1.
|
Thiery JP and Sleeman JP: Complex networks
orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell
Biol. 7:131–142. 2006.
|
2.
|
Thiery JP, Acloque H, Huang RY and Nieto
MA: Epithelialmesenchymal transitions in development and disease.
Cell. 139:871–890. 2009.
|
3.
|
Hugo H, Ackland ML, Blick T, Lawrence MG,
Clements JA, Williams ED and Thompson EW: Epithelial - mesenchymal
and mesenchymal - epithelial transitions in carcinoma progression.
J Cell Physiol. 213:374–383. 2007.
|
4.
|
Choi SS and Diehl AM:
Epithelial-to-mesenchymal transitions in the liver. Hepatology.
50:2007–2013. 2009.
|
5.
|
Brabletz T, Jung A, Spaderna S, Hlubek F
and Kirchner T: Opinion: migrating cancer stem cells - an
integrated concept of malignant tumour progression. Nat Rev Cancer.
5:744–749. 2005.
|
6.
|
Kiesslich T, Berr F, Alinger B, Kemmerling
R, Pichler M, Ocker M and Neureiter D: Current status of
therapeutic targeting of developmental signalling pathways in
oncology. Curr Pharm Biotechnol. 13:2184–2220. 2012.
|
7.
|
Kirchner T and Brabletz T: Patterning and
nuclear beta-catenin expression in the colonic adenoma-carcinoma
sequence. Analogies with embryonic gastrulation. Am J Pathol.
157:1113–1121. 2000.
|
8.
|
Brabletz T: To differentiate or not -
routes towards metastasis. Nat Rev Cancer. 12:425–436. 2012.
|
9.
|
Kalluri R and Weinberg RA: The basics of
epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428.
2009.
|
10.
|
Guarino M, Rubino B and Ballabio G: The
role of epithelial-mesenchymal transition in cancer pathology.
Pathology. 39:305–318. 2007.
|
11.
|
Moustakas A and Heldin CH: Signaling
networks guiding epithelial-mesenchymal transitions during
embryogenesis and cancer progression. Cancer Sci. 98:1512–1520.
2007.
|
12.
|
Voulgari A and Pintzas A:
Epithelial-mesenchymal transition in cancer metastasis: mechanisms,
markers and strategies to overcome drug resistance in the clinic.
Biochim Biophys Acta. 1796:75–90. 2009.
|
13.
|
Scheel C and Weinberg RA: Cancer stem
cells and epithelialmesenchymal transition: Concepts and molecular
links. Semin Cancer Biol. Apr 23–2012, (E-pub ahead of print).
|
14.
|
McConkey DJ, Choi W, Marquis L, et al:
Role of epithelial-to-mesenchymal transition (EMT) in drug
sensitivity and metastasis in bladder cancer. Cancer Metastasis
Rev. 28:335–344. 2009.
|
15.
|
Ouyang G, Wang Z, Fang X, Liu J and Yang
CJ: Molecular signaling of the epithelial to mesenchymal transition
in generating and maintaining cancer stem cells. Cell Mol Life Sci.
67:2605–2618. 2010.
|
16.
|
Moll R, Divo M and Langbein L: The human
keratins: biology and pathology. Histochem Cell Biol. 129:705–733.
2008.
|
17.
|
Frixen UH, Behrens J, Sachs M, et al:
E-cadherin-mediated cell-cell adhesion prevents invasiveness of
human carcinoma cells. J Cell Biol. 113:173–185. 1991.
|
18.
|
Onder TT, Gupta PB, Mani SA, Yang J,
Lander ES and Weinberg RA: Loss of E-cadherin promotes metastasis
via multiple downstream transcriptional pathways. Cancer Res.
68:3645–3654. 2008.
|
19.
|
Perl AK, Wilgenbus P, Dahl U, Semb H and
Christofori G: A causal role for E-cadherin in the transition from
adenoma to carcinoma. Nature. 392:190–193. 1998.
|
20.
|
Schipper JH, Frixen UH, Behrens J, Unger
A, Jahnke K and Birchmeier W: E-cadherin expression in squamous
cell carcinomas of head and neck: inverse correlation with tumor
dedifferentiation and lymph node metastasis. Cancer Res.
51:6328–6337. 1991.
|
21.
|
Umbas R, Isaacs WB, Bringuier PP, et al:
Decreased E-cadherin expression is associated with poor prognosis
in patients with prostate cancer. Cancer Res. 54:3929–3933.
1994.
|
22.
|
Cavallaro U, Schaffhauser B and
Christofori G: Cadherins and the tumour progression: is it all in a
switch? Cancer Lett. 176:123–128. 2002.
|
23.
|
Maeda M, Johnson KR and Wheelock MJ:
Cadherin switching: essential for behavioral but not morphological
changes during an epithelium-to-mesenchyme transition. J Cell Sci.
118:873–887. 2005.
|
24.
|
Gregory PA, Bert AG, Paterson EL, et al:
The miR-200 family and miR-205 regulate epithelial to mesenchymal
transition by targeting ZEB1 and SIP1. Nat Cell Biol. 10:593–601.
2008.
|
25.
|
Park SM, Gaur AB, Lengyel E and Peter ME:
The miR-200 family determines the epithelial phenotype of cancer
cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes
Dev. 22:894–907. 2008.
|
26.
|
Batlle E, Sancho E, Franci C, Dominguez D,
Monfar M, Baulida J and Garcia DH: The transcription factor snail
is a repressor of E-cadherin gene expression in epithelial tumour
cells. Nat Cell Biol. 2:84–89. 2000.
|
27.
|
Cano A, Perez-Moreno MA, Rodrigo I, et al:
The transcription factor snail controls epithelial-mesenchymal
transitions by repressing E-cadherin expression. Nat Cell Biol.
2:76–83. 2000.
|
28.
|
Bolos V, Peinado H, Perez-Moreno MA, Fraga
MF, Esteller M and Cano A: The transcription factor Slug represses
E-cadherin expression and induces epithelial to mesenchymal
transitions: a comparison with Snail and E47 repressors. J Cell
Sci. 116:499–511. 2003.
|
29.
|
Grooteclaes ML and Frisch SM: Evidence for
a function of CtBP in epithelial gene regulation and anoikis.
Oncogene. 19:3823–3828. 2000.
|
30.
|
Comijn J, Berx G, Vermassen P, et al: The
two-handed E box binding zinc finger protein SIP1 downregulates
E-cadherin and induces invasion. Mol Cell. 7:1267–1278. 2001.
|
31.
|
Perez-Moreno MA, Locascio A, Rodrigo I,
Dhondt G, Portillo F, Nieto MA and Cano A: A new role for E12/E47
in the repression of E-cadherin expression and
epithelial-mesenchymal transitions. J Biol Chem. 276:27424–27431.
2001.
|
32.
|
Nakaya Y and Sheng G: Epithelial to
mesenchymal transition during gastrulation: an embryological view.
Dev Growth Differ. 50:755–766. 2008.
|
33.
|
Qin Q, Xu Y, He T, Qin C and Xu J: Normal
and disease-related biological functions of Twist1 and underlying
molecular mechanisms. Cell Res. 22:90–106. 2012.
|
34.
|
Piera-Velazquez S, Li Z and Jimenez SA:
Role of endothelial-mesenchymal transition (EndoMT) in the
pathogenesis of fibrotic disorders. Am J Pathol. 179:1074–1080.
2011.
|
35.
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: the next generation. Cell. 144:646–674. 2011.
|
36.
|
Hanahan D and Weinberg RA: The hallmarks
of cancer. Cell. 100:57–70. 2000.
|
37.
|
Chaffer CL, Thompson EW and Williams ED:
Mesenchymal to epithelial transition in development and disease.
Cells Tissues Organs. 185:7–19. 2007.
|
38.
|
Yang J and Weinberg RA:
Epithelial-mesenchymal transition: at the crossroads of development
and tumor metastasis. Dev Cell. 14:818–829. 2008.
|
39.
|
Neureiter D, Herold C and Ocker M:
Gastrointestinal cancer - only a deregulation of stem cell
differentiation? (Review). Int J Mol Med. 17:483–489. 2006.
|
40.
|
Zeisberg M, Yang C, Martino M, Duncan MB,
Rieder F, Tanjore H and Kalluri R: Fibroblasts derive from
hepatocytes in liver fibrosis via epithelial to mesenchymal
transition. J Biol Chem. 282:23337–23347. 2007.
|
41.
|
Kim KK, Kugler MC, Wolters PJ, et al:
Alveolar epithelial cell mesenchymal transition develops in
vivo during pulmonary fibrosis and is regulated by the
extracellular matrix. Proc Natl Acad Sci USA. 103:13180–13185.
2006.
|
42.
|
Zeisberg EM, Tarnavski O, Zeisberg M, et
al: Endothelial-to-mesenchymal transition contributes to cardiac
fibrosis. Nat Med. 13:952–961. 2007.
|
43.
|
Zeisberg EM, Potenta SE, Sugimoto H,
Zeisberg M and Kalluri R: Fibroblasts in kidney fibrosis emerge via
endothelial-to-mesenchymal transition. J Am Soc Nephrol.
19:2282–2287. 2008.
|
44.
|
Yanez-Mo M, Lara-Pezzi E, Selgas R, et al:
Peritoneal dialysis and epithelial-to-mesenchymal transition of
mesothelial cells. N Engl J Med. 348:403–413. 2003.
|
45.
|
Stintzing S, Ocker M, Hartner A, Amann K,
Barbera L and Neureiter D: Differentiation patterning of vascular
smooth muscle cells (VSMC) in atherosclerosis. Virchows Arch.
455:171–185. 2009.
|
46.
|
Saika S, Ikeda K, Yamanaka O, et al:
Transient adenoviral gene transfer of Smad7 prevents injury-induced
epithelial-mesenchymal transition of lens epithelium in mice. Lab
Invest. 84:1259–1270. 2004.
|
47.
|
Tan X, Li Y and Liu Y: Paricalcitol
attenuates renal interstitial fibrosis in obstructive nephropathy.
J Am Soc Nephrol. 17:3382–3393. 2006.
|
48.
|
Zeisberg M, Bottiglio C, Kumar N, Maeshima
Y, Strutz F, Muller GA and Kalluri R: Bone morphogenic protein-7
inhibits progression of chronic renal fibrosis associated with two
genetic mouse models. Am J Physiol Renal Physiol. 285:F1060–F1067.
2003.
|
49.
|
Jung A, Brabletz T and Kirchner T: The
migrating cancer stem cells model - a conceptual explanation of
malignant tumour progression. Ernst Schering Found Symp Proc.
109–124. 2006.
|
50.
|
Handra-Luca A, Hong SM, Walter K, Wolfgang
C, Hruban R and Goggins M: Tumour epithelial vimentin expression
and outcome of pancreatic ductal adenocarcinomas. Br J Cancer.
104:1296–1302. 2011.
|
51.
|
Hong SM, Li A, Olino K, et al: Loss of
E-cadherin expression and outcome among patients with resectable
pancreatic adenocarcinomas. Mod Pathol. 24:1237–1247. 2011.
|
52.
|
Jouppila-Matto A, Tuhkanen H, Soini Y, et
al: Transcription factor snail1 expression and poor survival in
pharyngeal squamous cell carcinoma. Histol Histopathol. 26:443–449.
2011.
|
53.
|
Franci C, Gallen M, Alameda F, Baro T,
Iglesias M, Virtanen I and Garcia DH: Snail1 protein in the stroma
as a new putative prognosis marker for colon tumours. PLoS One.
4:e55952009.
|
54.
|
Bieche I, Lerebours F, Tozlu S, Espie M,
Marty M and Lidereau R: Molecular profiling of inflammatory breast
cancer: identification of a poor-prognosis gene expression
signature. Clin Cancer Res. 10:6789–6795. 2004.
|
55.
|
Sarkar FH, Li Y, Wang Z and Kong D:
Pancreatic cancer stem cells and EMT in drug resistance and
metastasis. Minerva Chir. 64:489–500. 2009.
|
56.
|
van Zijl F, Zulehner G, Petz M, et al:
Epithelial-mesenchymal transition in hepatocellular carcinoma.
Future Oncol. 5:1169–1179. 2009.
|
57.
|
Sabbah M, Emami S, Redeuilh G, et al:
Molecular signature and therapeutic perspective of the
epithelial-to-mesenchymal transitions in epithelial cancers. Drug
Resist Updat. 11:123–151. 2008.
|
58.
|
Thiery JP, Chua K, Sim WJ and Huang R:
Epithelial mesenchymal transition during development in fibrosis
and in the progression of carcinoma. Bull Cancer. 97:1285–1295.
2010.(In French).
|
59.
|
Gupta PB, Onder TT, Jiang G, Tao K,
Kuperwasser C, Weinberg RA and Lander ES: Identification of
selective inhibitors of cancer stem cells by high-throughput
screening. Cell. 138:645–659. 2009.
|
60.
|
Ketola K, Hilvo M, Hyotylainen T, et al:
Salinomycin inhibits prostate cancer growth and migration via
induction of oxidative stress. Br J Cancer. 106:99–106. 2012.
|
61.
|
Wang Y: Effects of salinomycin on cancer
stem cell in human lung adenocarcinoma A549 cells. Med Chem.
7:106–111. 2011.
|
62.
|
Gong C, Yao H, Liu Q, Chen J, Shi J, Su F
and Song E: Markers of tumor-initiating cells predict
chemoresistance in breast cancer. PLoS One. 5:e156302010.
|
63.
|
Bardsley MR, Horvath VJ, Asuzu DT, et al:
Kitlow stem cells cause resistance to Kit/platelet-derived growth
factor alpha inhibitors in murine gastrointestinal stromal tumors.
Gastroenterology. 139:942–952. 2010.
|
64.
|
Fuchs D, Daniel V, Sadeghi M, Opelz G and
Naujokat C: Salinomycin overcomes ABC transporter-mediated
multidrug and apoptosis resistance in human leukemia stem cell-like
KG-1a cells. Biochem Biophys Res Commun. 394:1098–1104. 2010.
|
65.
|
Jones PA and Taylor SM: Cellular
differentiation, cytidine analogs and DNA methylation. Cell.
20:85–93. 1980.
|
66.
|
Jones PA, Taylor SM and Wilson V: DNA
modification, differentiation, and transformation. J Exp Zool.
228:287–295. 1983.
|
67.
|
Fraga MF, Herranz M, Espada J, et al: A
mouse skin multistage carcinogenesis model reflects the aberrant
DNA methylation patterns of human tumors. Cancer Res. 64:5527–5534.
2004.
|
68.
|
Herranz N, Pasini D, Diaz VM, et al:
Polycomb complex 2 is required for E-cadherin repression by the
Snail1 transcription factor. Mol Cell Biol. 28:4772–4781. 2008.
|
69.
|
Vincent A and Van SI: On the epigenetic
origin of cancer stem cells. Biochim Biophys Acta. 1826:83–88.
2012.
|
70.
|
Rodriguez-Paredes M and Esteller M: Cancer
epigenetics reaches mainstream oncology. Nat Med. 17:330–339.
2011.
|
71.
|
Ehrlich M: DNA hypomethylation in cancer
cells. Epigenomics. 1:239–259. 2009.
|
72.
|
Ehrlich M: DNA methylation in cancer: too
much, but also too little. Oncogene. 21:5400–5413. 2002.
|
73.
|
Fullgrabe J, Kavanagh E and Joseph B:
Histone onco-modifications. Oncogene. 30:3391–3403. 2011.
|
74.
|
Maeda G, Chiba T, Aoba T and Imai K:
Epigenetic inactivation of E-cadherin by promoter hypermethylation
in oral carcinoma cells. Odontology. 95:24–29. 2007.
|
75.
|
Lombaerts M, van Wezel T, Philippo K, et
al: E-cadherin transcriptional downregulation by promoter
methylation but not mutation is related to
epithelial-to-mesenchymal transition in breast cancer cell lines.
Br J Cancer. 94:661–671. 2006.
|
76.
|
Savagner P: The epithelial-mesenchymal
transition (EMT) phenomenon. Ann Oncol. 21(Suppl 7): vii89–vii92.
2010.
|
77.
|
Lin T, Ponn A, Hu X, Law BK and Lu J:
Requirement of the histone demethylase LSD1 in Snai1-mediated
transcriptional repression during epithelial-mesenchymal
transition. Oncogene. 29:4896–4904. 2010.
|
78.
|
Yang F, Sun L, Li Q, Han X, Lei L, Zhang H
and Shang Y: SET8 promotes epithelial-mesenchymal transition and
confers TWIST dual transcriptional activities. EMBO J. 31:110–123.
2011.
|
79.
|
Kalakonda N, Fischle W, Boccuni P, et al:
Histone H4 lysine 20 monomethylation promotes transcriptional
repression by L3MBTL1. Oncogene. 27:4293–4304. 2008.
|
80.
|
Li Z, Nie F, Wang S and Li L: Histone H4
Lys 20 monomethylation by histone methylase SET8 mediates Wnt
target gene activation. Proc Natl Acad Sci USA. 108:3116–3123.
2011.
|
81.
|
Bernstein BE, Mikkelsen TS, Xie X, et al:
A bivalent chromatin structure marks key developmental genes in
embryonic stem cells. Cell. 125:315–326. 2006.
|
82.
|
Mongroo PS and Rustgi AK: The role of the
miR-200 family in epithelial-mesenchymal transition. Cancer Biol
Ther. 10:219–222. 2010.
|
83.
|
Bullock MD, Sayan AE, Packham GK and
Mirnezami AH: MicroRNAs: critical regulators of epithelial to
mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in
cancer progression. Biol Cell. 104:3–12. 2012.
|
84.
|
Vrba L, Jensen TJ, Garbe JC, et al: Role
for DNA methylation in the regulation of miR-200c and miR-141
expression in normal and cancer cells. PLoS One. 5:e86972010.
|
85.
|
Davalos V, Moutinho C, Villanueva A, Boque
R, Silva P, Carneiro F and Esteller M: Dynamic epigenetic
regulation of the microRNA-200 family mediates epithelial and
mesenchymal transitions in human tumorigenesis. Oncogene.
31:2062–2074. 2012.
|
86.
|
Wiklund ED, Bramsen JB, Hulf T, et al:
Coordinated epigenetic repression of the miR-200 family and miR-205
in invasive bladder cancer. Int J Cancer. 128:1327–1334. 2011.
|
87.
|
Neves R, Scheel C, Weinhold S, et al: Role
of DNA methylation in miR-200c/141 cluster silencing in invasive
breast cancer cells. BMC Res Notes. 3:2192010.
|
88.
|
Tryndyak VP, Beland FA and Pogribny IP:
E-cadherin transcriptional down-regulation by epigenetic and
microRNA-200 family alterations is related to mesenchymal and
drug-resistant phenotypes in human breast cancer cells. Int J
Cancer. 126:2575–2583. 2010.
|
89.
|
Kelly TK, De Carvalho DD and Jones PA:
Epigenetic modifications as therapeutic targets. Nat Biotechnol.
28:1069–1078. 2010.
|
90.
|
Lane AA and Chabner BA: Histone
deacetylase inhibitors in cancer therapy. J Clin Oncol.
27:5459–5468. 2009.
|
91.
|
Stintzing S, Kemmerling R, Kiesslich T,
Alinger B, Ocker M and Neureiter D: Myelodysplastic syndrome and
histone deacetylase inhibitors: “to be or not to be acetylated”? J
Biomed Biotechnol. 2011:2141432011.
|
92.
|
Batty N, Malouf GG and Issa JP: Histone
deacetylase inhibitors as anti-neoplastic agents. Cancer Lett.
280:192–200. 2009.
|
93.
|
Ocker M: Deacetylase inhibitors - focus on
non-histone targets and effects. World J Biol Chem. 1:55–61.
2010.
|
94.
|
Ocker M and Schneider-Stock R: Histone
deacetylase inhibitors: signalling towards p21cip1/waf1. Int J
Biochem Cell Biol. 39:1367–1374. 2007.
|
95.
|
Spange S, Wagner T, Heinzel T and Kramer
OH: Acetylation of non-histone proteins modulates cellular
signalling at multiple levels. Int J Biochem Cell Biol. 41:185–198.
2009.
|
96.
|
Di Fazio P, Schneider-Stock R, Neureiter
D, et al: The pan-deacetylase inhibitor panobinostat inhibits
growth of hepatocellular carcinoma models by alternative pathways
of apoptosis. Cell Oncol. 32:285–300. 2010.
|
97.
|
Di Fazio P, Montalbano R, Quint K, et al:
The pan-deacetylase inhibitor panobinostat modulates expression of
epithelialmesenchymal transition markers in hepatocellular
carcinoma models. Oncol Lett. (In press).
|
98.
|
Neureiter D, Zopf S, Leu T, et al:
Apoptosis, proliferation and differentiation patterns are
influenced by Zebularine and SAHA in pancreatic cancer models.
Scand J Gastroenterol. 42:103–116. 2007.
|
99.
|
Ryningen A, Stapnes C and Bruserud O:
Clonogenic acute myelogenous leukemia cells are heterogeneous with
regard to regulation of differentiation and effect of epigenetic
pharmacological targeting. Leuk Res. 31:1303–1313. 2007.
|
100.
|
Todaro M, Francipane MG, Medema JP and
Stassi G: Colon cancer stem cells: promise of targeted therapy.
Gastroenterology. 138:2151–2162. 2010.
|
101.
|
Ivanova T, Zouridis H, Wu Y, et al:
Integrated epigenomics identifies BMP4 as a modulator of cisplatin
sensitivity in gastric cancer. Gut. Apr 25–2012.(E-pub ahead of
print).
|
102.
|
Bhatla T, Wang J, Morrison DJ, Raetz EA,
Burke MJ, Brown P and Carroll WL: Epigenetic reprogramming reverses
the relapse-specific gene expression signature and restores
chemo-sensitivity in childhood B-lymphoblastic leukemia. Blood.
119:5201–5210. 2012.
|
103.
|
Omenetti A, Bass LM, Anders RA, et al:
Hedgehog activity, epithelial-mesenchymal transitions, and biliary
dysmorphogenesis in biliary atresia. Hepatology. 53:1246–1258.
2011.
|
104.
|
Fabris L and Strazzabosco M:
Epithelial-mesenchymal interactions in biliary diseases. Semin
Liver Dis. 31:11–32. 2011.
|
105.
|
Bailey JM, Singh PK and Hollingsworth MA:
Cancer metastasis facilitated by developmental pathways: Sonic
hedgehog, Notch, and bone morphogenic proteins. J Cell Biochem.
102:829–839. 2007.
|
106.
|
Dasgupta P, Rizwani W, Pillai S, et al:
Nicotine induces cell proliferation, invasion and
epithelial-mesenchymal transition in a variety of human cancer cell
lines. Int J Cancer. 124:36–45. 2009.
|
107.
|
Li Y, Liu Y, Xu Y, Voorhees JJ and Fisher
GJ: UV irradiation induces Snail expression by AP-1 dependent
mechanism in human skin keratinocytes. J Dermatol Sci. 60:105–113.
2010.
|
108.
|
Hardy KM, Booth BW, Hendrix MJ, Salomon DS
and Strizzi L: ErbB/EGF signaling and EMT in mammary development
and breast cancer. J Mammary Gland Biol Neoplasia. 15:191–199.
2010.
|
109.
|
Guttilla IK, Adams BD and White BA:
ERalpha, microRNAs, and the epithelial-mesenchymal transition in
breast cancer. Trends Endocrinol Metab. 23:73–82. 2012.
|
110.
|
Gallo D, Ferlini C and Scambia G: The
epithelial-mesenchymal transition and the estrogen-signaling in
ovarian cancer. Curr Drug Targets. 11:474–481. 2010.
|
111.
|
Katoh Y and Katoh M: FGFR2-related
pathogenesis and FGFR2-targeted therapeutics (Review). Int J Mol
Med. 23:307–311. 2009.
|
112.
|
Ding W, You H, Dang H, et al:
Epithelial-to-mesenchymal transition of murine liver tumor cells
promotes invasion. Hepatology. 52:945–953. 2010.
|
113.
|
Semenza GL: Hypoxia-inducible factors:
mediators of cancer progression and targets for cancer therapy.
Trends Pharmacol Sci. 33:207–214. 2012.
|
114.
|
Jiang J, Tang YL and Liang XH: EMT: a new
vision of hypoxia promoting cancer progression. Cancer Biol Ther.
11:714–723. 2011.
|
115.
|
Yang SY, Miah A, Pabari A and Winslet M:
Growth Factors and their receptors in cancer metastases. Front
Biosci. 16:531–538. 2011.
|
116.
|
Mamuya FA and Duncan MK: aV integrins and
TGF-β-induced EMT: a circle of regulation. J Cell Mol Med.
16:445–455. 2012.
|
117.
|
Eble JA and Haier J: Integrins in cancer
treatment. Curr Cancer Drug Targets. 6:89–105. 2006.
|
118.
|
Lahsnig C, Mikula M, Petz M, et al: ILEI
requires oncogenic Ras for the epithelial to mesenchymal transition
of hepatocytes and liver carcinoma progression. Oncogene.
28:638–650. 2009.
|
119.
|
Yadav A, Kumar B, Datta J, Teknos TN and
Kumar P: IL-6 promotes head and neck tumor metastasis by inducing
epithelialmesenchymal transition via the JAK-STAT3-SNAIL signaling
pathway. Mol Cancer Res. 9:1658–1667. 2011.
|
120.
|
Andrae J, Gallini R and Betsholtz C: Role
of platelet-derived growth factors in physiology and medicine.
Genes Dev. 22:1276–1312. 2008.
|
121.
|
Peebles KA, Lee JM, Mao JT, et al:
Inflammation and lung carcinogenesis: applying findings in
prevention and treatment. Expert Rev Anticancer Ther. 7:1405–1421.
2007.
|
122.
|
Lee JM, Yanagawa J, Peebles KA, Sharma S,
Mao JT and Dubinett SM: Inflammation in lung carcinogenesis: new
targets for lung cancer chemoprevention and treatment. Crit Rev
Oncol Hematol. 66:208–217. 2008.
|
123.
|
Gherardi E, Birchmeier W, Birchmeier C and
Vande WG: Targeting MET in cancer: rationale and progress. Nat Rev
Cancer. 12:89–103. 2012.
|
124.
|
Tolnay E, Kuhnen C, Wiethege T, Konig JE,
Voss B and Muller KM: Hepatocyte growth factor/scatter factor and
its receptor c-Met are overexpressed and associated with an
increased microvessel density in malignant pleural mesothelioma. J
Cancer Res Clin Oncol. 124:291–296. 1998.
|
125.
|
Heuberger J and Birchmeier W: Interplay of
cadherin-mediated cell adhesion and canonical Wnt signaling. Cold
Spring Harb Perspect Biol. 2:a0029152010.
|
126.
|
Hollier BG, Evans K and Mani SA: The
epithelial-to-mesenchymal transition and cancer stem cells: a
coalition against cancer therapies. J Mammary Gland Biol Neoplasia.
14:29–43. 2009.
|
127.
|
Mimeault M and Batra SK: New advances on
critical implications of tumor- and metastasis-initiating cells in
cancer progression, treatment resistance and disease recurrence.
Histol Histopathol. 25:1057–1073. 2010.
|
128.
|
Singh A and Settleman J: EMT, cancer stem
cells and drug resistance: an emerging axis of evil in the war on
cancer. Oncogene. 29:4741–4751. 2010.
|
129.
|
Wang Z, Li Y, Ahmad A, Azmi AS, Kong D,
Banerjee S and Sarkar FH: Targeting miRNAs involved in cancer stem
cell and EMT regulation: an emerging concept in overcoming drug
resistance. Drug Resist Updat. 13:109–118. 2010.
|
130.
|
Wellner U, Schubert J, Burk UC, et al: The
EMT-activator ZEB1 promotes tumorigenicity by repressing
stemness-inhibiting microRNAs. Nat Cell Biol. 11:1487–1495.
2009.
|
131.
|
Wendt MK, Tian M and Schiemann WP:
Deconstructing the mechanisms and consequences of TGF-beta-induced
EMT during cancer progression. Cell Tissue Res. 347:85–101.
2012.
|