophils to the target site: Dissecting the structural mechanisms and signaling pathways. Cell Signal. 54:69–80. 2019. View Article : Google Scholar : | |
Bianchi A, De Castro Silva I, Deshpande NU, Singh S, Mehra S, Garrido VT, Guo X, Nivelo LA, Kolonias DS, Saigh SJ, et al: Cell-Autonomous Cxcl1 Sustains Tolerogenic Circuitries and Stromal Inflammation via Neutrophil-Derived TNF in Pancreatic Cancer. Cancer Discov. 13:1428–1453. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chao T, Furth EE and Vonderheide RH: CXCR2-Dependent accumulation of tumor-associated neutrophils regulates T-cell immunity in pancreatic ductal adenocarcinoma. Cancer Immunol Res. 4:968–982. 2016. View Article : Google Scholar : PubMed/NCBI | |
Corsaro A, Tremonti B, Bajetto A, Barbieri F, Thellung S and Florio T: Chemokine signaling in tumors: potential role of CXC chemokines and their receptors as glioblastoma therapeutic targets. Expert Opin Ther Targets. 28:937–952. 2024. View Article : Google Scholar : PubMed/NCBI | |
Powell D, Lou M, Barros Becker F and Huttenlocher A: Cxcr1 mediates recruitment of neutrophils and supports proliferation of tumor-initiating astrocytes in vivo. Sci Rep. 8:132852018. View Article : Google Scholar : PubMed/NCBI | |
Jablonska J, Wu CF, Andzinski L, Leschner S and Weiss S: CXCR2-mediated tumor-associated neutrophil recruitment is regulated by IFN-β. Int J Cancer. 134:1346–1358. 2014. View Article : Google Scholar | |
Haider C, Hnat J, Wagner R, Huber H, Timelthaler G, Grubinger M, Coulouarn C, Schreiner W, Schlangen K, Sieghart W, et al: Transforming growth factor-β and Axl induce CXCL5 and neutrophil recruitment in hepatocellular carcinoma. Hepatology. 69:222–236. 2019. View Article : Google Scholar | |
Zhou SL, Yin D, Hu ZQ, Luo CB, Zhou ZJ, Xin HY, Yang XR, Shi YH, Wang Z, Huang XW, et al: A positive feedback loop between cancer stem-like cells and tumor-associated neutrophils controls hepatocellular carcinoma progression. Hepatology. 70:1214–1230. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou SL, Zhou ZJ, Hu ZQ, Huang XW, Wang Z, Chen EB, Fan J, Cao Y, Dai Z and Zhou J: Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib. Gastroenterology. 150:1646–1658.e17. 2016. View Article : Google Scholar : PubMed/NCBI | |
He J, Zhou M, Yin J, Wan J, Chu J, Jia J, Sheng J, Wang C, Yin H and He F: METTL3 restrains papillary thyroid cancer progression via m6A/c-Rel/IL-8-mediated neutrophil infiltration. Mol Ther. 29:1821–1837. 2021. View Article : Google Scholar : PubMed/NCBI | |
Schimek V, Strasser K, Beer A, Göber S, Walterskirchen N, Brostjan C, Müller C, Bachleitner-Hofmann T, Bergmann M, Dolznig H and Oehler R: Tumour cell apoptosis modulates the colorectal cancer immune microenvironment via interleukin-8-dependent neutrophil recruitment. Cell Death Dis. 13:1132022. View Article : Google Scholar : PubMed/NCBI | |
Bellomo G, Rainer C, Quaranta V, Astuti Y, Raymant M, Boyd E, Stafferton R, Campbell F, Ghaneh P, Halloran CM, et al: Chemotherapy-induced infiltration of neutrophils promotes pancreatic cancer metastasis via Gas6/AXL signalling axis. Gut. 71:2284–2299. 2022. View Article : Google Scholar : PubMed/NCBI | |
Nywening TM, Belt BA, Cullinan DR, Panni RZ, Han BJ, Sanford DE, Jacobs RC, Ye J, Patel AA, Gillanders WE, et al: Targeting both tumour-associated CXCR2+ neutrophils and CCR2+ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut. 67:1112–1123. 2018. View Article : Google Scholar | |
Cheng Y, Ma XL, Wei YQ and Wei XW: Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer. 1871:289–312. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schott AF, Goldstein LJ, Cristofanilli M, Ruffini PA, McCanna S, Reuben JM, Perez RP, Kato G and Wicha M: Phase Ib pilot study to evaluate reparixin in combination with weekly paclitaxel in patients with HER-2-negative metastatic breast cancer. Clin Cancer Res. 23:5358–5365. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiang H, Cui J, Chu H, Xu T, Xie M, Jing X, Xu J, Zhou J and Shu Y: Targeting IL8 as a sequential therapy strategy to overcome chemotherapy resistance in advanced gastric cancer. Cell Death Discov. 8:2352022. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Mo F, Li Q, Han X, Shi H, Chen S, Wei Y and Wei X: Targeting CXCR2 inhibits the progression of lung cancer and promotes therapeutic effect of cisplatin. Mol Cancer. 20:622021. View Article : Google Scholar : PubMed/NCBI | |
Kiri S and Ryba T: Cancer, metastasis, and the epigenome. Mol Cancer. 23:1542024. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Wang S, Han S, Zhao Y, Yu C, Liu H and Li N: Targeted protein degrader development for cancer: Advances, challenges, and opportunities. Trends Pharmacol Sci. 44:303–317. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu ZL, Chen HH, Zheng LL, Sun LP and Shi L: Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 8:1982023. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Jia Y, Yu Y, Zhang B, Xu F and Guo H: Targeting the tumor biophysical microenvironment to reduce resistance to immunotherapy. Adv Drug Deliv Rev. 186:1143192022. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Mu Y, Yu X, Gao D, Zhang W, Li Y, Liu J, Sun C and Zhuang J: Survival strategies: How tumor hypoxia microenvironment orchestrates angiogenesis. Biomed Pharmacother. 176:1167832024. View Article : Google Scholar : PubMed/NCBI | |
Li H, Qiu Z, Li F and Wang C: The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncol Lett. 14:5865–5870. 2017.PubMed/NCBI | |
Negri L and Ferrara N: The prokineticins: Neuromodulators and mediators of inflammation and myeloid cell-dependent angiogenesis. Physiol Rev. 98:1055–1082. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shojaei F and Ferrara N: Refractoriness to antivascular endothelial growth factor treatment: Role of myeloid cells. Cancer Res. 68:5501–5504. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, et al: Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature. 450:825–831. 2007. View Article : Google Scholar : PubMed/NCBI | |
Majidpoor J and Mortezaee K: Angiogenesis as a hallmark of solid tumors-clinical perspectives. Cell Oncol (Dordr). 44:715–737. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chung AS, Wu X, Zhuang G, Ngu H, Kasman I, Zhang J, Vernes JM, Jiang Z, Meng YG, Peale FV, et al: An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med. 19:1114–1123. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li TJ, Jiang YM, Hu YF, Huang L, Yu J, Zhao LY, Deng HJ, Mou TY, Liu H, Yang Y, et al: Interleukin-17-producing neutrophils link inflammatory stimuli to disease progression by promoting angiogenesis in gastric cancer. Clin Cancer Res. 23:1575–1585. 2017. View Article : Google Scholar | |
Lee JM, McNamee CJ, Toloza E, Negrao MV, Lin J, Shum E, Cummings AL, Kris MG, Sepesi B, Bara I, et al: Neoadjuvant targeted therapy in resectable NSCLC: Current and future perspectives. J Thorac Oncol. 18:1458–1477. 2023. View Article : Google Scholar : PubMed/NCBI | |
Napolitano S, Martini G, Ciardiello D, Del Tufo S, Martinelli E, Troiani T and Ciardiello F: Targeting the EGFR signalling pathway in metastatic colorectal cancer. Lancet Gastroenterol Hepatol. 9:664–676. 2024. View Article : Google Scholar : PubMed/NCBI | |
Damare R, Engle K and Kumar G: Targeting epidermal growth factor receptor and its downstream signaling pathways by natural products: A mechanistic insight. Phytother Res. 38:2406–2447. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Jiang W, Du Y, Zhu D, Zhang J, Fang C, Yan F and Chen ZS: Targeting feedback activation of signaling transduction pathways to overcome drug resistance in cancer. Drug Resist Updat. 65:1008842022. View Article : Google Scholar : PubMed/NCBI | |
Kim GT, Hahn KW, Yoon SY, Sohn KY and Kim JW: PLAG exerts anti-metastatic effects by interfering with neutrophil elastase/PAR2/EGFR signaling in A549 lung cancer orthotopic model. Cancers (Basel). 12:5602020. View Article : Google Scholar : PubMed/NCBI | |
Swain SM, Shastry M and Hamilton E: Targeting HER2-positive breast cancer: Advances and future directions. Nat Rev Drug Discov. 22:101–126. 2023. View Article : Google Scholar | |
Sato T, Takahashi S, Mizumoto T, Harao M, Akizuki M, Takasugi M, Fukutomi T and Yamashita J: Neutrophil elastase and cancer. Surg Oncol. 15:217–222. 2006. View Article : Google Scholar | |
Schlessinger J: Common and distinct elements in cellular signaling via EGF and FGF receptors. Science. 306:1506–1507. 2004. View Article : Google Scholar : PubMed/NCBI | |
Singh JK, Farnie G, Bundred NJ, Simões BM, Shergill A, Landberg G, Howell SJ and Clarke RB: Targeting CXCR1/2 significantly reduces breast cancer stem cell activity and increases the efficacy of inhibiting HER2 via HER2-dependent and -independent mechanisms. Clin Cancer Res. 19:643–656. 2013. View Article : Google Scholar | |
Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, et al: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 344:783–792. 2001. View Article : Google Scholar : PubMed/NCBI | |
Singhal A, Li BT and O'Reilly EM: Targeting KRAS in cancer. Nat Med. 30:969–983. 2024. View Article : Google Scholar : PubMed/NCBI | |
Biller LH and Schrag D: Diagnosis and treatment of metastatic colorectal cancer: A review. JAMA. 325:669–685. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu G, Pei L, Xia H, Tang Q and Bi F: Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer. Mol Cancer. 20:1432021. View Article : Google Scholar : PubMed/NCBI | |
Shang A, Gu C, Zhou C, Yang Y, Chen C, Zeng B, Wu J, Lu W, Wang W, Sun Z and Li D: Exosomal KRAS mutation promotes the formation of tumor-associated neutrophil extracellular traps and causes deterioration of colorectal cancer by inducing IL-8 expression. Cell Commun Signal. 18:522020. View Article : Google Scholar : PubMed/NCBI | |
Pickup MW, Owens P, Gorska AE, Chytil A, Ye F, Shi C, Weaver VM, Kalluri R, Moses HL and Novitskiy SV: Development of aggressive pancreatic ductal adenocarcinomas depends on granulocyte colony stimulating factor secretion in carcinoma cells. Cancer Immunol Res. 5:718–729. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nolan E, Bridgeman VL, Ombrato L, Karoutas A, Rabas N, Sewnath CAN, Vasquez M, Rodrigues FS, Horswell S, Faull P, et al: Radiation exposure elicits a neutrophil-driven response in healthy lung tissue that enhances metastatic colonization. Nat Cancer. 3:173–187. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wisdom AJ, Hong CS, Lin AJ, Xiang Y, Cooper DE, Zhang J, Xu ES, Kuo HC, Mowery YM, Carpenter DJ, et al: Neutrophils promote tumor resistance to radiation therapy. Proc Natl Acad Sci USA. 116:18584–18589. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Song X, Zhu G, Pan D, Li H, Hu J, Xiao K, Gong Q, Gu Z, Luo K and Li W: Nanomedicine combats drug resistance in lung cancer. Adv Mater. 36:e23089772024. View Article : Google Scholar | |
Xu K, Guo H, Xia A, Wang Z, Wang S and Wang Q: Non-coding RNAs in radiotherapy resistance: Roles and therapeutic implications in gastrointestinal cancer. Biomed Pharmacother. 161:1144852023. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Song Y, Wang R and Wang T: Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer. 22:962023. View Article : Google Scholar : PubMed/NCBI | |
An L, Li M and Jia Q: Mechanisms of radiotherapy resistance and radiosensitization strategies for esophageal squamous cell carcinoma. Mol Cancer. 22:1402023. View Article : Google Scholar : PubMed/NCBI | |
Peng J, Yin X, Yun W, Meng X and Huang Z: Radiotherapyinduced tumor physical microenvironment remodeling to overcome immunotherapy resistance. Cancer Lett. 559:2161082023. View Article : Google Scholar | |
Beckers C, Pruschy M and Vetrugno I: Tumor hypoxia and radiotherapy: A major driver of resistance even for novel radiotherapy modalities. Semin Cancer Biol. 98:19–30. 2024. View Article : Google Scholar | |
Wang X, Li X, Wu Y, Hong J and Zhang M: The prognostic significance of tumor-associated neutrophils and circulating neutrophils in glioblastoma (WHO CNS5 classification). BMC Cancer. 23:202023. View Article : Google Scholar : PubMed/NCBI | |
Jeon HY, Ham SW, Kim JK, Jin X, Lee SY, Shin YJ, Choi CY, Sa JK, Kim SH, Chun T, et al: Ly6G+ inflammatory cells enable the conversion of cancer cells to cancer stem cells in an irradiated glioblastoma model. Cell Death Differ. 26:2139–2156. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ruiz-Fernández de Córdoba B, Moreno H, Valencia K, Perurena N, Ruedas P, Walle T, Pezonaga-Torres A, Hinojosa J, Guruceaga E, Pineda-Lucena A, et al: Tumor ENPP1 (CD203a)/ haptoglobin axis exploits myeloid-derived suppressor cells to promote post-radiotherapy local recurrence in breast cancer. Cancer Discov. 12:1356–1377. 2022. View Article : Google Scholar | |
Ancey PB, Contat C, Boivin G, Sabatino S, Pascual J, Zangger N, Perentes JY, Peters S, Abel ED, Kirsch DG, et al: GLUT1 expression in tumor-associated neutrophils promotes lung cancer growth and resistance to radiotherapy. Cancer Res. 81:2345–2357. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shinde-Jadhav S, Mansure JJ, Rayes RF, Marcq G, Ayoub M, Skowronski R, Kool R, Bourdeau F, Brimo F, Spicer J and Kassouf W: Role of neutrophil extracellular traps in radiation resistance of invasive bladder cancer. Nat Commun. 12:27762021. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zeng J, You Q, Zhang M, Shi Y, Yang X, Gu W, Liu Y, Hu N, Wang Y, et al: X-ray-activated nanoscintillators integrated with tumor-associated neutrophils polarization for improved radiotherapy in metastatic colorectal cancer. Biomaterials. 316:1230312025. View Article : Google Scholar | |
Rys RN and Calcinotto A: Senescent neutrophils: A hidden role in cancer progression. Trends Cell Biol. S0962-8924(24)00187-9. 2024.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Treffers LW, Ten Broeke T, Rösner T, Jansen JHM, van Houdt M, Kahle S, Schornagel K, Verkuijlen PJJH, Prins JM, Franke K, et al: IgA-mediated killing of tumor cells by neutrophils is enhanced by CD47-SIRPα checkpoint inhibition. Cancer Immunol Res. 8:120–130. 2020. View Article : Google Scholar | |
Brandsma AM, Ten Broeke T, Nederend M, Meulenbroek LA, van Tetering G, Meyer S, Jansen JH, Beltrán Buitrago MA, Nagelkerke SQ, Németh I, et al: Simultaneous targeting of FcγRs and FcαRI enhances tumor cell killing. Cancer Immunol Res. 3:1316–1324. 2015. View Article : Google Scholar : PubMed/NCBI | |
Borrok MJ, Luheshi NM, Beyaz N, Davies GC, Legg JW, Wu H, Dall'Acqua WF and Tsui P: Enhancement of antibody-dependent cell-mediated cytotoxicity by endowing IgG with FcαRI (CD89) binding. MAbs. 7:743–751. 2015. View Article : Google Scholar : | |
Kumbhojkar N, Prakash S, Fukuta T, Adu-Berchie K, Kapate N, An R, Darko S, Chandran Suja V, Park KS, Gottlieb AP, et al: Neutrophils bearing adhesive polymer micropatches as a drug-free cancer immunotherapy. Nat Biomed Eng. 8:579–592. 2024. View Article : Google Scholar : PubMed/NCBI | |
Quaas A, Pamuk A, Klein S, Quantius J, Rehkaemper J, Bar utcu AG, Rueschoff J, Zander T, Gebauer F, Hillmer A, et al: Sex-specific prognostic effect of CD66b-positive tumor-infiltrating neutrophils (TANs) in gastric and esophageal adenocarcinoma. Gastric Cancer. 24:1213–1226. 2021. View Article : Google Scholar : PubMed/NCBI | |
Peng H, Wu X, Liu S, He M, Tang C, Wen Y, Xie C, Zhong R, Li C, Xiong S, et al: Cellular dynamics in tumour microenvironment along with lung cancer progression underscore spatial and evolutionary heterogeneity of neutrophil. Clin Transl Med. 13:e13402023. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhang M, Lou J, Wu L, Zhang S, Liu X, Ke Y, Zhao S, Song Z, Bai X, et al: Machine learning integration with single-cell transcriptome sequencing datasets reveals the impact of tumor-associated neutrophils on the immune microenvironment and immunotherapy outcomes in gastric cancer. Int J Mol Sci. 25:127152024. View Article : Google Scholar : PubMed/NCBI | |
Ye L, Zhang T, Kang Z, Guo G, Sun Y, Lin K, Huang Q, Shi X, Ni Z, Ding N, et al: Tumor-infiltrating immune cells act as a marker for prognosis in colorectal cancer. Front Immunol. 10:23682019. View Article : Google Scholar : PubMed/NCBI | |
Nøst TH, Alcala K, Urbarova I, Byrne KS, Guida F, Sandanger TM and Johansson M: Systemic inflammation markers and cancer incidence in the UK Biobank. Eur J Epidemiol. 36:841–848. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mosca M, Nigro MC, Pagani R, De Giglio A and Di Federico A: Neutrophil-to-lymphocyte ratio (NLR) in NSCLC, gastrointestinal, and other solid tumors: Immunotherapy and beyond. Biomolecules. 13:18032023. View Article : Google Scholar : PubMed/NCBI | |
Cupp MA, Cariolou M, Tzoulaki I, Aune D, Evangelou E and Berlanga-Taylor AJ: Neutrophil to lymphocyte ratio and cancer prognosis: An umbrella review of systematic reviews and meta-analyses of observational studies. BMC Med. 18:3602020. View Article : Google Scholar : PubMed/NCBI | |
Ethier JL, Desautels D, Templeton A, Shah PS and Amir E: Prognostic role of neutrophil-to-lymphocyte ratio in breast cancer: A systematic review and meta-analysis. Breast Cancer Res. 19:22017. View Article : Google Scholar : PubMed/NCBI | |
Pecqueux M, Brückner F, Oehme F, Hempel S, Baenke F, Riediger C, Distler M, Weitz J and Kahlert C: Preoperative IL-8 levels as prognostic indicators of overall survival: An extended follow-up in a prospective cohort with colorectal liver metastases. BMC Cancer. 24:902024. View Article : Google Scholar : PubMed/NCBI | |
Hsu YJ, Chern YJ, Wu ZE, Yu YL, Liao CK, Tsai WS, You JF and Lee CW: The oncologic outcome and prognostic factors for solitary colorectal liver metastasis after liver resection. J Gastrointest Surg. 28:267–275. 2024. View Article : Google Scholar : PubMed/NCBI | |
Huang W, Jiang Y, Xiong W, Sun Z, Chen C, Yuan Q, Zhou K, Han Z, Feng H, Chen H, et al: Noninvasive imaging of the tumor immune microenvironment correlates with response to immunotherapy in gastric cancer. Nat Commun. 13:50952022. View Article : Google Scholar : PubMed/NCBI | |
Tan S, Zheng Q, Zhang W, Zhou M, Xia C and Feng W: Prognostic value of inflammatory markers NLR, PLR, and LMR in gastric cancer patients treated with immune checkpoint inhibitors: A meta-analysis and systematic review. Front Immunol. 15:14087002024. View Article : Google Scholar : PubMed/NCBI | |
He G, Zhang H, Zhou J, Wang B, Chen Y, Kong Y, Xie X, Wang X, Fei R, Wei L, et al: Peritumoural neutrophils negatively regulate adaptive immunity via the PD-L1/PD-1 signalling pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 34:1412015. View Article : Google Scholar : PubMed/NCBI |