1
|
Ferlay J, Colombet M, Soerjomataram I,
Mathers C, Parkin DM, Piñeros M, Znaor A and F Bray F: Estimating
the global cancer incidence and mortality in 2018: GLOBOCAN sources
and methods. Int J Cancer. 144:1941–1953. 2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Hiatt RA and Brody JG: Environmental
determinants of breast cancer. Annu Rev Public Health. 39:113–133.
2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Kuchenbaecker KB, Hopper JL, Barnes DR,
Phillips KA, Mooij TM, Roos-Blom MJ, Jervis S, van Leeuwen FE,
Milne RL, Andrieu N, et al: Risks of breast, ovarian, and
contralateral breast cancer for BRCA1 and BRCA2 mutation carriers.
JAMA. 317:2402–2416. 2017.PubMed/NCBI View Article : Google Scholar
|
4
|
Jezierska-Drutel A, Rosenzweig SA and
Neumann CA: Role of oxidative stress and the microenvironment in
breast cancer development and progression. Adv Cancer Res.
119:107–125. 2013.PubMed/NCBI View Article : Google Scholar
|
5
|
Malins DC, Holmes EH, Polissar NL and
Gunselman SJ: The etiology of breast cancer. Characteristic
alteration in hydroxyl radical-induced DNA base lesions during
oncogenesis with potential for evaluating incidence risk. Cancer.
71:3036–3043. 1993.PubMed/NCBI View Article : Google Scholar
|
6
|
Sipe HJ Jr, Jordan SJ, Hanna PM and Mason
RP: The metabolism of 17 beta-estradiol by lactoperoxidase: A
possible source of oxidative stress in breast cancer.
Carcinogenesis. 15:2637–2643. 1994.PubMed/NCBI View Article : Google Scholar
|
7
|
Le Page F, Randrianarison V, Marot D,
Cabannes J, Perricaudet M, Feunteun J and Sarasin A: BRCA1 and
BRCA2 are necessary for the transcription-coupled repair of the
oxidative 8-oxoguanine lesion in human cells. Cancer Res.
60:5548–5552. 2000.PubMed/NCBI
|
8
|
Vera-Ramirez L, Sanchez-Rovira P,
Ramirez-Tortosa MC, Ramirez-Tortosa CL, Granados-Principal S,
Lorente JA and Quiles JL: Free radicals in breast carcinogenesis,
breast cancer progression and cancer stem cells. Biological bases
to develop oxidative-based therapies. Crit Rev Oncol Hematol.
80:347–368. 2011.PubMed/NCBI View Article : Google Scholar
|
9
|
Di Sante G, Di Rocco A, Pupo C, Casimiro
MC and Pestell RG: Hormone-induced DNA damage response and repair
mediated by cyclin D1 in breast and prostate cancer. Oncotarget.
8:81803–81812. 2017.PubMed/NCBI View Article : Google Scholar
|
10
|
Saha T, Smulson M and Rosen EM: BRCA1
regulation of base excision repair pathway. Cell Cycle.
9:2471–2472. 2010.PubMed/NCBI View Article : Google Scholar
|
11
|
Schermerhorn KM and Delaney S: A chemical
and kinetic perspective on base excision repair of DNA. Acc Chem
Res. 47:1238–1246. 2014.PubMed/NCBI View Article : Google Scholar
|
12
|
Maynard S, Schurman SH, Harboe C, de
Souza-Pinto NC and Bohr VA: Base excision repair of oxidative DNA
damage and association with cancer and aging. Carcinogenesis.
30:2–10. 2009.PubMed/NCBI View Article : Google Scholar
|
13
|
Oka S, Ohno M, Tsuchimoto D, Sakumi K,
Furuichi M and Nakabeppu Y: Two distinct pathways of cell death
triggered by oxidative damage to nuclear and mitochondrial DNAs.
EMBO J. 27:421–432. 2008.PubMed/NCBI View Article : Google Scholar
|
14
|
Noren Hooten N, Kompaniez K, Barnes J,
Lohani A and Evans MK: Poly(ADP-ribose) polymerase 1 (PARP-1) binds
to 8-oxoguanine-DNA glycosylase (OGG1). J Biol Chem.
286:44679–44690. 2011.PubMed/NCBI View Article : Google Scholar
|
15
|
Giovannini S, Weller MC, Repmann S, Moch H
and Jiricny J: Synthetic lethality between BRCA1 deficiency and
poly(ADP-ribose) polymerase inhibition is modulated by processing
of endogenous oxidative DNA damage. Nucleic Acids Res.
47:9132–9143. 2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Markkanen E, Dorn J and Hübscher U: MUTYH
DNA glycosylase: The rationale for removing undamaged bases from
the DNA. Front Genet. 4(18)2013.PubMed/NCBI View Article : Google Scholar
|
17
|
Aceto GM, Catalano T and Curia MC:
Molecular aspects of colorectal adenomas: The interplay among
microenvironment, oxidative stress, and predisposition. Biomed Res
Int. 2020(1726309)2020.PubMed/NCBI View Article : Google Scholar
|
18
|
Duckett DR, Bronstein SM, Taya Y and
Modrich P: hMutSalpha- and hMutLalpha-dependent phosphorylation of
p53 in response to DNA methylator damage. Proc Natl Acad Sci USA.
96:12384–12388. 1999.PubMed/NCBI View Article : Google Scholar
|
19
|
Wu J, Gu L, Wang H, Geacintov NE and Li
GM: Mismatch repair processing of carcinogen-DNA adducts triggers
apoptosis. Mol Cell Biol. 19:8292–8301. 1999.PubMed/NCBI View Article : Google Scholar
|
20
|
Nielsen M, Franken PF, Reinards TH, Weiss
MM, Wagner A, van der Klift H, Kloosterman S, Houwing-Duistermaat
JJ, Aalfs CM, Ausems MG, et al: Multiplicity in polyp count and
extracolonic manifestations in 40 Dutch patients with MYH
associated polyposis coli (MAP). J Med Genet.
42(e54)2005.PubMed/NCBI View Article : Google Scholar
|
21
|
Out AA, Wasielewski M, Huijts PE, van
Minderhout IJ, Houwing-Duistermaat JJ, Tops CM, Nielsen M, Seynaeve
C, Wijnen JT, Breuning MH, et al: MUTYH gene variants and breast
cancer in a Dutch case-control study. Breast Cancer Res Treat.
134:219–227. 2012.PubMed/NCBI View Article : Google Scholar
|
22
|
Qiao L, Feng X, Wang G, Zhou B, Yang Y and
Li M: Polymorphisms in BER genes and risk of breast cancer:
Evidences from 69 studies with 33760 cases and 33252 controls.
Oncotarget. 9:16220–16233. 2018.PubMed/NCBI View Article : Google Scholar
|
23
|
Beiner ME, Zhang WW, Zhang S, Gallinger S,
Sun P and Narod SA: Mutations of the MYH gene do not substantially
contribute to the risk of breast cancer. Breast Cancer Res Treat.
114:575–578. 2009.PubMed/NCBI View Article : Google Scholar
|
24
|
Rennert G, Lejbkowicz F, Cohen I, Pinchev
M, Rennert HS and Barnett-Griness O: MutYH mutation carriers have
increased breast cancer risk. Cancer. 118:1989–1993.
2012.PubMed/NCBI View Article : Google Scholar
|
25
|
Ali K, Mahjabeen I, Sabir M, Mehmood H and
Kayani MA: OGG1 mutations and risk of female breast cancer:
Meta-analysis and experimental data. Dis Markers.
2015(690878)2015.PubMed/NCBI View Article : Google Scholar
|
26
|
Chenevix-Trench G, Milne RL, Antoniou AC,
Couch FJ, Easton DF and Goldgar DE: CIMBA. An international
initiative to identify genetic modifiers of cancer risk in BRCA1
and BRCA2 mutation carriers: The consortium of investigators of
modifiers of BRCA1 and BRCA2 (CIMBA). Breast Cancer Res.
9(104)2007.PubMed/NCBI View Article : Google Scholar
|
27
|
Stuppia L, Di Fulvio P, Aceto G, Pintor S,
Veschi S, Gatta V, Colosimo A, Cianchetti E, Cama A,
Mariani-Costantini R, et al: BRCA1 and BRCA2 mutations in
breast/ovarian cancer patients from central Italy. Hum Mutat.
22:178–179. 2003.PubMed/NCBI View Article : Google Scholar
|
28
|
Veschi S, Aceto G, Scioletti AP, Gatta V,
Palka G, Cama A, Mariani-Costantini R, Battista P, Calò V, Barbera
F, et al: High prevalence of BRCA1 deletions in BRCAPRO-positive
patients with high carrier probability. Ann Oncol. 18 (Suppl
6):vi86–vi92. 2007.PubMed/NCBI View Article : Google Scholar
|
29
|
Aceto GM, Fantini F, De Iure S, Di Nicola
M, Palka G, Valanzano R, Di Gregorio P, Stigliano V, Genuardi M,
Battista P, et al: Correlation between mutations and mRNA
expression of APC and MUTYH genes: New insight into hereditary
colorectal polyposis predisposition. J Exp Clin Cancer Res.
34(131)2015.PubMed/NCBI View Article : Google Scholar
|
30
|
Landrum MJ, Lee JM, Benson M, Brown G,
Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Hoover J, et al:
ClinVar: public archive of interpretations of clinically relevant
variants. Nucleic Acids Res. 44(D1):D862–8. 2016.PubMed/NCBI View Article : Google Scholar
|
31
|
Landrum MJ, Lee JM, Riley GR, Jang W,
Rubinstein WS, Church DM and Maglott DR: ClinVar: Public archive of
relationships among sequence variation and human phenotype. Nucleic
Acids Res. 42 (Database Issue):D980–D985. 2014.PubMed/NCBI View Article : Google Scholar
|
32
|
Pagel KA, Pejaver V, Lin GN, Nam HJ, Mort
M, Cooper DN, Sebat J, Iakoucheva LM, Mooney SD and Radivojac P:
When loss-of-function is loss of function: Assessing mutational
signatures and impact of loss-of-function genetic variants.
Bioinformatics. 33:i389–i398. 2017.PubMed/NCBI View Article : Google Scholar
|
33
|
Garre P, Briceño V, Xicola RM, Doyle BJ,
de la Hoya M, Sanz J, Llovet P, Pescador P, Puente J, Díaz-Rubio E,
et al: Analysis of the oxidative damage repair genes NUDT1, OGG1,
and MUTYH in patients from mismatch repair proficient HNPCC
families (MSS-HNPCC). Clin Cancer Res. 17:1701–1712.
2011.PubMed/NCBI View Article : Google Scholar
|
34
|
Kershaw RM and Hodges NJ: Repair of
oxidative DNA damage is delayed in the Ser326Cys polymorphic
variant of the base excision repair protein OGG1. Mutagenesis.
27:501–510. 2012.PubMed/NCBI View Article : Google Scholar
|
35
|
Yi YW, Kang HJ and Bae I: BRCA1 and
oxidative stress. Cancers (Basel). 6:771–795. 2014.PubMed/NCBI View Article : Google Scholar
|
36
|
Morak M, Massdorf T, Sykora H, Kerscher M
and Holinski-Feder E: First evidence for digenic inheritance in
hereditary colorectal cancer by mutations in the base excision
repair genes. Eur J Cancer. 47:1046–1055. 2011.PubMed/NCBI View Article : Google Scholar
|
37
|
Sieber OM, Lipton L, Crabtree M, Heinimann
K, Fidalgo P, Phillips RK, Bisgaard ML, Orntoft TF, Aaltonen LA,
Hodgson SV, et al: Multiple colorectal adenomas, classic
adenomatous polyposis, and germ-line mutations in MYH. N Engl J
Med. 348:791–799. 2003.PubMed/NCBI View Article : Google Scholar
|
38
|
Zhang Y, Liu X, Fan Y, Ding J, Xu A, Zhou
X, Hu X, Zhu M, Zhang X, Li S, et al: Germline mutations and
polymorphic variants in MMR, E-cadherin and MYH genes associated
with familial gastric cancer in Jiangsu of China. Int J Cancer.
119:2592–2596. 2006.PubMed/NCBI View Article : Google Scholar
|
39
|
Lugrin J, Rosenblatt-Velin N, Parapanov R
and Liaudet L: The role of oxidative stress during inflammatory
processes. Biol Chem. 395:203–230. 2014.PubMed/NCBI View Article : Google Scholar
|
40
|
Coussens LM and Werb Z: Inflammation and
cancer. Nature. 420:860–867. 2002.PubMed/NCBI View Article : Google Scholar
|
41
|
Visnes T, Cázares-Körner A, Hao W, Wallner
O, Masuyer G, Loseva O, Mortusewicz O, Wiita E, Sarno A, Manoilov
A, et al: Small-molecule inhibitor of OGG1 suppresses
proinflammatory gene expression and inflammation. Science.
362:834–839. 2018.PubMed/NCBI View Article : Google Scholar
|
42
|
Singh B, Chatterjee A, Ronghe AM, Bhat NK
and Bhat HK: Antioxidant-mediated up-regulation of OGG1 via NRF2
induction is associated with inhibition of oxidative DNA damage in
estrogen-induced breast cancer. BMC Cancer. 13(253)2013.PubMed/NCBI View Article : Google Scholar
|
43
|
Grasso F, Di Meo S, De Luca G, Pasquini L,
Rossi S, Boirivant M, Biffoni M, Bignami M and Di Carlo E: The
MUTYH base excision repair gene protects against
inflammation-associated colorectal carcinogenesis. Oncotarget.
6:19671–19684. 2015.PubMed/NCBI View Article : Google Scholar
|
44
|
Saha T, Rih JK and Rosen EM: BRCA1
down-regulates cellular levels of reactive oxygen species. FEBS
Lett. 583:1535–1543. 2009.PubMed/NCBI View Article : Google Scholar
|
45
|
Li D, Zhang W, Zhu J, Chang P, Sahin A,
Singletary E, Bondy M, Hazra T, Mitra S, Lau SS, et al: Oxidative
DNA damage and 8-hydroxy-2-deoxyguanosine DNA glycosylase/apurinic
lyase in human breast cancer. Mol Carcinog. 31:214–223.
2001.PubMed/NCBI View Article : Google Scholar
|
46
|
Saed GM, Diamond MP and Fletcher NM:
Updates of the role of oxidative stress in the pathogenesis of
ovarian cancer. Gynecol Oncol. 145:595–602. 2017.PubMed/NCBI View Article : Google Scholar
|
47
|
Scheffler K, Rachek L, You P, Rowe AD,
Wang W, Kuśnierczyk A, Kittelsen L, Bjørås M and Eide L:
8-oxoguanine DNA glycosylase (Ogg1) controls hepatic
gluconeogenesis. DNA Repair (Amst). 61:56–62. 2018.PubMed/NCBI View Article : Google Scholar
|