Multidrug resistance-associated protein 7 expression is involved in cross-resistance to docetaxel in salivary gland adenocarcinoma cell lines

  • Authors:
    • Hiroko Naramoto
    • Takashi Uematsu
    • Takayuki Uchihashi
    • Ryosuke Doto
    • Takashi Matsuura
    • Yohei Usui
    • Setsuko Uematsu
    • Xianqi Li
    • Masahiro Takahashi
    • Minoru Yamaoka
    • Kiyofumi Furusawa
  • View Affiliations

  • Published online on: February 1, 2007     https://doi.org/10.3892/ijo.30.2.393
  • Pages: 393-401
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The aim of the present study was to clarify whether ATP binding cassette transporters are refractory factors in head and neck cancers. For in vitro and in vivo chemotherapeutic studies, we used the following head and neck cancer cell lines: a mouse oral squamous cell carcinoma (SCC) cell line, Sq-1979; a human SCC cell line, SCCHA; a mouse salivary gland adenocarcinoma (SGA) cell line, NR-PG; and a human SGA cell line, HSY. We used a vinca alkaloid anticancer drug, vincristine (VCR), as a chemotherapeutic anticancer drug. To determine the cause of multidrug resistance, Western blot analysis, reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry of xenografted tumors in nude mice, drug efflux analysis, and drug efflux inhibitory assays were performed. VCR-treated cell lines, Sq-1979/VCR, SCCHA/VCR, NR-PG/VCR, and HSY/VCR, intensively expressed multidrug resistance (MDR) gene 1 mRNA and multidrug resistance associated protein (MRP) 1 mRNA. MRP7 mRNA and protein were expressed in NR-PG/VCR and HSY/VCR cells, but not in Sq-1979/VCR and SCCHA/VCR cells. In each cell clone of NR-PG/VCR and HSY/VCR, MRP7 mRNA was induced by VCR treatment, suggesting an acquired resistance to VCR in the context of MRP7 expression. In the in vivo chemotherapeutic nude mice model, VCR-treated xenografted SCCHA and HSY cells expressed MDR1 and MRP1. Moreover, MRP7 expression was immunohistochemically found in xenografted HSY cells of VCR-injected tumor-bearing mice, but not in SCCHA cells. Furthermore, doxorubicin accumulation was increased and drug cross-resistance to docetaxel decreased in HSY/VCR in the presence of a competitive MRP7 inhibitor, 17-β-estradiol-(17-β-D-glucuronide). These results indicate that MDR1 expression, MRP1 expression, and MRP7 expression are refractory factors in head and neck cancer chemotherapy and suggest that induction of MRP7 expression is involved in drug resistance to natural products, especially to docetaxel in SGA.

Related Articles

Journal Cover

February 2007
Volume 30 Issue 2

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Naramoto H, Uematsu T, Uchihashi T, Doto R, Matsuura T, Usui Y, Uematsu S, Li X, Takahashi M, Yamaoka M, Yamaoka M, et al: Multidrug resistance-associated protein 7 expression is involved in cross-resistance to docetaxel in salivary gland adenocarcinoma cell lines. Int J Oncol 30: 393-401, 2007.
APA
Naramoto, H., Uematsu, T., Uchihashi, T., Doto, R., Matsuura, T., Usui, Y. ... Furusawa, K. (2007). Multidrug resistance-associated protein 7 expression is involved in cross-resistance to docetaxel in salivary gland adenocarcinoma cell lines. International Journal of Oncology, 30, 393-401. https://doi.org/10.3892/ijo.30.2.393
MLA
Naramoto, H., Uematsu, T., Uchihashi, T., Doto, R., Matsuura, T., Usui, Y., Uematsu, S., Li, X., Takahashi, M., Yamaoka, M., Furusawa, K."Multidrug resistance-associated protein 7 expression is involved in cross-resistance to docetaxel in salivary gland adenocarcinoma cell lines". International Journal of Oncology 30.2 (2007): 393-401.
Chicago
Naramoto, H., Uematsu, T., Uchihashi, T., Doto, R., Matsuura, T., Usui, Y., Uematsu, S., Li, X., Takahashi, M., Yamaoka, M., Furusawa, K."Multidrug resistance-associated protein 7 expression is involved in cross-resistance to docetaxel in salivary gland adenocarcinoma cell lines". International Journal of Oncology 30, no. 2 (2007): 393-401. https://doi.org/10.3892/ijo.30.2.393