Cell cycle checkpoint control: The cyclin G1/Mdm2/p53 axis emerges as a strategic target for broad‑spectrum cancer gene therapy - A review of molecular mechanisms for oncologists
- Authors:
- Erlinda M. Gordon
- Joshua R. Ravicz
- Seiya Liu
- Sant P. Chawla
- Frederick L. Hall
-
Affiliations: Cancer Center of Southern California/Sarcoma Oncology Center, Santa Monica, CA 90403, USA, Department of Cell Biology, Harvard University, Cambridge, MA 02138, USA, Aveni Foundation, Santa Monica, CA 90405, USA - Published online on: June 14, 2018 https://doi.org/10.3892/mco.2018.1657
- Pages: 115-134
-
Copyright: © Gordon et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Goel G, Makkar HP, Francis G and Becker K: Phorbol esters: Structure, biological activity, and toxicity in animals. Int J Toxicol. 26:279–288. 2007. View Article : Google Scholar : PubMed/NCBI | |
Weinstein IB: The origins of human cancer: Molecular mechanisms of carcinogenesis and their implications for cancer prevention and treatment-twenty-seventh G.H.A. Clowes memorial award lecture. Cancer Res. 48:4135–4143. 1988.PubMed/NCBI | |
Kikkawa U, Takai Y, Tanaka Y, Miyake R and Nishizuka Y: Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters. J Biol Chem. 258:11442–11445. 1983.PubMed/NCBI | |
Cooke M, Magimaidas A, Casado-Medrano V and Kazanietz MG: Protein kinase C in cancer: The top five unanswered questions. Mol Carcinog. 56:1531–1542. 2017. View Article : Google Scholar : PubMed/NCBI | |
Reid BJ, Culotti JG, Nash RS and Pringle JR: Forty-five years of cell-cycle genetics. Mol Biol Cell. 26:4307–4312. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yasutis KM and Kozminski KG: Cell cycle checkpoint regulators reach a zillion. Cell Cycle. 12:1501–1509. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jackson PK: The hunt for cyclin. Cell. 134:199–202. 2008. View Article : Google Scholar : PubMed/NCBI | |
Reed SI: G1 specific cyclins: In search for an S-phase promoting factor. Trends Genet. 7:95–99. 1991. View Article : Google Scholar : PubMed/NCBI | |
Pines J and Hunter T: Cyclin-dependent kinases: A new cell cycle motif? Trends Cell Biol. 1:117–121. 1991. View Article : Google Scholar : PubMed/NCBI | |
Kishimoto T: Entry into mitosis: A solution to the decades-long enigma of MPF. Chromosoma. 124:417–428. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nasmyth K: Viewpoint: Putting the cell cycle in order. Science. 274:1643–1645. 1996. View Article : Google Scholar : PubMed/NCBI | |
Strausfeld UP, Howell M, Descombes P, Chevalier S, Rempel RE, Adamczewski J, Maller JL, Hunt T and Blow JJ: Both cyclin A and cyclin E have S-phase promoting (SPF) activity in Xenopus egg extracts. J Cell Sci. 109:1555–1563. 1996.PubMed/NCBI | |
Vulliet PR, Hall FL, Mitchell JP and Hardie DG: Identification of a novel proline-directed serine/threonine protein kinase in rat pheochromocytoma. J Biol Chem. 264:16292–16298. 1989.PubMed/NCBI | |
Hall FL, Mitchell JP and Vulliet PR: Phosphorylation of synapsin I at a novel site by proline-directed protein kinase. J Biol Chem. 265:6944–6948. 1990.PubMed/NCBI | |
Hall FL and Vulliet PR: Proline-directed protein phosphorylation and cell cycle regulation. Curr Opin Cell Biol. 3:176–184. 1991. View Article : Google Scholar : PubMed/NCBI | |
Suzuki M: SPXX, a frequent sequence motif in gene regulatory proteins. J Mol Biol. 207:61–84. 1989. View Article : Google Scholar : PubMed/NCBI | |
Hall FL, Braun RK, Mihara K, Fung YT, Berndt N, Carbonaro-Hall DA and Vulliet PR: Characterization of the cytoplasmic proline-directed protein kinase in proliferative cells and tissues as a heterodimer comprised of p34cdc2 and p58cyclin A. J Biol Chem. 266:17430–17440. 1991.PubMed/NCBI | |
Elledge SJ, Richman R, Hall FL, Williams RT, Lodgson N and Harper JW: CDK2 encodes a 33-kDa cyclin A-associated protein kinase and is expressed before CDC2 in the cell cycle. Proc Natl Acad Sci USA. 89:2907–2911. 1992. View Article : Google Scholar : PubMed/NCBI | |
Peeper DS, Parker LL, Ewen ME, Toebes M, Hall FL, Xu M, Zantema A, van der Eb AJ and Piwnica-Worms H: A- and B-type cyclins differentially modulate substrate specificity of cyclin-cdk complexes. EMBO J. 12:1947–1954. 1995. | |
Giacinti C and Giordano A: RB and cell cycle progression. Oncogene. 25:5220–5227. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bertoli C, Skotheim JM and de Bruin RA: Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol. 14:518–528. 2013. View Article : Google Scholar : PubMed/NCBI | |
Foster DA, Yellen P, Xu L and Saqcena M: Regulation of G1 cell cycle progression: Distinguishing the restriction point from a nutrient-sensing cell growth checkpoint(s). Genes Cancer. 1:1124–1131. 2010. View Article : Google Scholar : PubMed/NCBI | |
Csikász-Nagy A, Kapuy O, Tóth A, Pál C, Jensen LJ, Uhlmann F, Tyson JJ and Novák B: Cell cycle regulation by feed-forward loops coupling transcription and phosphorylation. Mol Syst Biol. 5:2362009. View Article : Google Scholar : PubMed/NCBI | |
Weinberg RA: The biology of cancer, 2nd edition, Chapter 9: p53 and apoptosis: Master guardian and executioner. Garland Sci; New York: 2014 | |
Vermeulen K, Van Bockstaele DR and Berneman ZN: The cell cycle: A review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36:131–149. 2003. View Article : Google Scholar : PubMed/NCBI | |
Deshpande A, Sicinski P and Hinds PW: Cyclins and cdks in development and cancer: A perspective. Oncogene. 24:2909–2915. 2005. View Article : Google Scholar : PubMed/NCBI | |
Malumbres M: Cyclin-dependent kinases. Genome Biol. 15:1222014. View Article : Google Scholar : PubMed/NCBI | |
Sherr CJ and McCormick F: The RB and p53 pathways in cancer. Cancer Cell. 2:103–112. 2002. View Article : Google Scholar : PubMed/NCBI | |
Giordano A, McCall C, Whyte P and Franza BR Jr: Human cyclin A and the retinoblastoma protein interact with similar but distinguishable sequences in the adenovirus E1A gene product. Oncogene. 6:481–485. 1991.PubMed/NCBI | |
Wang J, Chenivesse X, Henglein B and Bréchot C: Hepatitis B virus integration in a cyclin A gene in a hepatocellular carcinoma. Nature. 343:555–557. 1990. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zindy F, Chenivesse X, Lamas E, Henglein B and Bréchot C: Modification of cyclin A expression by hepatitis B virus DNA integration in a hepatocellular carcinoma. Oncogene. 7:1653–1656. 1992.PubMed/NCBI | |
Bréchot C: Oncogenic activation of cyclin A. Curr Opin Genet Dev. 3:11–18. 1993. View Article : Google Scholar : PubMed/NCBI | |
Bodey B, Williams RT, Carbonaro-Hall DA, Horvath A, Tolo VT, Luck JV Jr, Taylor CR and Hall FL: Immunocytochemical detection of cyclin A and cyclin D in formalin-fixed, paraffin-embedded tissues: Novel, pertinent markers of cell proliferation. Mod Pathol. 7:846–852. 1994.PubMed/NCBI | |
Motokura T and Arnold A: Cyclin D and oncogenesis. Curr Opin Genet Dev. 3:5–10. 1993. View Article : Google Scholar : PubMed/NCBI | |
Hunter T and Pines J: Cyclins and Cancer II: Cyclin D and CDK inhibitors come of age. Cell. 79:573–582. 1994. View Article : Google Scholar : PubMed/NCBI | |
Santamaria D, Barrière C, Cerqueira A, Hunt S, Tardy C, Newton K, Cáceres JF, Dubus P, Malumbres M and Barbacid M: Cdk1 is sufficient to drive the mammalian cell cycle. Nature. 448:811–815. 2007. View Article : Google Scholar : PubMed/NCBI | |
Blagosklonny MV and Pardee AB: The restriction point of the cell cycle. Cell Cycle. 1:103–110. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hwang HC and Clurman BE: Cyclin E in normal and neoplastic cell cycles. Oncogene. 24:2776–2786. 2005. View Article : Google Scholar : PubMed/NCBI | |
Narasimha AM, Kaulich M, Shapiro GS, Choi YJ, Sicinski P and Dowdy SF: Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. Elife. 3:2014.doi: 10.7554/eLife.02872. View Article : Google Scholar : PubMed/NCBI | |
El-Deiry WS: p21(WAF1) mediates cell cycle inhibition, relevant to cancer suppression and therapy. Cancer Res. 76:5189–5191. 2016. View Article : Google Scholar : PubMed/NCBI | |
Roussel MF: The INK4 family of cell cycle inhibitors in cancer. Oncogene. 18:5311–5317. 1999. View Article : Google Scholar : PubMed/NCBI | |
Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D and DePinho RA: Role of the INK4a locus in tumor suppression and cell mortality. Cell. 85:27–37. 1996. View Article : Google Scholar : PubMed/NCBI | |
Shapiro GI and Harper JW: Anticancer drug targets: Cell cycle and checkpoint control. J Clin Invest. 104:1645–1653. 1999. View Article : Google Scholar : PubMed/NCBI | |
Casimiro MC, Velasco-Velázquez M, Aguirre-Alvarado C and Pestell RG: Overview of cyclins D1 function in cancer and the CDK inhibitor landscape: Past and present. Expert Opin Investig Drugs. 23:295–304. 2014. View Article : Google Scholar : PubMed/NCBI | |
Abbas T and Dutta A: p21 in cancer: Intricate networks and multiple activities. Nat Rev Cancer. 9:400–414. 2009. View Article : Google Scholar : PubMed/NCBI | |
Peyressatre M, Prével C, Pellerano M and Morris MC: Targeting cyclin-dependent kinases in human cancers: From small molecules to Peptide inhibitors. Cancers (Basel). 7:179–237. 2015. View Article : Google Scholar : PubMed/NCBI | |
Asghar U, Witkiewicz AK, Turner NC and Knudsen ES: The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov. 14:130–146. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sherr CJ, Beach D and Shapiro GI: Targeting CDK4 and CDK6: From discovery to therapy. Cancer Discov. 6:353–367. 2016. View Article : Google Scholar : PubMed/NCBI | |
Horne MC, Goolsby GL, Donaldson KL, Tran D, Neubauer M and Wahl AF: Cyclin G1 and Cyclin G2 comprise a new family of cyclins with contrasting tissue-specific and cell cycle-regulated expression. J Biol Chem. 271:6050–6061. 1996. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Liu L, Yee A, Carbonarohall D, Tolo V and Hall F: Molecular-cloning of the human CYCG1 gene encoding a G-type cyclin-overexpression in human osteosarcoma cells. Oncol Rep. 1:705–711. 1994.PubMed/NCBI | |
Okamoto K and Beach D: Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO J. 13:4816–4822. 1994.PubMed/NCBI | |
Efeyan A and Serrano M: p53: Guardian of the genome and policeman of the oncogenes. Cell Cycle. 6:1006–1010. 2007. View Article : Google Scholar : PubMed/NCBI | |
Smith ML, Kontny HU, Bortnick R and Fornace AJ Jr: The p53-regulated cyclin G gene promotes cell growth: p53 downstream effectors cyclin G and Gadd45 exert different effects on cisplatin chemosensitivity. Exp Cell Res. 230:61–68. 1997. View Article : Google Scholar : PubMed/NCBI | |
Skotzko M, Wu L, Anderson WF, Gordon EM and Hall FL: Retroviral vector-mediated gene transfer of antisense Cyclin G1 (CYCG1) inhibits proliferation of human osteogenic sarcoma cells. Cancer Res. 55:5493–5498. 1995.PubMed/NCBI | |
Chen DS, Zhu NL, Hung G, Skotzko MJ, Hinton DR, Tolo V, Hall FL, Anderson WF and Gordon EM: Retroviral vector-mediated transfer of an antisense cyclin G1 construct inhibits osteosarcoma tumor growth in nude mice. Hum Gene Ther. 8:1667–1674. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hung G, Skotzko MJ, Chang M, Zhu NL, Parekh D, Hall FL, Gordon EM and Anderson WF: Intratumoral injection of an antisense cyclin G1 retroviral vector inhibits growth of undifferentiated carcinoma xenografts in nude mice. Pediatr Hematol Oncol. 4:317–325. 1997. | |
Piette J, Neel H and Maréchal V: Mdm2: Keeping p53 under control. Oncogene. 15:1001–1010. 1997. View Article : Google Scholar : PubMed/NCBI | |
Momand J, Jung D, Wilczynski S and Niland J: The MDM2 gene amplification database. Nucleic Acids Res. 26:3453–3459. 1998. View Article : Google Scholar : PubMed/NCBI | |
Haupt S, Vijayakumaran R, Miranda PJ, Burgess A, Lim E and Haupt Y: The role of MDM2 and MDM4 in breast cancer development and prevention. J Mol Cell Biol. 9:53–61. 2017.PubMed/NCBI | |
Momand J, Zambetti GP, Olson DC, George D and Levine AJ: The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 69:1237–1245. 1992. View Article : Google Scholar : PubMed/NCBI | |
Iwakuma T and Lozano G: DM2, an introduction. Mol Cancer Res. 1:993–1000. 2003.PubMed/NCBI | |
Shi D and Gu W: Dual roles of MDM2 in the regulation of p53: Ubiquitination dependent and ubiquitination independent mechanisms of MDM2 repression of p53 activity. Genes Cancer. 3:240–248. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shangary S and Wang S: Targeting the MDM2-p53 interaction for cancer therapy. Clin Cancer Res. 14:5318–5324. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tisato V, Voltan R, Gonelli A, Secchiero P and Zauli G: MDM2/X inhibitors under clinical evaluation: Perspectives for the management of hematological malignancies and pediatric cancer. J Hematol Oncol. 10:1332017. View Article : Google Scholar : PubMed/NCBI | |
Estrada-Ortiza N, Neochoritisa CG and Dömlinga A: How to design a successful p53-MDM2/X interaction inhibitor: A thorough overview based on crystal structures. Chem Med Chem. 11:757–772. 2016. View Article : Google Scholar : PubMed/NCBI | |
Meek DW and Knippschild U: Posttranslational modification of MDM2. Mol Cancer Res. 1:1017–1026. 2003.PubMed/NCBI | |
Okamoto K, Kamibayashi C, Serrano M, Prives C, Mumby MC and Beach D: p53-dependent association between cyclin G and the B' subunit of protein phosphatase 2A. Mol Cell Biol. 16:6593–6602. 1996. View Article : Google Scholar : PubMed/NCBI | |
Okamoto K, Li H, Jensen MR, Zhang T, Taya Y, Thorgeirsson SS and Prives C: Cyclin G recruits PP2A to dephosphorylate Mdm2. Mol Cell. 9:761–771. 2002. View Article : Google Scholar : PubMed/NCBI | |
Westermarck J and Hahn WC: Multiple pathways regulated by the tumor suppressor PP2A in transformation. Trends Mol Med. 14:152–160. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kimura SH and Nojima H: Cyclin G1 associates with MDM2 and regulates accumulation and degradation of p53 protein. Genes Cells. 7:869–880. 2002. View Article : Google Scholar : PubMed/NCBI | |
Giono LE and Manfredi JJ: The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol. 209:13–20. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen X: Cyclin G: A regulator of the p53-Mdm2 network. Dev Cell. 2:518–519. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jensen MR, Factor VM, Fantozzi A, Helin K, Huh CG and Thorgeirsson SS: Reduced hepatic tumor incidence in cyclin G1-deficient mice. Hepatology. 37:862–870. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhu NL, Wu L, Liu PX, Gordon EM, Anderson WF, Starnes VA and Hall FL: Down-regulation of cyclin G1 expression by retrovirus-mediated antisense gene transfer inhibits vascular smooth muscle cell proliferation and neointima formation. Circulation. 96:628–635. 1997. View Article : Google Scholar : PubMed/NCBI | |
Kampmeier J, Behrens A, Wang Y, Yee A, Anderson WF, Hall FL, Gordon EM and McDonnell PJ: Inhibition of rabbit keratocyte and human fetal lens epithelial cell proliferation by retroviral-mediated transfer of antisense cyclin G1 and antisense MAT1 constructs. Hum Gene Ther. 11:1–8. 2000. View Article : Google Scholar : PubMed/NCBI | |
Jensen MR, Factor VM and Thorgeirsson SS: Regulation of Cyclin G1 during murine hepatic regeneration following Dipin-induced DNA damage. Hepatology. 28:537–546. 1998. View Article : Google Scholar : PubMed/NCBI | |
Xu F, Prescott MF, Liu PX, Chen ZH, Liau G, Gordon EM and Hall FL: Long term inhibition of neointima formation in balloon-injured rat arteries by intraluminal instillation of a matrix-targeted retroviral vector bearing an improved cytocidal Cyclin G1 construct. Int J Mol Med. 8:19–30. 2001.PubMed/NCBI | |
Waehler R, Russell SJ and Curiel DT: Engineering targeted viral vectors for gene therapy. Nature Rev Genet. 8:573–587. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hall FL, Gordon EM, Wu L, Zhu NL, Skotzko MJ, Starnes VA and Anderson WF: Targeting retroviral vectors to vascular lesions by genetic engineering of the MoMLV gp70 envelope protein. Hum Gene Ther. 8:2183–2192. 1997. View Article : Google Scholar : PubMed/NCBI | |
Weimin Wu B, Cannon PM, Gordon EM, Hall FL and Anderson WF: Characterization of the proline-rich region of murine leukemia virus envelope protein. J Virol. 72:5383–5391. 1998.PubMed/NCBI | |
Hall FL, Liu L, Zhu NL, Stapfer M, Anderson WF, Beart RW and Gordon EM: Molecular engineering of matrix-targeted retroviral vectors incorporating a surveillance function inherent in von Willebrand factor. Hum Gene Ther. 11:983–993. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zhu NL, Gordon EM, Liu L, Terramani T, Anderson WF and Hall FL: Collagen-targeted retroviral vectors displaying domain D2 of von Willebrand factor (vWF-D2) enhance gene transfer to human tissue explants. Int J Pediatr Hematol Oncol. 7:325–335. 2001. | |
Gordon EM, Zhu NL, Forney Prescott M, Chen ZH, Anderson WF and Hall FL: Lesion-targeted injectable vectors for vascular restenosis. Hum Gene Ther. 12:1277–1287. 2001. View Article : Google Scholar : PubMed/NCBI | |
Behrens A, Gordon EM, Li L, Liu PX, Chen Z, Peng H, La Bree L, Anderson WF, Hall FL and McDonnell PJ: Retroviral gene therapy vectors for prevention of excimer laser-induced corneal haze. Invest Ophthalmol Vis Sci. 43:968–977. 2002.PubMed/NCBI | |
Song JC, McDonnell PJ, Gordon EM, Hall FL and Anderson WF: Phase I/II evaluation of safety and efficacy and a matrix-targeted retroviral vector bearing a dominant negative cyclin G1 construct (Mx-dnG1) as adjunctive intervention for superficial corneal opacity/corneal scarring. Hum Gene Ther. 14:306–309. 2003.PubMed/NCBI | |
Gordon EM, Liu PX, Chen ZH, Liu L, Whitley MD, Gee C, Groshen S, Hinton DR, Beart RW and Hall FL: Inhibition of metastatic tumor growth in nude mice by portal vein infusions of matrix-targeted retroviral vectors bearing a cytocidal cyclin G1 construct. Cancer Res. 60:3343–3347. 2000.PubMed/NCBI | |
Gordon EM, Liu PX, Chen ZH, Liu L, Whitley M, Liu L, Wei D, Groshen S, Hinton DR, Anderson WF, Beart RW Jr and Hall FL: Systemic administration of a matrix-targeted retroviral vector is efficacious for cancer gene therapy in mice. Hum Gene Ther. 12:193–204. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lenz HJ, Anderson WF, Hall FL and Gordon EM: Tumor site specific phase I evaluation of safety and efficacy of hepatic arterial infusion of a matrix-targeted retroviral vector bearing a dominant negative Cyclin G1 construct as treatment for colorectal carcinoma metastatic to liver. Hum Gene Ther. 13:1515–1537. 2002. View Article : Google Scholar : PubMed/NCBI | |
Le Tourneau C, Lee JJ and Siu LL: Dose escalation methods in phase I cancer clinical trials. J Natl Cancer Inst. 101:708–720. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gordon EM, Cornelio GH, Lorenzo CC III, Levy JP, Reed RA, Liu L and Hall FL: First clinical experience using a ‘pathotropic’ injectable retroviral vector (Rexin-G) as intervention for stage IV pancreatic cancer. Int J Oncol. 24:177–185. 2004.PubMed/NCBI | |
Gordon EM, Lopez FF, Cornelio GH, Lorenzo CC III, Levy JP, Reed RA, Liu L, Bruckner HW and Hall FL: Pathotropic nanoparticles for cancer gene therapy Rexin-G IV: Three-year clinical experience. Int J Oncol. 29:1053–1064. 2006.PubMed/NCBI | |
Galanis E, Carlso SK, Foster NR, Lowe V, Quevedo F, McWilliams RR, Grothey A, Jatoi A, Alberts SR and Rubin J: Phase I trial of a pathotropic retroviral vector expressing a cytocidal cyclin G1 construct (Rexin-G) in patients with advanced pancreatic cancer. Mol Ther. 16:979–984. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chawla SP, Chua VS, Mohan V, Alzwahereh K, Kalra A, Quon D, Gordon EM and Hall FL: Phase I/II study of targeted gene delivery in vivo-intravenous infusions of Rexin-G demonstrate significant biologic activity by FDG PET-CT without toxicity in patients with progressive chemo-resistant sarcoma, breast cancer and pancreatic cancer. J Clin Oncol. 26 15-Suppl:S14509. 2008. View Article : Google Scholar | |
Chawla SP, Chua VS, Fernandez L, Quon D, Saralou A, Blackwelder WC, Hall FL and Gordon EM: Evaluation of the safety and efficacy of ‘pathotropic’ nanoparticles bearing a dominant-negative Cyclin G1 construct (Rexin-G) as monotherapy for chemo-resistant osteosarcoma and other sarcomas-phase I/II and phase II studies. J Clin Oncol. 27:10513. 2009. | |
Chawla SP, Chua VS, Fernandez L, Quon D, Saralou A, Blackwelder WC, Hall FL and Gordon EM: Phase I/II and phase II studies of targeted gene delivery in vivo: intravenous Rexin-G for chemotherapy-resistant sarcoma and osteosarcoma. Mol Ther. 17:1651–1657. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chawla SP, Chawla NS, Quon D, Chua-Alcala V, Blackwelder WC, Hall FL and Gordon EM: An advanced phase 1/2 study using an XC-targeted gene therapy vector for chemotherapy resistant sarcoma. Sarcoma Res Int. 3:1024–1031. 2016. | |
Chawla SP, Chua VS, Fernandez L, Quon D, Blackwelder WC, Gordon EM and Hall FL: Advanced phase I/II studies of targeted gene delivery in vivo: Intravenous Rexin-G for gemcitabine-resistant metastatic pancreatic cancer. Mol Ther. 18:435–441. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gordon EM and Hall FL: Rexin-G, a targeted genetic medicine for cancer. Expert Opin Biol Ther. 10:819–832. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gordon EM, Chan MT, Geraldino N, Lopez FF, Cornelio GH, Lorenzo CC III, Levy JP, Reed RA, Liu L and Hall FL: Le morte du tumour: Histological features of tumor destruction in chemo-resistant cancers following intravenous infusions of pathotropic nanoparticles bearing therapeutic genes. Int J Oncol. 30:1297–1307. 2007.PubMed/NCBI | |
Gordon EM and Hall FL: A primer on pathotropic medicine. In ‘one hundred years of the FDA and the future of global health. Brooklands New Media Ltd; Shopshire UK: pp. 842007 | |
Kim S, Federman N, Gordon EM, Hall FL and Chawla SP: Rexin-G®, a tumor-targeted retrovector for malignant peripheral nerve sheath tumor: A case report. Mol Clin Oncol. 6:861–865. 2017. View Article : Google Scholar : PubMed/NCBI | |
Feng Z, Zhang C, Wu R and Hu W: Tumor suppressor p53 meets microRNAs. J Mol Cell Biol. 3:44–50. 2011. View Article : Google Scholar : PubMed/NCBI | |
Huang S and He X: The role of microRNAs in liver cancer progression. Br J Cancer. 104:235–240. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG, Calin GA, Giovannini C, Ferrazzi E, Grazi LG, et al: Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res. 67:6092–6099. 2007. View Article : Google Scholar : PubMed/NCBI | |
Coulouarn C, Factor VM, Andersen JB, Durkin ME and Thorgeirsson SS: Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene. 28:3526–3536. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fornari F, Gramantieri L, Giovannini C, Veronese A, Ferracin M, Sabbioni S, Calin GA, Grazi GL, Croce CM, Tavolari S, et al: MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 69:5761–5767. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Wu S, Tong L, Luan T, Lin L, Lu S, Zhao W, Ma Q, Liu H and Zhong Z: miR-122 affects the viability and apoptosis of hepatocellular carcinoma cells. Scand J Gastroenternol. 44:1332–1339. 2009. View Article : Google Scholar | |
Ma L, Liu J, Shen J, Liu L, Wu J, Li W, Luo J, Chen Q and Qian C: Expression of miR-122 mediated by adenoviral vector induces apoptosis and cell cycle arrest of cancer cells. Cancer Biol Ther. 9:554–561. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hsu SH, Wang B, Kota J, Yu J, Costinean S, Kutay H, Yu L, Bai S, La Perle K, Chivukula RR, et al: Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest. 122:2871–2883. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bandopadhyay M, Sarkar N, Datta S, Das D, Pal A, Panigrahi1 R, Banerjee A, Panda CK, Das C, Chakrabarti S and Chakravarty R: Hepatitis B virus X protein mediated suppression of miRNA-122 expression enhances hepatoblastoma cell proliferation through cyclin G1-p53 axis. Infect Agent Cancer. 11:402016. View Article : Google Scholar : PubMed/NCBI | |
Reimer CL, Borras AM, Kurdistani SK, Garreau JR, Chung M, Aaronson SA and Lee SW: Altered regulation of Cyclin G in human breast cancer and its specific localization at replication foci in response to DNA damage in p53+/+ cells. J Biol Chem. 274:11022–11029. 1999. View Article : Google Scholar : PubMed/NCBI | |
Perez R, Wu N, Klipfel AA and Beart RW Jr: A better cell cycle target for gene therapy of colorectal cancer: Cyclin G. J Gastrointest Surg. 7:884–889. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wen W, Ding J, Sun W, Fu J, Chen Y, Wu K, Ning B, Han T, Huang L, Chen C, et al: Cyclin G1-mediated epithelial-mesenchymal transition via phosphoinositide 3-kinase/Akt signaling facilitates liver cancer progression. Hepatology. 55:1787–1798. 2012. View Article : Google Scholar : PubMed/NCBI | |
Weinstein B and Joe A: Oncogene addiction. Cancer Res. 68:3077–3080. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li H, Okamoto K, Peart MJ and Prives C: Lysine-independent turnover of Cyclin G1 can be stabilized by B'alpha subunits of protein phosphatase 2A. Mol Cell Biol. 29:919–928. 2009. View Article : Google Scholar : PubMed/NCBI | |
Piscopo DM and Hinds PW: A role for the cyclin box in the ubiquitin-mediated degradation of cyclin G1. Cancer Res. 68:5581–5590. 2008. View Article : Google Scholar : PubMed/NCBI | |
Seo HR, Kim J, Bae S, Soh JW and Lee YS: Cdk5-mediated phosphorylation of c-Myc on Ser-62 is essential in transcriptional activation of cyclin B1 by Cyclin G1. J Biol Chem. 283:15601–15610. 2008. View Article : Google Scholar : PubMed/NCBI | |
Menssen A and Hermeking H: Characterization of the c-MYC-regulated transcriptome by SAGE: Identification and analysis of c-MYC target genes. Proc Natl Acad Sci USA. 99:6274–6279. 2002. View Article : Google Scholar : PubMed/NCBI | |
Morita N, Kiryu S and Kiyama H: p53-independent Cyclin G expression in a group of mature neurons and its enhanced expression during nerve regeneration. J Neurosci. 16:5961–5966. 1996. View Article : Google Scholar : PubMed/NCBI | |
Sultana R and Butterfield DA: Regional expression of key cell cycle proteins in brain from subjects with amnestic mild cognitive impairment. Neurochem Res. 32:655–662. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Mufson EJ and Herrup K: Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer's disease. J Neurosci. 23:2557–2563. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lee MS, Kwon YT, Li M, Peng J, Friedlander RM and Tsai LH: Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature. 405:360–364. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ko J, Humbert S, Bronson RT, Takahashi S, Kulkarni AB, Li E and Tsai L: p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J Neurosci. 21:6758–6771. 2001. View Article : Google Scholar : PubMed/NCBI | |
Cheung ZH, Gong K and Ip NY: Cyclin-dependent kinase 5 supports neuronal survival through phosphorylation of Bcl-2. J Neurosci. 28:4872–4877. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cruz JC, Tseng HC, Goldman JA, Shih H and Tsai LH: Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron. 40:471–483. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tansey WP: Mammalian MYC proteins and cancer. New J Sci. 2014:Article ID 757534. 2014. View Article : Google Scholar | |
Dang CV, Reddy EP, Shokat KM and Soucek L: Drugging the ‘undruggable’ cancer targets. Nat Rev Cancer. 17:502–508. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Xu J, Ji D, Li Z, He W, Yang F, Lan H, Wang Y, Wu Z, Liu X, et al: Cyclin G1 amplification enhances aurora kinase inhibitor-induced polyploid resistance and inhibition of Bcl-2 pathway reverses the resistance. Cell Physiol Biochem. 43:94–107. 2017. View Article : Google Scholar : PubMed/NCBI | |
Russell P, Hennessy BT, Li J, Carey MS, Bast RC, Freeman T and Venkitaraman AR: Cyclin G1 regulates the outcome of taxane-induced mitotic checkpoint arrest. Oncogene. 31:2450–2460. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shang Y, Feng B, Zhou L, Ren G, Zhang Z, Fan X, Sun Y, Luo G, Liang J, Wu K, et al: The miR27b-CCNG1-P53-miR-508-5p axis regulates multidrug resistance of gastric cancer. Oncotarget. 7:538–549. 2015. | |
Zhang H, Hao Y, Yang J, Zhou Y, Li J, Yin S, Sun C, Ma M, Huang Y and Xi JJ: Genome-wide functional screening of miR-23b as a pleiotropic modulator suppressing cancer metastasis. Nat Commun. 2:5542011. View Article : Google Scholar : PubMed/NCBI | |
Yan J, Jiang JY, Meng XN, Xiu YL and Zong ZH: MiR-23b targets cyclin G1 and suppresses ovarian cancer tumorigenesis and progression. J Exp Clin Cancer Res. 35:312016. View Article : Google Scholar : PubMed/NCBI | |
Uchihashi T, Ota K, Yabuno Y, Ohno S, Fukushima K, Naito Y, Kogo M, Yabuta N and Nojima H: ELAS1 induces apoptotic death in adenocarcinoma DU145 and squamous-cell carcinoma SAS cancer cells, but not in normal KD cells. Oncotarget. 8:85868–85882. 2017. View Article : Google Scholar : PubMed/NCBI | |
Brown NR, Noble ME, Endicott JA, Garman EF, Wakatsuki S, Mitchell E, Rasmussen B, Hunt T and Johnson LN: The crystal structure of Cyclin A. Structure. 3:1235–1247. 1995. View Article : Google Scholar : PubMed/NCBI | |
Ferro ES, Hyslop S and Camargo AC: Intracellullar peptides as putative natural regulators of protein interactions. J Neurochem. 91:769–777. 2004. View Article : Google Scholar : PubMed/NCBI | |
de Araujo CB, Russo LC, Castro LM, Forti FL, do Monte ER, Rioli V, Gozzo FC, Colquhoun A and Ferro ES: A Novel intracellular peptide derived from g1/s cyclin d2 induces cell death. J Biol Chem. 289:16711–16726. 2014. View Article : Google Scholar : PubMed/NCBI | |
Russo LC, Araujo CB, Iwai LK, Ferro ES and Forti FL: A cyclin D2-derived peptide acts on specific cell cycle phases by activating ERK1/2 to cause the death of breast cancer cells. J Proteomics. 151:24–32. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gondeau C, Gerbal-Chaloin S, Bello P, Aldrian-Herrada G, Morris MC and Divita G: Design of a novel class of peptide inhibitors of cyclin-dependent kinase/cyclin activation. J Biol Chem. 280:13793–13800. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ahuja D, Sáenz-Robles MT and Pipas JM: SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene. 24:7729–7745. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ohno S, Naito Y, Mukai S, Yabuta N and Nojima H: ELAS1-mediated inhibition of the cyclin G1-B’γ interaction promotes cancer cell apoptosis via stabilization and activation of p53. Oncogene. 34:5983–5996. 2015. View Article : Google Scholar : PubMed/NCBI |