Receptor and enzyme expression for prostanoid metabolism in colorectal cancer related to tumor tissue PGE2
- Authors:
- Published online on: February 1, 2010 https://doi.org/10.3892/ijo_00000521
- Pages: 469-478
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
Prostaglandins support progression of colorectal cancer by several mechanisms. This conclusion is based on epidemiological and drug intervention long-term studies or retrieved from animal and cell culture experiments. The aim of the present study was to map receptor and enzyme expression for prostanoid metabolism in the presence of high or low PGE2 content within colon cancer tissue at primary tumor operation and after short-term preoperative provision of non-steroidal anti-inflammatory drug (NSAID). Twenty-three unselected patients with colon cancer were randomly selected to receive indomethacin (NSAID) or sham treatment for 3 days before surgery. Normal colon and tumor tissue were collected at operation for RNA extraction. Tissue PGE2 levels were measured by radioimmunoassay. Gene expression was quantified by microarray and real-time PCR. COX-1 expression increased proportionally to COX-2 expression in colon cancer tissue from untreated patients. Indomethacin reduced PGE2 content in normal and tumor tissue with subsequently decreased IP, HPGD and PPARγ receptor expression in both tumor and normal colon tissue, while subtype EP1-4 receptors were not significantly influenced by indomethacin treatment. MPGES-1 expression was not related to overall PGE2 content in tumor and colon tissue, but decreased significantly in normal tissue during indomethacin exposure. Reduction of tumor tissue PGE2 was related to significant alteration in expression of several hundred genes indicating decreased cell cycling and increased apoptosis during indomethacin treatment, probably related to upregulation of acute phase reactants in tumor tissue. Increased prostanoid activity in colon cancer tissue is related to cross-talk between tumor and stroma cells.