Utilising proteomic approaches to understand oncogenic human herpesviruses (Review)
- Authors:
- Christopher B. Owen
- David J. Hughes
- Belinda Baquero-Perez
- Anja Berndt
- Sophie Schumann
- Brian R. Jackson
- Adrian Whitehouse
-
Affiliations: School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK - Published online on: July 9, 2014 https://doi.org/10.3892/mco.2014.341
- Pages: 891-903
This article is mentioned in:
Abstract
Epstein MA, Achong BG and Barr YM: Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet. 1:702–703. 1964. | |
Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM and Moore PS: Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science. 266:1865–1869. 1994. | |
Henle G, Henle W, Clifford P, et al: Antibodies to Epstein-Barr virus in Burkitt’s lymphoma and control groups. J Natl Cancer Inst. 43:1147–1157. 1969. | |
Kieff E and Rickinson AB: Fields’ Virology. Knipe DM and Howley PM: 2. 6th Edition. Lippincott Williams and Wilkins; Philadelphia: pp. 2655–2700. 2007 | |
Damania B and Pipas JM: DNA Tumour Viruses. 1st Edition. Springer; New York, NY: pp. 205–216. 2009 | |
Taylor GS and Blackbourn DJ: Infectious agents in human cancers: lessons in immunity and immunomodulation from gammaherpesviruses EBV and KSHV. Cancer Lett. 305:263–278. 2011. View Article : Google Scholar : PubMed/NCBI | |
Preiser W, Szép NI, Lang D, Doerr HW and Rabenau HF: Kaposi’s sarcoma-associated herpesvirus seroprevalence in selected German patients: evaluation by different test systems. Med Microbiol Immun. 190:121–127. 2001. | |
Simpson GR, Schulz TF, Whitby D, et al: Prevalence of Kaposi’s sarcoma associated herpesvirus infection measured by antibodies to recombinant capsid protein and latent immunofluorescence antigen. Lancet. 348:1133–1138. 1996. | |
Engels EA, Sinclair MD, Biggar RJ, Whitby D, Ebbesen P, Goedert JJ and Gastwirth JL: Latent class analysis of human herpesvirus 8 assay performance and infection prevalence in sub-saharan Africa and Malta. Int J Cancer. 88:1003–1008. 2000. View Article : Google Scholar | |
Mesri EA, Cesarman E and Boshoff C: Kaposi’s sarcoma and its associated herpesvirus. Nat Rev Cancer. 10:707–719. 2010. | |
Parkin DM, Sitas F, Chirenje M, Stein L, Abratt R and Wabinga H: Part I: Cancer in indigenous Africans - burden, distribution, and trends. Lancet Oncol. 9:683–692. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ambroziak JA, Blackbourn DJ, Herndier BG, et al: Herpes-like sequences in HIV-infected and uninfected Kaposi’s sarcoma patients. Science. 268:582–583. 1995.PubMed/NCBI | |
Kurth J, Spieker T, Wustrow J, Strickler GJ, Hansmann LM, Rajewsky K and Küppers R: EBV-infected B cells in infectious mononucleosis: viral strategies for spreading in the B cell compartment and establishing latency. Immunity. 13:485–495. 2000. View Article : Google Scholar : PubMed/NCBI | |
Webster-Cyriaque J, Duus K, Cooper C and Duncan M: Oral EBV and KSHV infection in HIV. Adv Dent Res. 19:91–95. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tugizov SM, Berline JW and Palefsky JM: Epstein-Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nat Med. 9:307–314. 2003. View Article : Google Scholar : PubMed/NCBI | |
Blackbourn DJ, Lennette ET, Ambroziak J, Mourich DV and Levy JA: Human herpesvirus 8 detection in nasal secretions and saliva. J Infect Dis. 177:213–216. 1998. View Article : Google Scholar : PubMed/NCBI | |
Pauk J, Huang ML, Brodie SJ, et al: Mucosal shedding of human herpesvirus 8 in men. New Engl J Med. 343:1369–1377. 2000. View Article : Google Scholar : PubMed/NCBI | |
Goodwin DJ, Walters MS, Smith PG, Thurau M, Fickenscher H and Whitehouse A: Herpesvirus Saimiri open reading frame 50 (Rta) protein reactivates the lytic replication cycle in a persistently infected A549 cell line. J Virol. 75:4008–4013. 2001. View Article : Google Scholar : PubMed/NCBI | |
Cesarman E: Gammaherpesvirus and lymphoproliferative disorders in immunocompromised patients. Cancer Lett. 305:163–174. 2011. View Article : Google Scholar : PubMed/NCBI | |
Klein E, Kis LL and Klein G: Epstein-Barr virus infection in humans: from harmless to life endangering virus-lymphocyte interactions. Oncogene. 26:1297–1305. 2007. View Article : Google Scholar : PubMed/NCBI | |
Speck SH and Ganem D: Viral latency and its regulation: lessons from the gamma-herpesviruses. Cell Host Microbe. 8:100–115. 2010. View Article : Google Scholar : PubMed/NCBI | |
Babcock GJ, Decker LL, Volk M and Thorley-Lawson DA: EBV persistence in memory B cells in vivo. Immunity. 9:395–404. 1998. View Article : Google Scholar : PubMed/NCBI | |
Babcock GJ, Hochberg D and Thorley-Lawson AD: The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity. 13:497–506. 2000. View Article : Google Scholar : PubMed/NCBI | |
Davis DA, Rinderknecht AS, Zoeteweij JP, et al: Hypoxia induces lytic replication of Kaposi sarcoma-associated herpesvirus. Blood. 97:3244–3250. 2001. View Article : Google Scholar : PubMed/NCBI | |
Blackbourn DJ, Fujimura S, Kutzkey T and Levy JA: Induction of human herpesvirus-8 gene expression by recombinant interferon gamma. AIDS. 14:98–99. 2000. View Article : Google Scholar : PubMed/NCBI | |
Vieira J, O’Hearn P, Kimball L, Chandran B and Corey L: Activation of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) lytic replication by human cytomegalovirus. J Virol. 75:1378–1386. 2001. | |
Zeng Y, Zhang X, Huang Z, et al: Intracellular Tat of human immunodeficiency virus type 1 activates lytic cycle replication of Kaposi’s sarcoma-associated herpesvirus: role of JAK/STAT signaling. J Virol. 81:2401–2417. 2007.PubMed/NCBI | |
Wilson SJ, Tsao EH, Webb BL, et al: X box binding protein XBP-1s transactivates the Kaposi’s sarcoma-associated herpesvirus (KSHV) ORF50 promoter, linking plasma cell differentiation to KSHV reactivation from latency. J Virol. 81:13578–13586. 2007.PubMed/NCBI | |
Roth WK, Brandstetter H and Sturzl M: Cellular and molecular features of HIV-associated Kaposi’s sarcoma. AIDS. 6:895–913. 1992. | |
Staskus KA, Zhong W, Gebhard K, et al: Kaposi’s sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J Virol. 71:715–719. 1997. | |
Orenstein JM, Alkan S, Blauvelt A, Jeang KT, Weinstein MD, Ganem D and Herndier B: Visualization of human herpesvirus type 8 in Kaposi’s sarcoma by light and transmission electron microscopy. AIDS. 11:F35–F45. 1997.PubMed/NCBI | |
Arvanitakis L, Geras-Raaka E, Varma A, Gershengorn MC and Cesarman E: Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature. 385:347–350. 1997. View Article : Google Scholar : PubMed/NCBI | |
Bais C, Santomasso B, Coso O, et al: G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature. 391:86–89. 1998. | |
Boshoff C, Endo Y, Collins PD, et al: Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines. Science. 278:290–294. 1997. View Article : Google Scholar : PubMed/NCBI | |
Gao SJ, Boshoff C, Jayachandra S, Weiss RA, Chang Y and Moore PS: KSHV ORF K9 (vIRF) is an oncogene which inhibits the interferon signaling pathway. Oncogene. 15:1979–1985. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lee H, Guo J, Li M, Choi JK, DeMaria M, Rosenzweig M and Jung JU: Identification of an immunoreceptor tyrosine-based activation motif of K1 transforming protein of Kaposi’s sarcoma-associated herpesvirus. Mol Cell Biol. 18:5219–5228. 1998.PubMed/NCBI | |
Sarid R, Sato T, Bohenzky RA, Russo JJ and Chang Y: Kaposi’s sarcoma-associated herpesvirus encodes a functional bcl-2 homologue. Nat Med. 3:293–298. 1997. | |
Moore PS, Boshoff C, Weiss RA and Chang Y: Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science. 274:1739–1744. 1996. View Article : Google Scholar : PubMed/NCBI | |
Sun Q, Matta H, Lu G and Chaudhary PM: Induction of IL-8 expression by human herpesvirus 8 encoded vFLIP K13 via NF-kappaB activation. Oncogene. 25:2717–2726. 2006. View Article : Google Scholar : PubMed/NCBI | |
Osborne J, Moore PS and Chang Y: KSHV-encoded viral IL-6 activates multiple human IL-6 signaling pathways. Hum Immunol. 60:921–927. 1999. View Article : Google Scholar : PubMed/NCBI | |
Cesarman E, Moore PS, Rao PH, Inghirami G, Knowles DM and Chang Y: In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi’s sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood. 86:2708–2714. 1995.PubMed/NCBI | |
Hu J, Garber AC and Renne R: The latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus supports latent DNA replication in dividing cells. J Virol. 76:11677–11687. 2002. | |
Jenner RG, Alba MM, Boshoff C and Kellam P: Kaposi’s sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J Virol. 75:891–902. 2001. | |
Pearce M, Matsumura S and Wilson AC: Transcripts encoding K12, v-FLIP, v-cyclin, and the microRNA cluster of Kaposi’s sarcoma-associated herpesvirus originate from a common promoter. J Virol. 79:14457–14464. 2005.PubMed/NCBI | |
Alkharsah KR, Singh VV, Bosco R, et al: Deletion of Kaposi’s sarcoma-associated herpesvirus FLICE inhibitory protein, vFLIP, from the viral genome compromises the activation of STAT1-responsive cellular genes and spindle cell formation in endothelial cells. J Virol. 85:10375–10388. 2011. | |
Grossmann C, Podgrabinska S, Skobe M and Ganem D: Activation of NF-κB by the latent vFLIP gene of Kaposi’s sarcoma-associated herpesvirus is required for the spindle shape of virus-infected endothelial cells and contributes to their proinflammatory phenotype. J Virol. 80:7179–7185. 2006. | |
Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680–685. 1970. View Article : Google Scholar : PubMed/NCBI | |
O’Farrell PH: High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 250:4007–4021. 1975. | |
Klose J and Kobalz U: Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis. 16:1034–1059. 1995. View Article : Google Scholar : PubMed/NCBI | |
Gorg A, Weiss W and Dunn MJ: Current two-dimensional electrophoresis technology for proteomics. Proteomics. 4:3665–3685. 2004. View Article : Google Scholar : PubMed/NCBI | |
Miller I, Crawford J and Gianazza E: Protein stains for proteomic applications: which, when, why? Proteomics. 6:5385–5408. 2006. View Article : Google Scholar : PubMed/NCBI | |
Neuhoff V, Arold N, Taube D and Ehrhardt W: Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis. 9:255–262. 1988. View Article : Google Scholar | |
Berggren K, Chernokalskaya E, Steinberg TH, et al: Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex. Electrophoresis. 21:2509–2521. 2000. View Article : Google Scholar | |
Berggren KN, Schulenberg B, Lopez MF, et al: An improved formulation of SYPRO Ruby protein gel stain: comparison with the original formulation and with a ruthenium II tris (bathophenanthroline disulfonate) formulation. Proteomics. 2:486–498. 2002. View Article : Google Scholar : PubMed/NCBI | |
Patton WF: Detection technologies in proteome analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 771:3–31. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chandramouli K and Qian PY: Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum Genom Proteomics. 1:pii: 239204. 2009.PubMed/NCBI | |
Unlu M, Morgan ME and Minden JS: Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis. 18:2071–2077. 1997. View Article : Google Scholar : PubMed/NCBI | |
May C, Brosseron F, Chartowski P, Schumbrutzki C, Schoenebeck B and Marcus K: Instruments and methods in proteomics. Methods Mol Biol. 696:3–26. 2011. View Article : Google Scholar | |
Michalski A, Cox J and Mann M: More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J Proteome Res. 10:1785–1793. 2011. View Article : Google Scholar | |
Washburn MP, Wolters D and Yates JR III: Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol. 19:242–247. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yates JR III, Eng JK, McCormack AL and Schieltz D: Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem. 67:1426–1436. 1995. View Article : Google Scholar : PubMed/NCBI | |
Munday DC, Surtees R, Emmott E, et al: Using SILAC and quantitative proteomics to investigate the interactions between viral and host proteomes. Proteomics. 12:666–672. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A and Mann M: Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 1:376–386. 2002. View Article : Google Scholar : PubMed/NCBI | |
Krijgsveld J, Ketting RF, Mahmoudi T, et al: Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat Biotechnol. 21:927–931. 2003. | |
Kruger M, Moser M, Ussar S, et al: SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell. 134:353–364. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ong SE, Kratchmarova I and Mann M: Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res. 2:173–181. 2003. | |
Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH and Aebersold R: Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 17:994–999. 1999. View Article : Google Scholar : PubMed/NCBI | |
Schmidt A, Kellermann J and Lottspeich F: A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics. 5:4–15. 2005. View Article : Google Scholar : PubMed/NCBI | |
DeSouza L, Diehl G, Rodrigues MJ, Guo J, Romaschin AD, Colgan TJ and Siu KW: Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J Proteome Res. 4:377–386. 2005. View Article : Google Scholar | |
Liu H, Sadygov RG and Yates JR III: A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem. 76:4193–4201. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bantscheff M, Schirle M, Sweetman G, Rick J and Kuster B: Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem. 389:1017–1031. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wen Z, Washburn MP and Florens L: Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins. Anal Chem. 82:2272–2281. 2010. View Article : Google Scholar : PubMed/NCBI | |
Florens L, Carozza MJ, Swanson SK, Fournier M, Coleman MK, Workman JL and Washburn MP: Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors. Methods. 40:303–311. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zybailov B, Mosley AL, Sardiu ME, Coleman MK, Florens L and Washburn MP: Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J Proteome Res. 5:2339–2347. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lu P, Vogel C, Wang R, Yao X and Marcotte EM: Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol. 25:117–124. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bondarenko PV, Chelius D and Shaler TA: Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry. Anal Chem. 74:4741–4749. 2002. View Article : Google Scholar | |
Chelius D and Bondarenko PV: Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J Proteome Res. 1:317–323. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wong JW and Cagney G: An overview of label-free quantitation methods in proteomics by mass spectrometry. Methods Mol Biol. 604:273–283. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tate S, Larsen B, Bonner R and Gingras AC: Label-free quantitative proteomics trends for protein-protein interactions. J Proteomics. 81:91–101. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Adams RM, Chourey K, Hurst GB, Hettich RL and Pan C: Systematic comparison of label-free, metabolic labeling, and isobaric chemical labeling for quantitative proteomics on LTQ Orbitrap Velos. J Proteome Res. 11:1582–1590. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lippe R: Deciphering novel host-herpesvirus interactions by virion proteomics. Front Microbiol. 3:1812012. View Article : Google Scholar : PubMed/NCBI | |
Johannsen E, Luftig M, Chase MR, et al: Proteins of purified Epstein-Barr virus. Proc Natl Acad Sci USA. 101:16286–16291. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhu FX, Chong JM, Wu L and Yuan Y: Virion proteins of Kaposi’s sarcoma-associated herpesvirus. J Virol. 79:800–811. 2005. | |
Gould F, Harrison SM, Hewitt EW and Whitehouse A: Kaposi’s sarcoma-associated herpesvirus RTA promotes degradation of the Hey1 repressor protein through the ubiquitin proteasome pathway. J Virol. 83:6727–6738. 2009. | |
Alsayed Y, Leleu X, Leontovich A, Oton AB, Malhem M, George D and Ghobrial IM: Proteomics analysis in post-transplant lymphoproliferative disorders. Eur J Haematol. 81:298–303. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Barlow EA, Ma S, et al: Hsp90 inhibitors block outgrowth of EBV-infected malignant cells in vitro and in vivo through an EBNA1-dependent mechanism. Proc Natl Acad Sci USA. 107:3146–3151. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sun X and Kenney SC: Hsp90 inhibitors: a potential treatment for latent EBV infection? Cell Cycle. 9:1665–1666. 2010. View Article : Google Scholar : PubMed/NCBI | |
Meckes DG Jr and Raab-Traub N: Microvesicles and viral infection. J Virol. 85:12844–12854. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, et al: Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA. 107:6328–6333. 2010. View Article : Google Scholar : PubMed/NCBI | |
Raimondo F, Morosi L, Chinello C, Magni F and Pitto M: Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery. Proteomics. 11:709–720. 2011. View Article : Google Scholar | |
Meckes DG Jr, Shair KH, Marquitz AR, Kung CP, Edwards RH and Raab-Traub N: Human tumor virus utilizes exosomes for intercellular communication. Proc Natl Acad Sci USA. 107:20370–20375. 2010. View Article : Google Scholar : PubMed/NCBI | |
Meckes DG Jr, Gunawardena HP, Dekroon RM, et al: Modulation of B-cell exosome proteins by gamma herpesvirus infection. Proc Natl Acad Sci USA. 110:E2925–E2933. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schlee M, Krug T, Gires O, et al: Identification of Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) target proteins by proteome analysis: activation of EBNA2 in conditionally immortalized B cells reflects early events after infection of primary B cells by EBV. J Virol. 78:3941–3952. 2004. View Article : Google Scholar | |
Thurau M, Marquardt G, Gonin-Laurent N, et al: Viral inhibitor of apoptosis vFLIP/K13 protects endothelial cells against superoxide-induced cell death. J Virol. 83:598–611. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sakakibara S, Pise-Masison CA, Brady JN and Tosato G: Gene regulation and functional alterations induced by Kaposi’s sarcoma-associated herpesvirus-encoded ORFK13/vFLIP in endothelial cells. J Virol. 83:2140–2153. 2009.PubMed/NCBI | |
Feng X, Zhang J, Chen WN and Ching CB: Proteome profiling of Epstein-Barr virus infected nasopharyngeal carcinoma cell line: identification of potential biomarkers by comparative iTRAQ-coupled 2D LC/MS-MS analysis. J Proteomics. 74:567–576. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bartee E, McCormack A and Früh K: Quantitative membrane proteomics reveals new cellular targets of viral immune modulators. PLoS Pathog. 2:e1072006. View Article : Google Scholar : PubMed/NCBI | |
Si H, Verma SC and Robertson ES: Proteomic analysis of the Kaposi’s sarcoma-associated herpesvirus terminal repeat element binding proteins. J Virol. 80:9017–9030. 2006. | |
Kaul R, Verma SC and Robertson ES: Protein complexes associated with the Kaposi’s sarcoma-associated herpesvirus-encoded LANA. Virology. 364:317–329. 2007. | |
Boyne JR, Jackson BR, Taylor A, Macnab SA and Whitehouse A: Kaposi’s sarcoma-associated herpesvirus ORF57 protein interacts with PYM to enhance translation of viral intronless mRNAs. EMBO J. 29:1851–1864. 2010. | |
Jackson BR, Boyne JR, Noerenberg M, et al: An interaction between KSHV ORF57 and UIF provides mRNA-adaptor redundancy in Herpesvirus intronless mRNA export. PLoS Pathog. 7:e10021382011. View Article : Google Scholar : PubMed/NCBI | |
Hiscox JA, Whitehouse A and Matthews DA: Nucleolar proteomics and viral infection. Proteomics. 10:4077–4086. 2010. View Article : Google Scholar : PubMed/NCBI | |
Boyne JR and Whitehouse A: Nucleolar disruption impairs Kaposi’s sarcoma-associated herpesvirus ORF57-mediated nuclear export of intronless viral mRNAs. FEBS Lett. 583:3549–3556. 2009.PubMed/NCBI | |
Taylor A, Jackson BR, Noerenberg M, et al: Mutation of a C-terminal motif affects Kaposi’s sarcoma-associated herpesvirus ORF57 RNA binding, nuclear trafficking, and multimerization. J Virol. 85:7881–7891. 2011.PubMed/NCBI | |
Jackson BR, Noerenberg M and Whitehouse A: A novel mechanism inducing genome instability in Kaposi’s sarcoma-associated herpesvirus infected cells. PLoS Pathog. 10:e10040982014.PubMed/NCBI | |
Malik-Soni N and Frappier L: Proteomic profiling of EBNA1-host protein interactions in latent and lytic Epstein-Barr virus infections. J Virol. 86:6999–7002. 2012. View Article : Google Scholar : PubMed/NCBI | |
Howe JG and Shu MD: Isolation and characterization of the genes for two small RNAs of herpesvirus papio and their comparison with Epstein-Barr virus-encoded EBER RNAs. J Virol. 62:2790–2798. 1988.PubMed/NCBI | |
Szebeni A, Mehrotra B, Baumann A, Adam SA, Wingfield PT and Olson MO: Nucleolar protein B23 stimulates nuclear import of the HIV-1 Rev protein and NLS-conjugated albumin. Biochemistry. 36:3941–3949. 1997. View Article : Google Scholar : PubMed/NCBI | |
Sander G, Konrad A, Thurau M, et al: Intracellular localization map of human herpesvirus 8 proteins. J Virol. 82:1908–1922. 2008. View Article : Google Scholar : PubMed/NCBI | |
Labo N, Miley W, Marshall V, et al: Heterogeneity and breadth of host antibody response to KSHV infection demonstrated by systematic analysis of the KSHV proteome. PLoS Pathog. 10:e10040462014. View Article : Google Scholar : PubMed/NCBI | |
Evans VC, Barker G, Heesom KJ, Fan J, Bessant C and Matthews DA: De novo derivation of proteomes from transcriptomes for transcript and protein identification. Nat Methods. 9:1207–1211. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dresang LR, Teuton JR, Feng H, et al: Coupled transcriptome and proteome analysis of human lymphotropic tumor viruses: insights on the detection and discovery of viral genes. BMC Genomics. 12:6252011. View Article : Google Scholar : PubMed/NCBI | |
Couzin J: Breakthrough of the year. Small RNAs make big splash. Science. 298:2296–2297. 2002.PubMed/NCBI | |
Dennis C: Small RNAs: the genome’s guiding hand? Nature. 420:7322002. | |
Jopling CL: Regulation of hepatitis C virus by microRNA-122. Biochem Soc Trans. 36:1220–1223. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ou M, Zhang X, Dai Y, et al: Identification of potential microRNA-target pairs associated with osteopetrosis by deep sequencing, iTRAQ proteomics and bioinformatics. Eur J Hum Genet. 5:625–632. 2013.PubMed/NCBI | |
Gallaher AM, Das S, Xiao Z, Andresson T, Kieffer-Kwon P, Happel C and Ziegelbauer J: Proteomic screening of human targets of viral microRNAs reveals functions associated with immune evasion and angiogenesis. PLoS Pathog. 9:e10035842013. View Article : Google Scholar : PubMed/NCBI | |
Huang TC, Pinto SM and Pandey A: Proteomics for understanding miRNA biology. Proteomics. 13:558–567. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Li N, Ma J, et al: First proteomic exploration of protein-encoding genes on chromosome 1 in human liver, stomach, and colon. J Proteome Res. 12:67–80. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Li N, Zhai L, et al: Systematic analysis of missing proteins provides clues to help define all of the protein-coding genes on human chromosome 1. J Proteome Res. 13:114–125. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tang F, Barbacioru C, Wang Y, et al: mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 6:377–382. 2009. View Article : Google Scholar : PubMed/NCBI | |
Islam S, Kjallquist U, Moliner A, Zajac P, Fan JB, Lönnerberg P and Linnarsson S: Highly multiplexed and strand-specific single-cell RNA 5′ end sequencing. Nat Protoc. 7:813–828. 2012.PubMed/NCBI | |
Salehi-Reyhani A, Kaplinsky J, Burgin E, et al: A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection. Lab Chip. 11:1256–1261. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lamond A: http://www.peptracker.com/dm/. Accessed June 1, 2014 | |
Boisvert FM, Ahmad Y, Gierliński M, et al: A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol Cell Proteomics. 11:M111.011429. 2012. View Article : Google Scholar : PubMed/NCBI | |
von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P and Snel B: STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 31:258–261. 2003.PubMed/NCBI | |
Mann M, Aebersold R, Robinson CV, et al: http://www.propsects-fp7.eu/resources/index.html. Accessed June 1, 2014 | |
Krupp M, Marquardt JU, Sahin U, Galle PR, Castle J and Teufel A: RNA-Seq Atlas - a reference database for gene expression profiling in normal tissue by next-generation sequencing. Bioinformatics. 28:1184–1185. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vizcaino JA, Deutsch EW, Wang R, et al: ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol. 32:223–226. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vinayagam A, Zirin J, Roesel C, et al: Integrating protein-protein interaction networks with phenotypes reveals signs of interactions. Nat Methods. 11:94–99. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jones JF, Shurin S, Abramowsky C, et al: T-cell lymphomas containing Epstein-Barr viral DNA in patients with chronic Epstein-Barr virus infections. New Engl J Med. 318:733–741. 1988. View Article : Google Scholar : PubMed/NCBI | |
Old LJ, Boyse EA, Oettgen HF, De Harven E, Geering G, Williamson B and Clifford P: Precipitating antibody in human serum to an antigen present in cultured Burkitt’s lymphoma cells. Proc Natl Acad Sci USA. 56:1699–1704. 1966.PubMed/NCBI |