1
|
Howlader N, Noone AM, Krapcho M, Garshell
J, Neyman N, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z,
Cho H, Mariotto A, Lewis DR, Chen HS, Feuer EJ and Cronin KA: SEER
Cancer Statistics (Review), 1975–2010. National Cancer Institute;
Bethesda, MD: http://seer.cancer.gov/csr/1975_2010/,
based on November 2012 SEER data submission, posted on the SEER
website. April. 2013
|
2
|
Lee J, Hwang JA and Lee EK: Recent
progress of genome study for anaplastic thyroid cancer. Genomics
Inform. 11:68–75. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hundahl SA, Fleming ID, Fremgen AM and
Menck HR: A National Cancer Data Base report on 53,856 cases of
thyroid carcinoma treated in the U.S., 1985–1995 [see comments].
Cancer. 83:2638–2648. 1998.PubMed/NCBI
|
4
|
Smallridge RC and Copland JA: Anaplastic
thyroid carcinoma: pathogenesis and emerging therapies. Clin Oncol
(R Coll Radiol). 22:486–497. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Pacini F, Castagna MG, Cipri C and
Schlumberger M: Medullary thyroid carcinoma. Clin Oncol (R Coll
Radiol). 22:475–485. 2010. View Article : Google Scholar
|
6
|
Ball DW, Jin N, Rosen DM, et al: Selective
growth inhibition in BRAF mutant thyroid cancer by the
mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244. J
Clin Endocrinol Metab. 92:4712–4718. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Roman S, Lin R and Sosa JA: Prognosis of
medullary thyroid carcinoma: demographic, clinical, and pathologic
predictors of survival in 1252 cases. Cancer. 107:2134–2142. 2006.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Busaidy NL and Cabanillas ME:
Differentiated thyroid cancer: management of patients with
radioiodine nonresponsive disease. J Thyroid Res. Feb 28–2012.(Epub
ahead of print).
|
9
|
Pfister DG and Fagin JA: Refractory
thyroid cancer: a paradigm shift in treatment is not far off. J
Clin Oncol. 26:4701–4704. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hou P, Liu D, Shan Y, et al: Genetic
alterations and their relationship in the phosphatidylinositol
3-kinase/Akt pathway in thyroid cancer. Clin Cancer Res.
13:1161–1170. 2007. View Article : Google Scholar
|
11
|
Liebner DA and Shah MH: Thyroid cancer:
pathogenesis and targeted therapy. Ther Adv Endocrinol Metab.
2:173–195. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Cargnello M and Roux PP: Activation and
function of the MAPKs and their substrates, the MAPK-activated
protein kinases. Microbiol Mol Biol Rev. 75:50–83. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Pacini F, Ito Y, Luster M, Pitoia F,
Robinson B and Wirth L: Radioactive iodine-refractory
differentiated thyroid cancer: unmet needs and future directions.
Expert Rev Endocrinol Metab. 7:541–554. 2012. View Article : Google Scholar
|
14
|
Klein M, Picard E, Vignaud JM, et al:
Vascular endothelial growth factor gene and protein: strong
expression in thyroiditis and thyroid carcinoma. J Endocrinol.
161:41–49. 1999. View Article : Google Scholar : PubMed/NCBI
|
15
|
Santoro M, Chiappetta G, Cerrato A, et al:
Development of thyroid papillary carcinomas secondary to
tissue-specific expression of the RET/PTC1 oncogene in transgenic
mice. Oncogene. 12:1821–1826. 1996.PubMed/NCBI
|
16
|
Portella G, Vitagliano D, Borselli C, et
al: Human N-ras, TRK-T1, and RET/PTC3 oncogenes, driven by a
thyroglobulin promoter, differently affect the expression of
differentiation markers and the proliferation of thyroid epithelial
cells. Oncol Res. 11:421–427. 1999.
|
17
|
Salvatore G, De Falco V, Salerno P, et al:
BRAF is a therapeutic target in aggressive thyroid carcinoma. Clin
Cancer Res. 12:1623–1629. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wu G, Mambo E, Guo Z, et al: Uncommon
mutation, but common amplifications, of the PIK3CA gene in thyroid
tumors. J Clin Endocrinol Metab. 90:4688–4693. 2005. View Article : Google Scholar
|
19
|
Alvarez-Nuñez F, Bussaglia E, Mauricio D,
et al: PTEN promoter methylation in sporadic thyroid carcinomas.
Thyroid. 16:17–23. 2006.PubMed/NCBI
|
20
|
Xie Z and Klionsky DJ: Autophagosome
formation: core machinery and adaptations. Nat Cell Biol.
9:1102–1109. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Rubinsztein DC, Codogno P and Levine B:
Autophagy modulation as a potential therapeutic target for diverse
diseases. Nat Rev Drug Discov. 11:709–730. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yang ZJ, Chee CE, Huang S and Sinicrope
FA: The role of autophagy in cancer: therapeutic implications. Mol
Cancer Ther. 10:1533–1541. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kenific CM, Thorburn A and Debnath J:
Autophagy and metastasis: another double-edged sword. Curr Opin
Cell Biol. 22:241–245. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Eskelinen EL: The dual role of autophagy
in cancer. Curr Opin Pharmacol. 11:294–300. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
White E, Karp C, Strohecker AM, Guo Y and
Mathew R: Role of autophagy in suppression of inflammation and
cancer. Curr Opin Cell Biol. 22:212–217. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Qu X, Yu J, Bhagat G, et al: Promotion of
tumorigenesis by heterozygous disruption of the beclin 1 autophagy
gene. J Clin Invest. 112:1809–1820. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Mathew R, Karp CM, Beaudoin B, et al:
Autophagy suppresses tumorigenesis through elimination of p62.
Cell. 137:1062–1075. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Duran A, Linares JF, Galvez AS, et al: The
signaling adaptor p62 is an important NF-kappaB mediator in
tumorigenesis. Cancer Cell. 13:343–354. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Thiery JP, Acloque H, Huang RY and Nieto
MA: Epithelial-mesenchymal transitions in development and disease.
Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lv Q, Wang W, Xue J, et al: DEDD interacts
with PI3KC3 to activate autophagy and attenuate
epithelial-mesenchymal transition in human breast cancer. Cancer
Res. 72:3238–3250. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gewirtz DA, Hilliker ML and Wilson EN:
Promotion of autophagy as a mechanism for radiation sensitization
of breast tumor cells. Radiother Oncol. 92:323–328. 2009.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Chaachouay H, Ohneseit P, Toulany M,
Kehlbach R, Multhoff G and Rodemann HP: Autophagy contributes to
resistance of tumor cells to ionizing radiation. Radiother Oncol.
99:287–292. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
He WS, Dai XF, Jin M, Liu CW and Rent JH:
Hypoxia-induced autophagy confers resistance of breast cancer cells
to ionizing radiation. Oncol Res. 20:251–258. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Yap TA, Garrett MD, Walton MI, Raynaud F,
de Bono JS and Workman P: Targeting the PI3K-AKT-mTOR pathway:
progress pitfalls, and promises. Curr Opin Pharmacol. 8:393–412.
2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Guertin DA and Sabatini DM: Defining the
role of mTOR in cancer. Cancer Cell. 12:9–22. 2007. View Article : Google Scholar
|
36
|
Li H, Jin X, Zhang Z, Xing Y and Kong X:
Inhibition of autophagy enhances apoptosis induced by the
PI3K/AKT/mTor inhibitor NVP-BEZ235 in renal cell carcinoma cells.
Cell Biochem Funct. 31:427–433. 2013. View
Article : Google Scholar : PubMed/NCBI
|
37
|
Kondo Y, Kanzawa T, Sawaya R and Kondo S:
The role of autophagy in cancer development and response to
therapy. Nat Rev Cancer. 5:726–734. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Fan QW, Cheng C, Hackett C, et al: Akt and
autophagy cooperate to promote survival of drug-resistant glioma.
Sci Signal. 3:ra812010.PubMed/NCBI
|
39
|
Furuta S, Hidaka E, Ogata A, Yokota S and
Kamata T: Ras is involved in the negative control of autophagy
through the class I PI3-kinase. Oncogene. 23:3898–3904. 2004.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Ogier-Denis E, Pattingre S, El Benna J and
Codogno P: Erk1/2-dependent phosphorylation of Galpha-interacting
protein stimulates its GTPase accelerating activity and autophagy
in human colon cancer cells. J Biol Chem. 275:39090–39095. 2000.
View Article : Google Scholar
|
41
|
Lin CI, Whang EE, Abramson MA, et al:
Autophagy: a new target for advanced papillary thyroid cancer
therapy. Surgery. 146:1208–1214. 2009. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lin CI, Whang EE, Donner DB, et al:
Autophagy induction with RAD001 enhances chemosensitivity and
radiosensitivity through Met inhibition in papillary thyroid
cancer. Mol Cancer Res. 8:1217–1226. 2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Jin SM, Jang HW, Sohn SY, et al: Role of
autophagy in the resistance to tumour necrosis factor-related
apoptosis-inducing ligand-induced apoptosis in papillary and
anaplastic thyroid cancer cells. Endocrine. 45:256–262. 2014.
View Article : Google Scholar
|
44
|
Lu CH, Liu YW, Hua SC, Yu HI, Chang YP and
Lee YR: Autophagy induction of reversine on human follicular
thyroid cancer cells. Biomed Pharmacother. 66:642–647. 2012.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Lin CI, Whang EE, Lorch JH and Ruan DT:
Autophagic activation potentiates the antiproliferative effects of
tyrosine kinase inhibitors in medullary thyroid cancer. Surgery.
152:1142–1149. 2012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Kogai T, Sajid-Crockett S, Newmarch LS,
Liu YY and Brent GA: Phosphoinositide-3-kinase inhibition induces
sodium/iodide symporter expression in rat thyroid cells and human
papillary thyroid cancer cells. J Endocrinol. 199:243–252. 2008.
View Article : Google Scholar
|
47
|
de Souza EC, Padrón AS, Braga WM, et al:
MTOR downregulates iodide uptake in thyrocytes. J Endocrinol.
206:113–120. 2010.PubMed/NCBI
|
48
|
Ho AL, Grewal RK, Leboeuf R, et al:
Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer.
N Engl J Med. 368:623–632. 2013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Xing M: Gene methylation in thyroid
tumorigenesis. Endocrinology. 148:948–953. 2007. View Article : Google Scholar : PubMed/NCBI
|
50
|
Furuya F, Shimura H, Suzuki H, et al:
Histone deacetylase inhibitors restore radioiodide uptake and
retention in poorly differentiated and anaplastic thyroid cancer
cells by expression of the sodium/iodide symporter thyroperoxidase
and thyroglobulin. Endocrinology. 145:2865–2875. 2004. View Article : Google Scholar
|
51
|
Yamamoto S, Tanaka K, Sakimura R, et al:
Suberoylanilide hydroxamic acid (SAHA) induces apoptosis or
autophagy-associated cell death in chondrosarcoma cell lines.
Anticancer Res. 28:1585–1591. 2008.PubMed/NCBI
|
52
|
Ellis L, Bots M, Lindemann RK, et al: The
histone deacetylase inhibitors LAQ824 and LBH589 do not require
death receptor signaling or a functional apoptosome to mediate
tumor cell death or therapeutic efficacy. Blood. 114:380–393. 2009.
View Article : Google Scholar
|
53
|
Marini F, Luzi E and Brandi ML: MicroRNA
role in thyroid cancer development. J Thyroid Res. May
10–2011.(Epub ahead of print). View Article : Google Scholar
|
54
|
Yu S, Liu Y, Wang J, et al: Circulating
microRNA profiles as potential biomarkers for diagnosis of
papillary thyroid carcinoma. J Clin Endocrinol Metab. 97:2084–2092.
2012. View Article : Google Scholar : PubMed/NCBI
|
55
|
de la Chapelle A and Jazdzewski K:
MicroRNAs in thyroid cancer. J Clin Endocrinol Metab. 96:3326–3336.
2011.
|
56
|
Gambari R, Fabbri E, Borgatti M, et al:
Targeting microRNAs involved in human diseases: a novel approach
for modification of gene expression and drug development. Biochem
Pharmacol. 82:1416–1429. 2011. View Article : Google Scholar : PubMed/NCBI
|
57
|
Janku F, McConkey DJ, Hong DS and Kurzrock
R: Autophagy as a target for anticancer therapy. Nat Rev Clin
Oncol. 8:528–539. 2011. View Article : Google Scholar : PubMed/NCBI
|
58
|
Marotta V, Ramundo V, Camera L, et al:
Sorafenib in advanced iodine-refractory differentiated thyroid
cancer: efficacy, safety and exploratory analysis of role of serum
thyroglobulin and FDG-PET. Clin Endocrinol (Oxf). 78:760–767. 2013.
View Article : Google Scholar
|