1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar
|
2
|
Ellsworth RE, Blackburn HL, Shriver CD,
Soon-Shiong P and Ellsworth DL: Molecular heterogeneity in breast
cancer: State of the science and implications for patient care.
Semin Cell Dev Biol. 64:65–72. 2017.PubMed/NCBI View Article : Google Scholar
|
3
|
Liang DH, Ensor JE, Liu Z, Patel A, Patel
TA, Chang JC and Rodriguez AA: Cell-free DNA as a molecular tool
for monitoring disease progression and response to therapy in
breast cancer patients. Breast Cancer Res Treat. 155:139–149.
2016.PubMed/NCBI View Article : Google Scholar
|
4
|
Wang R, Li X, Zhang H, Wang K and He J:
Cell-free circulating tumor DNA analysis for breast cancer and its
clinical utilization as a biomarker. Oncotarget. 8:75742–75755.
2017.PubMed/NCBI View Article : Google Scholar
|
5
|
Lo YM, Zhang J, Leung TN, Lau TK, Chang AM
and Hjelm NM: Rapid clearance of fetal DNA from maternal plasma. Am
J Human Genet. 64:218–224. 1999.PubMed/NCBI View
Article : Google Scholar
|
6
|
Chang Y, Tolani B, Nie X, Zhi X, Hu M and
He B: Review of the clinical applications and technological
advances of circulating tumor DNA in cancer monitoring. Ther Clin
Risk Manag. 13:1363–1374. 2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Wan JCM, Massie C, Garcia-Corbacho J,
Mouliere F, Brenton JD, Caldas C, Pacey S, Baird R and Rosenfeld N:
Liquid biopsies come of age: Towards implementation of circulating
tumour DNA. Nat Rev Cancer. 17:223–238. 2017.PubMed/NCBI View Article : Google Scholar
|
8
|
Bronkhorst AJ, Ungerer V and Holdenrieder
S: The emerging role of cell-free DNA as a molecular marker for
cancer management. Biomol Detect Quantif. 17(100087)2019.PubMed/NCBI View Article : Google Scholar
|
9
|
Snyder MW, Kircher M, Hill AJ, Daza RM and
Shendure J: Cell-free DNA comprises an in vivo nucleosome footprint
that informs its Tissues-Of-Origin. Cell. 164:57–68.
2016.PubMed/NCBI View Article : Google Scholar
|
10
|
Moss J, Magenheim J, Neiman D, Zemmour H,
Loyfer N, Korach A, Samet Y, Maoz M, Druid H, Arner P, et al:
Comprehensive human cell-type methylation atlas reveals origins of
circulating cell-free DNA in health and disease. Nat Commun.
9(5068)2018.PubMed/NCBI View Article : Google Scholar
|
11
|
Merker JD, Oxnard GR, Compton C, Diehn M,
Hurley P, Lazar AJ, Lindeman N, Lockwood CM, Rai AJ, Schilsky RL,
et al: Circulating tumor DNA analysis in patients with cancer:
American Society of Clinical Oncology and College of American
Pathologists Joint Review. J Clin Oncol. 36:1631–1641.
2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Dawson SJ, Tsui DW, Murtaza M, Biggs H,
Rueda OM, Chin SF, Dunning MJ, Gale D, Forshew T, Mahler-Araujo B,
et al: Analysis of circulating tumor DNA to monitor metastatic
breast cancer. N Engl J Med. 368:1199–1209. 2013.PubMed/NCBI View Article : Google Scholar
|
13
|
Eigeliene N, Saarenheimo J and Jekunen A:
Potential of liquid biopsies for breast cancer screening,
diagnosis, and response to treatment. Oncology. 96:115–124.
2019.PubMed/NCBI View Article : Google Scholar
|
14
|
Buono G, Gerratana L, Bulfoni M,
Provinciali N, Basile D, Giuliano M, Corvaja C, Arpino G, Del
Mastro L, De Placido S, et al: Circulating tumor DNA analysis in
breast cancer: Is it ready for prime-time? Cancer Treat Rev.
73:73–83. 2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Xu C, Gu X, Padmanabhan R, Wu Z, Peng Q,
DiCarlo J and Wang Y: smCounter2: An accurate low-frequency variant
caller for targeted sequencing data with unique molecular
identifiers. Bioinformatics. 35:1299–1309. 2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Beaver JA, Jelovac D, Balukrishna S,
Cochran RL, Croessmann S, Zabransky DJ, Wong HY, Valda Toro P,
Cidado J, Blair BG, et al: Detection of cancer DNA in plasma of
patients with Early-stage breast cancer. Clin Cancer Res.
20:2643–2650. 2014.PubMed/NCBI View Article : Google Scholar
|
17
|
Chae YK, Davis AA, Jain S, Santa-Maria C,
Flaum L, Beaubier N, Platanias LC, Gradishar W, Giles FJ and
Cristofanilli M: Concordance of genomic alterations by
next-generation sequencing in tumor tissue versus circulating tumor
DNA in breast cancer. Mol Cancer Ther. 16:1412–1420.
2017.PubMed/NCBI View Article : Google Scholar
|
18
|
Page K, Guttery DS, Fernandez-Garcia D,
Hills A, Hastings RK, Luo J, Goddard K, Shahin V, Woodley-Barker L,
Rosales BM, et al: Next generation sequencing of circulating
Cell-free DNA for evaluating mutations and gene amplification in
metastatic breast cancer. Clin Chem. 63:532–541. 2017.PubMed/NCBI View Article : Google Scholar
|
19
|
Shatsky R, Parker BA, Bui NQ, Helsten T,
Schwab RB, Boles SG and Kurzrock R: Next-generation sequencing of
tissue and circulating tumor DNA: The UC San Diego Moores center
for personalized cancer therapy experience with breast
malignancies. Mol Cancer Ther. 18:1001–1011. 2019.PubMed/NCBI View Article : Google Scholar
|
20
|
Cheng FT, Lapke N, Wu CC, Lu YJ, Chen SJ,
Yu PN, Liu YT and Tan KT: Liquid biopsy detects relapse five months
earlier than regular clinical follow-up and guides targeted
treatment in breast cancer. Case Rep Oncol Med.
2019(6545298)2019.PubMed/NCBI View Article : Google Scholar
|
21
|
Coombes RC, Page K, Salari R, Hastings RK,
Armstrong A, Ahmed S, Ali S, Cleator S, Kenny L, Stebbing J, et al:
Personalized detection of circulating tumor DNA antedates breast
cancer metastatic recurrence. Clin Cancer Res. 25:4255–4263.
2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Garcia-Murillas I, Chopra N, Comino-Méndez
I, Beaney M, Tovey H, Cutts RJ, Swift C, Kriplani D, Afentakis M,
Hrebien S, et al: Assessment of molecular relapse detection in
Early-stage breast cancer. JAMA Oncol. 5(1473)2019.PubMed/NCBI View Article : Google Scholar
|
23
|
Ma F, Zhu W, Guan Y, Yang L, Xia X, Chen
S, Li Q, Guan X, Yi Z, Qian H, et al: ctDNA dynamics: A novel
indicator to track resistance in metastatic breast cancer treated
with anti-HER2 therapy. Oncotarget. 7:66020–66031. 2016.PubMed/NCBI View Article : Google Scholar
|
24
|
Zerbino DR, Achuthan P, Akanni W, Amode
MR, Barrell D, Bhai J, Billis K, Cummins C, Gall A, Girón CG, et
al: Ensembl 2018. Nucleic Acids Res. 46:D754–D761. 2018.PubMed/NCBI View Article : Google Scholar
|
25
|
Kopanos C, Tsiolkas V, Kouris A, Chapple
CE, Aguilera MA, Meyer R and Massouras A: VarSome: The human
genomic variant search engine. Bioinformatics. 35:1978–1980.
2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Richards S, Aziz N, Bale S, Bick D, Das S,
Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al:
Standards and guidelines for the interpretation of sequence
variants: A joint consensus recommendation of the American College
of Medical Genetics and Genomics and the Association for Molecular
Pathology. Genet Med. 17:405–423. 2015.PubMed/NCBI View Article : Google Scholar
|
27
|
Tate JG, Bamford S, Jubb HC, Sondka Z,
Beare DM, Bindal N, Boutselakis H, Cole CG, Creatore C, Dawson E,
et al: COSMIC: The catalogue of somatic mutations in cancer.
Nucleic Acids Res. 47:D941–D947. 2019.PubMed/NCBI View Article : Google Scholar
|
28
|
Ades F, Zardavas D, Bozovic-Spasojevic I,
Pugliano L, Fumagalli D, de Azambuja E, Viale G, Sotiriou C and
Piccart M: Luminal B breast cancer: Molecular characterization,
clinical management, and future perspectives. J Clin Oncol.
32:2794–2803. 2014.PubMed/NCBI View Article : Google Scholar
|
29
|
Fallahpour S, Navaneelan T, De P and Borgo
A: Breast cancer survival by molecular subtype: A population-based
analysis of cancer registry data. CMAJ Open. 5:E734–E739.
2017.PubMed/NCBI View Article : Google Scholar
|
30
|
Russnes HG, Lingjærde OC, Børresen-Dale AL
and Caldas C: Breast cancer molecular stratification. Am J Pathol.
187:2152–2162. 2017.PubMed/NCBI View Article : Google Scholar
|
31
|
Halperin RF, Liang WS, Kulkarni S, Tassone
EE, Adkins J, Enriquez D, Tran NL, Hank NC, Newell J, Kodira C, et
al: Leveraging spatial variation in tumor purity for improved
somatic variant calling of archival tumor only samples. Front
Oncol. 9(119)2019.PubMed/NCBI View Article : Google Scholar
|
32
|
Lee LA, Arvai KJ and Jones D: Annotation
of sequence variants in cancer samples. J Mol Diagn. 17:339–351.
2015.
|
33
|
The Cancer Genome Atlas Network:
Comprehensive molecular portraits of human breast tumours. Nature
490: 61-70, 2012.
|
34
|
Zhang HY, Liang F, Jia ZL, Song ST and
Jiang ZF: PTEN mutation, methylation and expression in breast
cancer patients. Oncol Lett. 6:161–168. 2013.PubMed/NCBI View Article : Google Scholar
|
35
|
Carbognin L, Miglietta F, Paris I and
Dieci MV: Prognostic and predictive implications of PTEN in breast
cancer: Unfulfilled promises but intriguing perspectives. Cancers.
11(1401)2019.PubMed/NCBI View Article : Google Scholar
|
36
|
Olivier M, Langerød A, Carrieri P, Bergh
J, Klaar S, Eyfjord J, Theillet C, Rodriguez C, Lidereau R, Bièche
I, et al: The clinical value of somatic TP53 gene mutations in
1,794 patients with breast cancer. Clin Cancer Res. 12:1157–1167.
2006.PubMed/NCBI View Article : Google Scholar
|
37
|
Desmedt C, Voet T, Sotiriou C and Campbell
PJ: Next-generation sequencing in breast cancer: First take home
messages. Curr Opin Oncol. 24:597–604. 2012.PubMed/NCBI View Article : Google Scholar
|
38
|
Bertheau P, Lehmann-Che J, Varna M, Dumay
A, Poirot B, Porcher R, Turpin E, Plassa LF, de Roquancourt A,
Bourstyn E, et al: p53 in breast cancer subtypes and new insights
into response to chemotherapy. Breast. 22 (Suppl 2):S27–S29.
2013.PubMed/NCBI View Article : Google Scholar
|
39
|
Kodahl AR, Ehmsen S, Pallisgaard N,
Jylling AMB, Jensen JD, Laenkholm AV, Knoop AS and Ditzel HJ:
Correlation between circulating cell-free PIK3CA tumor DNA levels
and treatment response in patients with PIK3CA-mutated metastatic
breast cancer. Mol Oncol. 12:925–935. 2018.PubMed/NCBI View Article : Google Scholar
|
40
|
Zardavas D, Te Marvelde L, Milne RL,
Fumagalli D, Fountzilas G, Kotoula V, Razis E, Papaxoinis G,
Joensuu H, Moynahan ME, et al: Tumor PIK3CA genotype and prognosis
in early-stage breast cancer: A pooled analysis of individual
patient data. J Clin Oncol. 36:981–990. 2018.PubMed/NCBI View Article : Google Scholar
|
41
|
Alborelli I, Generali D, Jermann P,
Cappelletti MR, Ferrero G, Scaggiante B, Bortul M, Zanconati F,
Nicolet S, Haegele J, et al: Cell-free DNA analysis in healthy
individuals by next-generation sequencing: A proof of concept and
technical validation study. Cell Death Dis. 10(534)2019.PubMed/NCBI View Article : Google Scholar
|
42
|
De Mattos-Arruda L, Weigelt B, Cortes J,
Won HH, Ng CKY, Nuciforo P, Bidard FC, Aura C, Saura C, Peg V, et
al: Capturing intra-tumor genetic heterogeneity by de novo mutation
profiling of circulating cell-free tumor DNA: A proof-of-principle.
Ann Oncol. 25:1729–1735. 2014.PubMed/NCBI View Article : Google Scholar
|
43
|
Finzel A, Sadik H, Ghitti G and Laes JF:
The combined analysis of solid and liquid biopsies provides
additional clinical information to improve patient care. JCMT.
4(21)2018.
|
44
|
Rodriguez BJ, Córdoba GD, Aranda AG,
Álvarez M, Vicioso L, Pérez CL, Hernando C, Bermejo B, Parreño AJ,
Lluch A, et al: Detection of TP53 and PIK3CA mutations in
circulating tumor DNA using next-generation sequencing in the
screening process for early breast cancer diagnosis. J Clin Med.
8(1183)2019.
|
45
|
Chung JH, Pavlick D, Hartmaier R, Schrock
AB, Young L, Forcier B, Ye P, Levin MK, Goldberg M, Burris H, et
al: Hybrid capture-based genomic profiling of circulating tumor DNA
from patients with estrogen receptor-positive metastatic breast
cancer. Ann Oncol. 28:2866–2873. 2017.
|
46
|
Stover DG, Parsons HA, Ha G, Freeman SS,
Barry WT, Guo H, Choudhury AD, Gydush G, Reed SC, Rhoades J, et al:
Association of cell-free DNA tumor fraction and somatic copy number
alterations with survival in metastatic Triple-Negative breast
cancer. J Clin Oncol. 36:543–553. 2018.
|